NEW APPROACH TO A SELFTUNING
BACK PROPAGATION ALGORITHM
(SELF-PROP)

Dr: Ali Ahmed Abdulaziz"

Abstract:

In Artificial Neural Networks, Back-propagation algorithm is a
first order approximation of the steepest-descent technique in the sense
that it depends on the gradient of the instantaneous error surface in
weight space. The algorithm is therefore "stochastic" in nature; that is,
it has a tendency to zigzag its way about the true direction to a mini-
mum on the error surface. However, the effect of using inexact learn-
ing technique, as opposed to exact ones, is to increase the number of
iterations needed to reach a minimum in the cost function, while redu-
cing the overall training time because each iteration requires less com-
putation. What is well known is that the uses of a fixed step length
gradient based back-propagation algorithm have difficulties with local
minima. On the other hand, the use of more efficient classical minimi-
sation algorithms is even more likely to be trapped in sub-optimal so-
lutions.

* Assistant Professor, At the Faculty of Engineering Tahadi University.

The research work outlined in this paper aims to improve the

@il izalyl dgalell V(2| 124 |

convergence and learning rate of the gradient based back-propagation
algorithm through possibilities of parallelism for different optimisation
techniques. The favourable qualities, methodology and internal struc-
ture in the "Quick-prop" learning rule by Fahlman, the "Delta-Bar-
Delta" learning rule by Jacobs, and the heuristic arguments for back-
propagation improvement by Samad are investigated. Parallel version
of these routines is proposed to form a new self-tuning back-propaga-
tion algorithm. The algorithms generally make a compromise between
the computational complexity and the performance in terms of conver-
gence rate and robustness. Analytic results; both theoretically and
practical, as well as the effects of the tuning parameters of the new al-
gorithm, is presented. Simulation results are presented with compari-
son of counterpart algorithms, e.g. the standard back-propagation,
and the quick-prop back-propagation.

1) INTRODUCTION

Since the back-propagation rule [24, 28] was exploited it found
wide acceptance in a number of fields; in control system approaches
for example Back-propagation networks can adapt to changes in data
and learn the characteristics of the input signal. They can learn a map-
ping between an input and output space and synthesise an associative
memory that retrieves the appropriate output when presented with a
known input and generalise when presented with a new input [7, 13,
and 18]. Moreover, because of their non-linear nature, back-propaga-
tion networks can perform functional approximation and signal filter-
ing operations that are beyond the capability of optimal linear control
theory [33].

The back-propagation algorithm is a first order approximation of
the steepest-descent technique in the sense that it depends on the gradi-
ent of the instantaneous error surface in weight space. The algorithm
is therefore "stochastic" in nature; that is, it has a tendency to zigzag
its way about the true direction to a minimum on the error surface.

125/ NEW APPROACH TO A SELFTUNING

Indeed, back-propagation learning is an application of a statistical
method known as "stochastic approximation" that was originally pro-
posed by Robbins and Monroe [22]. According to the empirical study
of Saarinen et al. [25], the local convergence rates of the back-propa-
gation algorithm are linear and justified the grounds that the Jacobean
(matrix of first order partial derivatives) is almost rank-deficient. The
Hessian (matrix of second order partial derivatives of the error surface
with respect to the weights) are consequences of the intrinsically ill-
conditioned nature of the neural-networks training problems. Saarinen
et al. [25], interpret the linear local convergence rates of back-propaga-
tion learning in two ways:

I - Tt is a vindication of back-propagation (gradient descent) in
the sense that higher-order method, such as conjugate gradient or the
quasi-Newlon methods may not converge much faster while requiring
more computation effort.

2 - Large-scale neural networks training problems are so inher-
ently difficult to perform that no supervised learning strategy is feasible
and other approaches such as the use of pre-processing may be neces-

sary.

However, the effect of using inexact learning technique, as op-
posed to exact ones, is to increase the number of jterations needed to
reach a minimum in the cost function. What is well known is that the
use of a fixed step length gradient based back-propagation algorithm
has difficulties with local minima. On the other hand, the use of more
efficient classical minimisation algorithms is even more likely to be
trapped in sub-optimal solutions.

