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Summary

The project of this thesis concerns some properties of solutions of
differentiat equations {difference equations).
We believe that the results about third order rational difference
equation are of paramount importance in their own right and
furthermore we believe that these results offer prototypes towards the
development of the basic theary of the global behavior of solutions of

non-linear difference equation of third order.
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Chapter 1

Preliminary Results and Definitions

1.1 intraduction

The primary purpose of this thesis is to study the behavior of some
difference equations, where difference equations have received much
attention of many scientists from various disciplines .Perhaps this is largely
due to the advent of computers where differential equations are solved by
using their approximate difference equation formulations . With the use ofa
computer one can easily experiment with difference equations and ane can
easily discover that such equations posses fascinating properties with a
great deal of structure and regularity . Of course all computer obsarvations

and predictions must also be proven analytically . Therefore this is a fertile
area of research, still_in its infancy , with deep and important resuits.
Difference equations appear as natural descriptions of observed
evolution phenomena because most measurements of time ivelving
variables are discrete and as such these equations are in their own right
important mathematical maodels. More importantly, difference equations
also appear in the study of discretization methods for differential equations.
Several results in the theory of difference equations have been obtained as
more or less natural discrete analogues of corresponding results of
diffcrential equations. This is especially true in the case of lyapunoy theory

af stability. Nonetheless, the theory of difference equations is a lot richer



Than the corresponding theory of differential equations. For example, a
simple difference equation resulting from a first order differential equation
may have a phenomena often called appearance of “ghost” solutions or
existence of chaotic orhits that can only happen for higher arder differential
equations and the theory of difference equations is interesting in itself.

The applications of the theory of difference equations is rapidly increasing
to various fietds such as numerical analysis, control theory, finite
mathematics and computer science.

Thus, there is many reason for studying the theory of difference equations as
a well deserved discipline.

Examples of discrete phenomenon in nature abound and yet somehow
its conlinuous version has commazndeered all our attention perhaps due to
that special mechanism in human nature which permits us to notice what
we have been conditioned . Although difference equations manifest
themselves as mathematicat models describing real life situations in
probability theory, queuing problems, statistical problems, stochastic time
saries ,combinatorial analysis ,number theory , geometry , electrical
networks , guanta in radiation , genetics in biology , economics, psy -
Chology, sociology, etc...

The study of dynamics is the study of how things change over time
Discrete dynamics is the study of quantities that change at discrete points in
time, such as the size of a population from one year to the next, or the

change in the genetic make-up of a population from one generation to the



Next. In general, we concurrently develop a model of some situation and to
develop our mathematical theory, we will be able to add more components
to our model.

The mean for studying change is to find a relationship between, what is
happening now and what will be happened in the ‘near’ future; that is,
cause and effect, By analyzing this relationship, we can often predict what
will be happened in the distant future. The distant future is sometimes a
given paint in time, but more often is a fimit as time goes te infinity. tn doing
our analysis, we will use many a_lgebraic and calculus topics such as,
factoring, exponentials and logarithms, solving systems of equations, and
derivatives. We should also be able to apply discrete dynamics to any field in
which things change, which is the most fields. The goal, then, is to not anly

learn mathematics, but to get develop a differently way of thinking about
the world.

The mathematical modeling of several real-world phenomenon leads ic
differential ar difference equations of various types depending on the
nature of the phencmenon under consideration. The problem of obtaining
solutions of such equations in terms of the elementary functions of analysis
is not solvable for most equations because of the nonintegerability of the
equaticn. Therefore, the fundamental probtem in the theory of differential
ar difference equations is to deduce the gualitative properties of the
salutions of a given equation from the analytic form of the equation. The
numerical methads are other ways to know some qualitative properties

about the solutions.



The oscillation and global asymptotic behavior of solutions are two such
qualitative properties which are very important for applications in many
areas such as control theory, mathematical biclogy, neural networks, ete.. It
is impossible to use computer based (numerical) techniques to study the
oscillation or the asymptotic behavior of all solutions of a given equation due
to the global nature of these properties. Therefore, these properties have
received the attention of several mathematicians, engineers and other
scientists around the world. Since the numerical integration of differential
equations, gives rise to difference equations.