The standard form of back-propagation error rule [24], although
it has been tested, analysed and implemented quite successfully in a
variety of situations, its limited because of its slowness and long con-
vergence time. This may be attributed to the lack of self-tuning strat-
egy, that is because each of the learning parameters, e. g. learning rate
parameter, (¢), and learning rate momentum, (1), have been tuned

manually by trial-and-error methods. Moreover, it is highly probable
that it tends to a local minimum situation whereupon the tuning factor
for connection weights is very small or even nil. It is for these fore-
mentioned limitations a number of formulations for replace or im-
proved back-propagation algorithms already exist in the literature, see
e.g. [5, 14, 15,19, 20, 26]. ‘

2) PROBLEM FORMULATION

Whilst the steepest descent method can be an effective method
for obtaining the weight values that minimise an error measure, the er-
ror surface frequently possesses properties that make this procedure
slow to converge. There are at least two reasons for this slow rate of
convergence [14]. These reasons involve the magnitude of the compo-
nent and the direction of the gradient vector.

The magnitude of a particular derivative of the error with respect
to a weight may be such that modifying the weight by a constant pro-
portion of that derivative yields a minor reduction in the error mea-
sure. This occurs in two situations: First where the error surface is
fairly flat along a weight dimension in which the derivative of the
weight is small in magnitude. Hence, the weight is adjusted by a small
amount and therefore many steps are required to achieve a significant
reduction in error measure. Alternatively, the error surface is highly
curved along a weight dimension in which the derivative of the weight
is large in magnitude. Hence, the weight value is adjustable by a large
amount, which may overshoot the minimum of the error surface along
that weight trajectory.

The second reason for the slow rate of convergence of a steepest
descent algorithm is that the direction of the negative gradient vector
may not point directly towards the minimum of the error surface, e.g.
for a two dimensional weight space, illustrated in figure 1,

| 127 |NEW APPROACH TO A SELFTUNING

¢ 4@
d 01 (1)

VI(t)

v

01

Figure 1: - Error surface over two-dimensional weight space.

aJ a7
66:(t)" " 96n(2)

Where VJ(t) = [] , and n is the number of weights.

The error surface is drawn topographically using half-contours to
represent regions of equal error. The minimum of the error surface is
represented by the black dot. The current weight vector is given by
6(t). Since at the current point in weight space the error surface is stee-
per along the 6, dimension than the ; dimension, the derivative of 0y
is greater than the derivative of #;. In general, if the direction of the
negative gradient vector is equal to the direction of the minimum of
the error surface for all points in weight space, the contours that re-
present regions of equal error is circular [10].

In this section we describe procedures for increasing the rate of
convergence by maintaining the locality constraint which is inherent
characteristic of the back-propagation learning algorithm [24] through
two main concepts.

@maill dealy) agalall mx] 128 |

First: Based on the above discussion, the error vs. weight curve
can be approximated by a parabola whose arms open upward, for
each weight. Independently, we use the gradient descent, with self-tun-
ing learning rate parameter, €, to make a change in the weight propor-
tional to the negative gradient of the derivative of the error surface,
[14].

Second: The changes in the slope of error curve as seen by each
weight may not be affected by all the other weights, i.e. all weights are
changing at the same time. For each weight, independently, the pre-
vious and current error slopes and the weight change between the
points at which these slopes were measured are used to determine a
parabola. The computation is then to jump directly to the minimum
point of that parabola by using a second order method based loosely
on Newton’s method (i.e. quadratic estimation technique), [5, and 27].

3) MODEL STRUCTURE

NN (X1-X2-X3) is a feed-forward neural net model with three
layers, namely; an input layer of X1 nodes, a hidden layer of X2
nodes, and an output layer of X3 nodes. There is a full connection
from every node in the input layer to every node in the hidden layer.
The number of hidden layers is assumed to be of one or two, in most
cases we preferred to use just one hidden layer where the mathematical
justification for that has been shown in Abdulaziz and Farsi [1]. Each
node in the first hidden layer is connected to all nodes in the second
hidden layer. Then all nodes in the second hidden layer are fully con-
nected to the output layer nodes. There are no direct connections be-
tween nodes in the input layer and nodes in the output layer. Both of
the input and output layers are assumed to have linear transfer func-
tions. This makes the output nodes in the output layer a summation
of last hidden layer nodes activation. The transfer function in each of
the hidden nodes is assumed to be of the tanh type function as we will
see later.

[129 [NEW APPROACH TO A SELFTUNING

4) DATA PRESENTATION

Data presentation plays an important part in updating the con-
nection weights of the back-propagation algorithm [24, 28]. The "pat-
tern data presentation” (sample presentation), and the "batch data
presentation" (vector presentation) are common for updating the con-
nection weights in back-propagation algorithm. In the former type pre-
sentation, the connection weights are updated immediately after each
sample is fed into the net. In the latter all learning data (samples) are
taken as a whole before the weight updating process begins. More de-
tailed information about such data presentation schemes can be found
in Werbos [28] and Hecht-Nielsen [12].

Here, only the pattern data presentation is considered. In this ap-
proach, each training sample is propagated forward through the net-
work to produce an output. The output is then compared with the
desired output, and the error difference is propagated back through
the net to set the new changes for the connection weights. This pattern
updating method is sometimes called "on-line" updating [12]. The mo-
tivation for using pattern learning is that it eliminates the need for
memory requirements for the accumulated error vector in "batch"
learning method. Furthermore, this method gives the true gradient in
the weight space, which leads to fast convergence. The only disadvan-
tage, however, as described by Fahlman [5] is the time consumption.
That is because for each data sample the error signal is propagated
back through the network structure to set the new connection weight
values. This process strongly affects the speed of operation for the al-
gorithm especially when more than one hidden layer with a large num-
ber of nodes is used. Using only one hidden layer with a previously
determined number of node [1] may eliminate this problem.

5) TUNING STRATEGY

From the generalised delta rule by Jacobs’s [14], the updating for
node-j for example is given by:

The net internal activity level xj(t) produced at the input of the
transfer function associated with node (neuron) j is therefore [30]

n

ilt) =Y, O4(t) .)

i=0

Where 1 is the total number of inputs applied to neuron j. The
synaptic weight 850 (corresponding to the fixed input y0=1) is equal
to the threshold 65 applied to neuron j. Hence the function signal yj(t)
appearing at the output of node j at iteration t is

In which according to the gradient rule [24], A(t) is equal to

oJ(t) .
Ab;; = —¢ = E04 (t) 2
ij 36(0) Pelt) BB sunsammmennmssunsssssmn (2)

Where 6;(t) is the local gradient, defined by

aJ(t) oe;(t) Oyj(t)

dilly=—e z z
“ de;(t) Oy;(t) Ox;(t)
= ¢;(t) . ¢(z;(t)) (for the output nodes) (3)
And
2 78 dJ(t) dy;(t)
6i(t) = ——————=
! ay;(t) Ox;(t)
aJ(t) , . . _)
= 777 . @ (z;(t)) (for hidden nodes)................ (4)
oy;\t) L

The approach here is towards improving the updating formula in
equation (2) through an on-line tuning for the learning rate parameter,
e. In this sense, based on the recommendation of Jacobs [14], four
heuristics (H1 to H4) may be viewed as useful guidelines for thinking
about how to accelerate the convergence of the back-propagation

/31| NEW APPROACH TO A SELFTUNING

learning through the learning rate parameter adaptation:

H1: Every adjustable network parameter of the performance mea-
sure should have its own individual learning rate.

As mentioned above the back-propagation rule may be slow be-
cause of the use of a fixed learning rate parameter, . This may not be
suitable for all portions of the error surface. In other words the learn-
ing rate parameter, ¢, may be adequate for the adjustment of one con-
nection weight but may not be appropriate for the adjustment of the
others. H1 recognises this fact by assigning a different learning rate
parameter, ¢, to each adjustable connection weight.

H2: learning rate parameter, ¢, should be varying from one itera-
tion to another.

It is a typical behaviour for the error surface to possess different
properties along different regions of a single weight dimension. Thus,
in order to take appropriate steps, H2 states that the learning rate
parameter, ¢, needs to vary from one iteration to another.

H3: When the derivative of the performance measure with respect
o a connection weight has the same algebraic sign for several consecu-
tive operations of the algorithm, the learning rate parameter for that
particular weight should be increased.

This occurs when the current operating point in the weight space
lies on a relatively flat portion of the error surface along a particular
weight dimension. This may, in turn, account for the derivative of the
performance measure with respect to the connection maintaining the
same algebraic sign, and therefore pointing in the same direction for
several consecutive operations. H3 states that in such situations the
number of iterations required to move across the flat portion of the er-
ror surface may be reduced by increasing the learning rate parameter,
€, appropriately.