Study of the analogous and nonanalogous Properties of both equations is
of special importance for both theory and applications . Also, many notions
from continuous case are used for its discrete version without any
modifications . For example, the difference equation

Ay, tpy. =0ke N, {1.1)
Where a is the forward difference operator defined by

t"‘t}’,., =¥, ¥

n

May be considered as a discrete version of the first order delay differentia

Equation

WO+ P =7) =0

So equation [1.1) is said to be a first order delay difference equation. But
without mentioning the term delay, Equation (1.1} is a " order difference

equation,



1.2 The basic definitions and elementary results

In the following, we present some basic definition and known results
which will be useful in cur study.
Now let 7 be aninterval of real numbers and let
F: '

Where Fis a continuously differentiable function.
Consider the difference equation

Vo Z 0 e Mg hn = L2 (1.2}

with the initial conditions v, .y, -3 EX.

The following definitions are given in [2-2),{11]and[26].

Definition 1.1

An ordinary difference equation is a relation of the form given
by (1.2}.
Definition 1.2

The order of a difference equation is the difference between the

highest and lowest indices that appear in the difference equation,
The expression given by (1-2} is a " order difference equation if

and only if the term 3, appears in the function F on the right- hand side.

Definition 1.3

A difference equation is linear if it can be put in the form:



VoL ot L a e, e (e = R,

e+

where a (n).i=%.....&k and R, are given functions of ».

Definition 1.4

A difference equaticn is non-linear if it is not linear.

Definition 1.5

A solution of equation {1.2) is a function @(n) that reduces the

equation to an identity.

Definition 1.6

We say that y is an equilibrium point of Equation {1.2)if

FG )=

That is, the constant sequence{y, 7., With

v, =; Forall nz-k
s a solution of Equation{1.2).

Definition {Stability }1.7:

(iYThe equilibrium pointy of Equation {1.2) is locally stable if for every £30

there exists 830 such that for all 3.y, . ¥y ) € T With

ly_* -ﬂ+|_1-_‘_, —ﬂ+.......+!yn -;-lc;i,

We have

!}'ﬂ-_} <g. forallnz-%



{ii) The equilibrium point » of Equation {1.2) is iocally asymptotically

stable if v is locally stabte solution of Equation (1.2} and there exists 7)0

1

Y _-1'I+|-"'-*+' —_v|+.......+!,1-[, —_1-| <7

We have
lim ¥, = y
(iii) The equilibrium peint 3 of Equation (1.2} is global attractor if for all
A U U T |
We have
fim 3, =
{iv} The equilibrium point y of Equation {1.2) is globally asymptoticatly
stable if v is focally stable, andy is also a global attractor of Equation {1.2}.
{v) The equilibrium point 3 of Equation (1.2) is unstable if v is not localty
stable.

Definition {periodicity}1.8:

Let b be a pointin the domain of F,Then

(i} & is called a periodic point of F or Equation {1.2) if for some positive

integer p, Fr(h)=h Hence a point is p periodicif it is a fixed point

of Fm =4, thatis,if itis an equilibrium point of the difference eguation

Yo = H ¥,



Where /= F"
The periodic orbit of b, 07 ()= 6. F(b). F*(8)....F™' (8} s
often called a g cycle.
(i} & is called eventuslly p periodic if for some positive integer m, /7 (b)
is a periodic point .
In other words, b is eventually pperiodic if
FTNBY=F"(0)
[iii)A Sequence !y, )2, s said to be periodic with period p if y,.,=y, for
all n>—k .Asequence{y, )=, issaid to be periodic with prime period p if p
is the smallest positive integer having this property.
The linearized aquation of Equation {1.2} about the equilibrium is the

linear difference equation

I T
=2 J_,J'-—‘ b (1.3)

, FI=r
L—'} n=l

The characteristic equation associated with Equation (1.3)is

fy=af +oi +. ta k +a, =0 (1.4)

Where



Theorem 1.1 { Linearized Stability Theorem[11] )

(i) If all roots of {1.4) have modulus less than one, then equilibrium  of

{1.3}is locally asymptotically stable .

1

(ii) If at least one of the roots of {1.4) has modulus greater than ane, then

the equilibrium of (1.3} is unstable .