H4: When the sign of the derivative of the performance measure
with respect to a particular connection weight alternates for several

@maill dzalal Rgalsl m\ | 132 |

consecutive iterations, the learning rate parameter, £, for that weight
should be decreased.

When the current operating point in weight space lies in a highly
curved portion of the error surface. The error surface exhibits peaks
and valleys, then it is possible for the derivative of the performance
measure with respect to the connection weight to change its algebraic
sign from one to another iteration. In order to prevent this quick
change of sign, H4 states that the learning rate parameter, ¢, should
be decreased appropriately.

Hence, to accelerate convergence of the back-propagation algo-
rithm through the learning rate parameter, &, it is required to re-derive
the back-propagation rule, by using the local learning rate parameter
method [14]. In this new form of the back-propagation rule, the per-
formance function (cost function) assumed to be governed by

Where

ei(t) = We(t) = Y(t) corririnriicinininnsisnsssssssiissanasscasases (6)

Where yi(t) is the output of node k of the output layer, and
wy(t) is the desired response for that node.

Now let () denote the learning rate parameter, &, assigned to
connection weight ;(t) at iteration t. Applying the chain rule to the
derivative 8J(t) with respect to dex;(t) by using the yx(t) and zi(t) as

8J(t) _ 9J(t) Ou(t) Omi(t) 7

Oeri(t) Tn(t) Bup(t) Degg(e) I

Thus, the parameters of eciuation (7) may be computed as fol-

| 133 [NEW APPROACH TO A SELFTUNING

Where
-~ aJ(t—1) : :

g\t) =it — 1) —e—— 4+ puAOL:(t — 1) oo,
Oii(t) = Oy;(t — 1) B (1) T HAk(E— 1) (8)
Substituting (9) in (8), to get

aJ(t—1)

Tpl(t) = Z yj(fj J:@j-,'(f. -1) - :”j‘-_;(l()

J

= b N G =11 (1
By =1 A S%l—1)| 10)

Hence, by differentiating equation (10) with respect to € kj(t),

yields
3.1'j(1‘.) 'C].](?L, —].)
= —q; I T T 1
deyt) - Y B =) (1)

The derivative of yk(t) with respect to xk(t) in equation (7) may
be defined as:
Oy (1)

a0 10) | 12
t)a:;,(t_) @y (@i () (12)
Next, evaluate the derivative of J(t) with respect to yk(t). First
consider the case when the node k is an output layer node where the
desired response wj(t) is known. Accordingly, from equation (5) we
get:
aJ(t)

ayh;(” = —CR(E) erveeeeeee e (13)

Finally, using the final derivatives of equation (11), (12) and (13)
in (7), and rearranging terms, we obtain

oJ(t) — 8, (ze(®)).ex(®) s (0). | 0J(t—1)]
Bexy 2) = =@ (zr(t)).ex(t).y;(t). ——_@9;;,(‘? - I)J

From the delta rule [24], the local gradient j(t) can be defined by

RERTIE PAREWAPY m\J 134 |

, lex(®).¢,(zk(t))yx(t)), which represents the local gradient k(t) at
time instance t. Using this relation we may simply redefine equation
(14) as

oJ(t) 0J(t)] 8t —=1)
dexi(t) ()9;, J Myt — 1)
L Tk T ol L TSRS (15)

Which defines the derivative of the error surface with respect to
the learning rate parameter , &, for output layer nodes. In case of hid-
den nodes, the same formula can be obtained simply by using local
gradient equation

™m

5;(t) = ¢(;(t)) D Ek(t) Oii(t)

k

in (14). In other words equation (15) may be applied to all modi-
fied nodes in the net structure. Therefore, from equation (15), the
changes in the learning rate parameter, ¢, should be proportional to
the current and last changes of gradient. Hence, we may define the ad-
justment applied to learning rate parameter, ex;(t), as

aJ(t)
" Oe;(t)

JaJw] [8J¢E-1)]
i.L (17)

E()@ ()] " |8kt — 1))

= —v.6k(t) . Ok(t—1)

Where ~ is the proportionality constant for the learning rate pro-
cedure, which is usually a positive scalar.

| 135 [NEW APPROACH TO A SELFTUNING

Use (17) in (16) and substituting in (2) yields the general form

[0J(t)] [6J(t—1)]]1 &J()
A :_[5%_1 G . P i)
o L “ : a(t) ‘ | O9(t — UJJ o0(t) (18)

Accordingly, two important procedures have been reported in
[14] which are:

1: If the derivative of the error surface with respect to connection
weight 6(t) has the same algebraic sign for more than one conse-
cutive iteration, the adjustment of the learning rate parameter,
€(t), for the next iteration should be increased by a certain value
to speed up learning. The value of the increment is proportional
to the nodes local gradient for the last two consecutive iterations,
equation (17).

2: On the other hand, if the derivative of the error surface with re-
spect to the connection weight 6(t) alternates on two consecutive
iterations, the adjustment of the learning rate parameter, e(t),
should correspondingly be decreased by a value proportional to
the last two consecutive iterations to slow down the learning step,
equation (17).

These two observations satisfy the heuristics mentioned in H3
and H4. Therefore, from equation (17), the learning parameter, «, may
be tuned on-line during connection weights adaptation by using equa-
tion (16).

The limitation of this tuning strategy as stated by Jacobs [14] is
that, if the derivative of the error surface with respect to a particular
connection weight has the same sign but small in magnitude. The posi-
tive adjustment applied from equation (17) is very small. Also, if the
derivative of the error surface with respect to a particular connection
weight has opposite signs and large magnitudes at two consecutive
iterations, the negative adjustment for that weight will be very large
which may create an overflow to the learning process.

The fore mentioned using the second concept of the new self-tun-

sl e agedell 150000 136 |

ing back-propagation algorithm as follows could eliminate limitations
of the learning rule in equation (16).

aJ F o aJ \
ANE) = V= — — .AB(t—1)
W (f‘)()ff} / (i‘)ﬁ(r’ —1) a(t))) : (19)

This form of quadratic estimation may be used in two cases:

1: where the current slope is somewhat smaller than the previous
one but in the same direction (same sign), the weight will change
again in the same direction. The step of this change may be large
or small depending on how much the slope was reduced by the
previous step.

2- when the current slope is in the opposite direction from the pre-
vious one, which means we have crossed over the minimum and
that we are now on the opposite side of the valley. In this case,
the next step will be somewhere between the current and the pre-
vious position.

Here, it is worth concluding that, the use of different computa-
tion techniques and a different time-varying learning rate parameter, &,
for each connection weight modifies the back-propagation in a funda-
mental way. In other words, the connection weights are updated fre-
quently either with the steepest descent search method with the tuned
learning rate parameter, €, using equations (18), or with the quadratic
estimation method using equation (19).

A summary of the new self-tuning back-propagation algorithm is
presented in the following:

1: Initialise the learning parameters which consist of initial weights,
@, initial learning rate parameter, €, learning momentum, and the
learning jump factor, 7.

2. Take the first training sample vector, which consists of the input
and the desired system output.

3. Forward input data through all nodes in the hidden layer/layers,

| 137 |[NEW APPROACH TO A SELFTUNING

and calculate the actual output, which is

Yi(L) = Di(T5(L)) oot (20)

4: Calculate the global error using equation (6), then propagate the
global error back to calculate the local gradient for each output
and hidden nodes by using equations (3) and (4), respectively.

5: Depending on the error surface, adjust the connection weights ac-
cording to equations (18) or (19) using equation (D).

6: Repeat steps 1 to 5 until the end.

The overall flow chart of the new algorithm is illustrated in fig-
ures-2 and 3, below.

Initialise the parameters 8 and € and then

set values for L, v .

3

Get the training sample vector

I

[
(
[

\
Forward training pattern and
calculate the actual output; equations = 20. y
' i ™
Calculate the global error, equation . 6.
Propagate global error back to calculate local gradient
L for each node, equatioIs 18 and . 19. L
7 S
Adjust connection weights according to
equations 18 or 19usingeq. 1.
L q geq)

End of training pattern

Figure 2 Flowchart for the new self-tuning back-propagation. (SELF - PROP)

| 139 [NEW APPROACH TO A SELFTUNING

Key:

LG=Local Gradient

No

r

Set local

£(t)= € Init,
AB(t)=
Eq. (18)

No

v

Increase local
€ (t-1)
Eq. (16)

y

AB(t)
Eq. (18)

:

AB(t)
Eq. (19)