The equilibrium of (1.3} is called saddle point equilibrium if {1.4) has roots

both inside and ocutside the unit disk.

Theorem 1.2 [11}

Assume that pgye ® and X € {0,1,2,.....}.
Then
i+ lal <1

Is a sufficient condition for the asymptotic stability of the difference

gguation

P T P T =0, =01
Remark 1.1 Thearem 1.2 [11] can be easily extended to a general linear
gquations of the form

Vour T PV ¥t 2y =0,0=0,1,... (1.5)
Where . py.p, @nd kell2,.]. Then Equation {1.5) is asymptotically

stable provided that
> lef<1

10



Definition (Permanence} 1.9

The difference equation {1.2)
Is said to be permanent if there exist numbers m and Ar for any initial

conditions v, .3, ¥o.0p € (0.2)  there exists a positive integer v which

depends on the initial conditions such that

mzy <Mforallnz ¥V

Definition (1.10):

A nontrivial solution y(n) of (1.2} is said to be oscillatory {(a round
zero).If for every positive integer &, there exists nz .\ such that
ylmipla + 1<,

Otherwise, the solution is said to be nonosciliatory .

The solution v{mis said to be oscillatory around an equilibrium point

wif (y(m - 1) is oscillatory around zero.

The following theorem was given in [20] and it is an important theorem

which will be useful in our study of the following chapter.

Thearem 1.3[201;
LetFe[4'".7} for some interval / of real numbers and for some

nonnegative integer X, and consider the difference equation {1.2).

Let (v 1=, be a solution of Equation{1.2), and suppose that there exist

11



constants .te/and B e {such that
A<y < g forall nz -k

Let/,be a limit point of the sequence {y,};... .-Then the following statements

L

are true,

{i} There exists a solution{£ }". . of equation {1.2},called a full limiting

sequence of |y 1=, such that L, =4, ,and such that for every Ne{  -1.0L.. 14,
is a limit point of {¥ 17 .

[ i1} For every i, < -k there exists a subsequence 1,14 of {» 1= . such that

L,=limy, . forevery V2

1=+

The theory of the Full Limiting sequence was indicated in {3],[4] and{20].

1.3 On the rational recursive sequence

_a+pl R
at+bvi+ov? |+

¥

The aim of this theses is to study the global behaviour and the periodic

Solutions of particular cases of the following difference equation

)
B4 T

a+ﬁ.} -i-:ll}n—l-'hf:""ﬂ";I ;]—nl ....... {h]
a+ byl +opf | +dvi, ‘

Where a.f.y.6.4.8.C.D.p and g are nonnegative real numbers and the

initial conditions y,.y,and »,are real numbers.

12



Particular cases of the equation (E) has been considered by many

authors. These particular cases can be classified as follows:

a+bv |
¥, =—= na=0]1.. E
= it=] :1_!'_31|"_2 { |:|
L]
o+, e .
.-.ll',nr! — r':l'.u {v =z JF:U,].“_, {'{:2}

athyy tevi, +edvl

Yo =—pi£!i,ﬂ'=ﬂ,l..... (E.)
Ve + Yuu ’
Voar :M_JJ'_'—E.JT:{]_L_“_ {!-'-4:'
ff"""_‘l»'q_!

Amieh AN, Ladas ,G.and KriK, V.,[5], studied the recuarsive sequence
{£)

Camouais E,ladas ,.G., and Vouliv ,H.,D.,[8], studied the recursive

sequence (£,).

the global behaviour of the equation (£,)and particular cases of it were
studied by [10].

The global attractor of the equation(£,), studied by Grove ,E. A ,.
Ladas ,G., Perdescu,M., and Radin ,M.,[4].
In chapter 2 ,we discuses the boundedness ,periodicity ,and the global

stability of the equilibrium points of the solutions of

;.‘I = M M= I"}?L____.J = {n_l] (E‘)
Av,, + By, '

13



Where a.f..1and B e(0.=)and where the initial values y,,v,and »,are real

aumbers,
In chapter 3,we discuse the global behaviour and the periodic

solutions of the following eguations

(4 .
O L R Y ()

A+
Where a.f.yand p are nonnegative real numbers and the initial conditions
v...x,and y,are nonnegative real numbers such that
F=nl vnz0,
And

b ()
A+ By, '

J'rrHI =

Where 6. and & are nonnegative real numbers and the initial conditions

v...y,and y,are nonnegative real numbers such that

A+By 0,90z,

13
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Chapter (2)

: : (8, A
On the rutional reeursive sequency 3, = m”—ﬂ”f e 10,1

[ v "TJ,.IF'PF - 'H}In-z

2.1 Introduction

Qualitive analysis difference equations are not only interesting in its own
right. but it can provide insighls into their continuous counterparis, namely.
differential equations.