Continue

AB (-1)=0

y

Continue

B
emsill 10l 3yatell 10\ 100 |
y A J
Yes No
No Yes
Set local Increase local
=g Ini g (t-1)
g (t)=¢ Imit. Ea. (16
AB(t)
Eq. (19)
AB(t) AB(1)
Eq. (18) Eq. (18)
v v l
Continue Continue

Cont.

| 141 |NEW APPROACH TO A SELFTUNING

No Yes

Decrease local Increase local
€ (t-1) g (t-1)
Eq. (16) Eq. (16)
AB(t) AB(t)
Eq. (18) Eq. (18)

Update connection weights
Eq. (1)

Figure 3 Flowchart illustrating the updating strategy
for the connection weights in the new back-propagation algorithm. (SELF - PROP)

PRI PARE WAELY m\ | 142 |

6) PERFORMANCE STUDIES ON THE EFFECTS OF TUNING
PARAMETERS ON THE LEARNING CURVE OF SELF-PROP

The task undertaken is to compare by a simulation study how
the new tuned learning rate back-propagation rule is better than the
well known back-propagation algorithms. The comparative study, has
been made with the standard back-propagation [24] and the quick-
prop back-propagation [5], algorithms.

Consider the classic Exclusive OR (XOR) problem, table 1, which
is commonly used in back-propagation function testing.

Input Patterns Output Patterns
00 0
01 1
10 1
11 0

Table 1 Exclusive-OR (XOR) function.

The neural network model selected for this non-linear binary
function was NN (2-2-1), which is of two input, two hidden, and one-
output nodes. The output layer node function is linear. However, to
solve this binary problem with numerical data structure, the zeros and
ones in table 1, were set to -0.5 and 0.5 respectively.

Figure 4 depicts the first 500 trials of the comparative results ob-
tained from the standard back-propagation (SBP), the quick-prop
back-propagation (QPBP) and the new self-tuning back-propagation
(SELF-PROP), algorithms. For all the above learning algorithms, the
learning parameters were set as follows: the learning rate parameter
€ = 0.02, the momentum learning factor p = 0.5 and the initial-weights
p=1.0.

| 143 [NEW APPROACH TO A SELFTUNING

5 05 | -.
g 0.4 Lésend: 'l_
£ cgenda:)
i = = SBP
a 03
= = = = QFPBP

02

) STBP

0.1 +

o—+—
I 100 199 298 397 496

Number of Training Trials

Figure 4, Comparative study between
the learning curve of SBP, QPBP, and STBP. (SELF-PROP)

It is very clear, from figure 4 that the new SELF-PROB algo-
rithm converges much faster when compared to SBP and QPBP.

In the above XOR problem the learning rate parameter e, was
automatically tuned in the SELF-PROB according to the tuning strat-
egy in equation (16). The first 10 trials of the learning rate variation
for each node of the NN (2-2-1) neural model is shown in figure 5.

0.024 -

0.022 +

0.02

0.018 -

Learning Rate Parameters

0.016 +

0.014 — ot B e —-

2
=
‘_)‘

1
o

9 10

Time
Legened:
HIB: == == Hiwl == = =.Hiwl
- = =B = = - Hlwl —%— Hlwl
— 0B - Ow]l =& = Ow2

Figure 5: Pictorial representation of the variations

of the learning rate parameter, c.

The annotations for the learning rate parameter, , on figure 5
are briefly explained as follows: HIB, Hlwl and Hlw2 are the varia-
tions of € for node 1 in the hidden layer, respectively. H2B, H2wl and
H2w2 are the variations of ¢ in hidden node 2. OB, Owl and Ow2 are
the variations of € in output layer.

To illustrate the effects of the jump factor, v, on the convergence
speed, small changes were made to ~, between 0.009 to 0.04. The ob-
jective was to record the number of trials before convergence for each
jump factor, 7. The algorithm was started with v =0.009 and the
learning parameters were set as in table 2.

| 145 |NEW APPROACH TO A SELFTUNING

N(2-2-1) XOR

Initial Value Jump factor Initial weights Trials before

£ 7 (p) convergence
0.02 0.009 1.0 800
0.02 0.01 1.0 750
0.02 0.015 1.0 648
0.02 0.02 1.0 577
0.02 0.025 1.0 533
0.02 0.03 1.0 490
0.02 0.035 1.0 467
0.02 0.04 1.0 444

Table 2 Effects of jump factor v on convergence rate.

The results obtained in table 2 may be best understood if it is

pictorially represented as in figure 6

Number of trials befor convergence

800 —
700 +
600 —
500

400
300
200

100 +

0 : { - - —
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Learning Rate Parameter jump factor

Figure 6: Effects of incrementing the learning rate parameter

factor () on system convergence.

@il il agatell s\ ()| 146 |

This may conclude that, by increasing the learning rate jump fac-
tor the convergence speed is effectively improved, i.e. the learning jump
factor is directly proportional to convergence speed.

7) CONCLUSION

In real systems identification and control [2, 3, 4, 6, 8, 9], the
time available for the estimation of the system parameters in the para-
metric model is usually small and hence fast convergence algorithms
are required. In adaptive control techniques, fast convergence estima-
tor plays a central role for the performance, and the accuracy of a
controller especially when fast reference point changes are involved. In
non-linear control, although the artificial neural network approach is
inherently non-linear in nature and may be a very effective tool for
non-linear system identification and control, it has been rejected by
plant managers in many real applications due to its slow rate of con-
vergence.

The objective of the work outlined in this paper has been to im-
prove the convergence speed of the back-propagation algorithm
through an empirical study, which could cope with the fore, mentioned
circumstances. The developed algorithm exhibits good adaptation
properties and this with its low complexity makes them ideally suited
for practical purposes.

It can be observed from the first test, figure 4, that the new pro-
posed algorithm behaved well compared to some counter part algo-
rithms such as the SBP and QPBP.

| 147 |NEW APPROACH TO A SELETUNING

REFERENCES

[1]

2]

(3]

[4]

[5]

[6]

[7]

Abdulaziz, A.A., and M. Farsi, (1993), "Non-linear System Iden-
tification and Control based on Neural and Self-tuning Control",

International Journal of Adaptive Control and Signal Processing,
Vol. 7, pp. 297-307.

Abdulaziz, A.A., and M. Farsi, (1993), "Dynamic Modelling and
Control for a class of Non-linear Systems using Neural Nets",
Conf. Proc. IEEE International Symposium on Industrial Elec-
tronics (ISIE’ 93), Budapest, Hungary, pp. 543-548.

Abdulaziz, A.A., and M. Farsi, (1993), "A Comparative Study
between Self-tuning and Neural-based Controllers", Colloquium
on Neural Networks and Fuzzy Logic: in Measurement & Con-

trol, Control Systems Research Group, John Mores University,
Liverpool, UK.

Abdulaziz, A.A. and M. Farsi, (1994), "An On-line Neural-Based
Predictive Controller", ICSE, 10th International Conference On
System Engineering, Coventry, UK, Vol. 1, pp. 9-16.

Fahlman, S.E., (1988), "An Empirical Study of Learning Speed
in Back-Propagation Networks", CMU Technical Report, CMU-
CS-88-162.

Farsi, M., and A.A. Abdulaziz, (1994), "Self-tuning Controller of
Bi-linear Systems", The Third IEEE Conference On Control Ap-
plications, Glasgow, UK. Vol. 3, pp. 417-422.

Fukuda, T., and T. Shibata, (1992), "Theory and Applications of
Neural Networks for Industrial Control Systems", IEEE Trans.

PTG PRI L

(8]

[91

(14]

[15]

[16]

[17]

[18]

on Ind. Electronics, Vol. 39, No. 6, pp. 472-489.

Funahashi, K.I., (1989), "On the Approximate Realisation of
Continuous Mappings by Neural Networks", Neural Networks,
vol. 2, pp. 183-192.

Grant, P.M., (1989), "Artificial Neural Networks and Conven-
tional Approaches to Filtering and Pattern Recognition", IEE .
Elect and Comms. Eng., September, pp. 225-232.

Haykin, S., (1994), "Neural Networks: A Comprehensive Foun-
dation", Macmillan College Publishing Company.

Hebb, D.O., (1949), "The Organisation of Behawour A Neurop-
sychological Theory", Wiley: New York. -

Hecht-Niclsen, R., (1989), "Theory of back bropagatibnl neural
networks", Proc. IICNN, Washington DC, pp. 593 608

Irwin, G.W, G. Lightbody and S. McLoone, (1994) "Comparl-
son of Training Algorithms for Multi-layer Perceptrons", IEE
Coll. on Advances in Neural Networks for Control and Systems,
Digest No. 136, Berlin, pp. 11/1-11/6.

Jacobs, R.A., (1988), "Increased Rates of Convergence Through
Learning Rate Adaptation", Neural Networks, Vol. 1, pp. 295-
307. :

McLoone, 8. and G. Irwin, (1995), "Fast Gradient Based Off-
Line Training of Multi-layer Perceptrons", To appear in "A
Chanced in Neural Networks for Control Systems’, (Hunt, Irwin
and Warwick, eds.), Sperings-Vealag.

Miller, W.T., F.H. Glanz and L.G. Kraft, (1990), "CAMAC: An
Associative Neural Network Alternative to Back-Propagation”
Proc. IEEE, Vol. 78, No. 10, pp. 1561-1567.

Moody, J.E and C.J. Darken, (1989), "Fast Learning in Net-
works of Locally-Tuned Processing Umts“ Neural Computation
1, pp. 281-254.

Poggio, T,. and F. Girsi, (1990), "Networks for Approzimation

| 149 |NEW APPROACH TO A SELFTUNING

[19]

[20]

[21]

[22]

23]\

[24]

[25]

[26]

[27]

[28]

and Learning", Proc. IEEE, Vol. 78, No. 9, pp. 1481-1497.

Poggio, T. and F Girosi, (1990), "Regularization Algorithms for
Learning that are be equivalent to Multi-layer Networks",
Science 247, pp. 978-982.

Powell, M.J., (1985), "Radial Basis functions for Multivariable
Interpolation: A review", In IMA Conference on Algorithms for
the Applications if Functions and Data., pp. 143-167, RMCS,
Shrivenham, UK.

Renals, S., (1989), "Radial Basis Function Networks for Speech
Pattern Classiﬁcation" Electronic Letters 25, pp. 437-439.

Robblns H. and S. Moroe, (1951), "A Stochastic Approximation

.-'Method\ Annals of Mathematical Statistics, No. 22, pp. 400-

_;”fv/i,{“’ ‘

., (1958), "The Perceptron: A probabilistic model
for informauon storage and organisation in the brain", Psycholo-
gical Rev., vol. 65, pp. 368-408.

Rumelhart, D.E., G.E. Hinton, and R. J. Williams, (1986), "Par-
allel Distributed Processing", MA, Cambridge: The MIT press.

Saarinen, S., R.B. Bramley and G. Cybenko, (1992), "Neural
Networks, Back-Propagation, and Automatic Differentiation"”, In
Automatic Differentiation of Algorithms: Theory, Implementa-
tion, and Application, (A. Griewank and G.F Corliss, eds.), pp.
31-42, Philadelphia, PA: SIAM.

Samad, T., (1990), "Back-propagation Improvements Based on
Heuristic Arguments, IICNN-90, Wash-DC, Vol. 1, pp. 565-568.

Sutton, R.S., (1986), "Two Problems with Back-Propagation and
other Steepest Descent Learning Procedures for Networks" Proc.

of the 8th Annual Conference of the Cognitive Science Society,
pp. 823-831.

Werbos, P.J., (1974), "Beyond Regression: New Tools for Predic-
tion and Analysis in the Behavioural Sciences", Ph.D. Disserta-
tion, Harvard University, MA, Cambridge.

{29]
[30)

[31]

[32]

t33]

Werbos, P.J. , (1990), "Neurccontrol and Related Techniques",
Handbook of Neural Computing Applications, by Maren A. T.,
C. T. Harston and R.M. Pap, Academic Press, Inc.

Widrow, B., and M.A. Lehr, (1990), "Thirty years of adaptive
neural networks: Perceptron, Madaline, and Back-Propagation",
Proc. IEEE, Vol. 78, No. 9, pp. 1415-1441.

Wiener, N., (1958), "Non-linear Problems in Random Theory", J.
Wiley, New York.

Willis, M.j., C.D. Massimo, G.A. Montague, M.T. Tham and
A.J. Morris, (1991), "Artificial Neural Networks in Process Engi-
neering", IEE Proceedings-D, Vol. 138, No. 3, pp. 256-266.

Ogata, K., (1990), "Modern Control Engineering", Prentice-Hall,
Inc.