‘There is a class of nonlinear difference equations, known as the rational
difference equations, cach of which consists of the ratio of two polynomials in
the sequence terms in the same forn, There has been a lot of work concerning
the global asymptotic behavior of solutions of rational difference equations [6-
7.9-10,12,13,15-19,21,23 24].

Related nonlinear, rational difference equations were investigated in
[51.[8].[14].]22)and[25].
The study ol theses equations is quite challenging is in rapid development.
This chapter the haundedness |, periodicilly .amd tie global stability of the eqnilibrium

Paints of the solutions of the following rational difference equations

" Vet +lﬁ}.n—3 e {U.I} (2.1}

Foe jiynaf + B}.n-!

Where ar, ., Aand A e (0, o) and where (he initial values y_,,y., and 3, arereal

muubers.

2.2 Local stability of the equilibrium point of equation (2.1)

In this section we study the local stability character of the solutions of equation
(2.1} .Fquation (2.1) has a unigue positive equilibrium point and is given by
16



c+ f
A+ f1

y=
Let f:{0. oo ) x {0, =) — (0. 3} be the continuous function defined by

Fluv)= ant [

T Aw+ By

Theretore it futlows that

& fi.v) _ (a8 - _J"f:!}\'
cu (Au+ B}

& (w.v) _= (a8 ~ Beile

4

c¥ [;!u L Hr]

Thern, we see that

oyl eB-p) _
B (A+ BYee + #)

Ef(;,;] __ (HB - ﬁ;f) oy
v (A+ BYa+ )

Then the Lincarized equation of equation (2.1} aboul ¥ is

ZoatpPi+gz,,=01e {'D.l} (2.2)

Whose characteristic equation is

A+pilig=0 (2.3)

Theorem 2.2.1 Assume that

{o + pYA+ B)> 201~ aB)
Then the positive equilibrivm potint of equation (2.1) is locally asvmptotically
stable.

17



Proof: it is follows by Theorem 1.1 that, equation (2.2) is asymptotically stable

if all roots if equation {2.3) lie in the open disc [4]< | that is if

p+ig<]

Then. ‘

| B - At !+| pl-aB |

(4+B¥a+ ) |{d+ B+ 8)
Thus,

28 = fl| +154 - aBi < (A + BYu + B)
Or

j:l‘IH - ﬁ-!] {(,1 + Bsz + ﬁ')

Then, ihe proof is complete.

2.3 Boundedness of solations of cquation (2.1)

Here, we study the permanence of equation (2.1).

Theorem 2.3.2 Every solutions of equation (2.1) 1s bounded and persists.

Proof: let {v, {5, be solution of equation (2.1) It fellows from equation (2.1)

that
oy, £y
Jiﬂd = - + I} 1 .
Ay By, Ay By,
Then,
oy <Er o af forall nz 0
4 B

18



s, v, <M forall nz1

Wow, we wish ta show that there exists » >0 such that

! v, zm forall nz]

Suppose thal
l

Fn ="
X

n

Wilt reduce equation (2.1) to the equivalent form

o 1
a
I _ Ft a1
‘rn-l - j—. -|.- .—..J-I-I‘-]’u- r
xn—f .":”__2
— mn-l + Iiflu-f

Ax,, + B,

Then.

_ Ax, ,+ Bx,

'T.'I+'| = '
oy, + 5,

My, By

arn-l + ﬂxn-n' afﬂ—}_ + ﬁxn—f

torall wz0

Then, we obtain

Vour 2 forall nz0

19
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Thus

y.zm forall nzi {(2.5)

From (2.4) and (2.5), we get

m<y <M forall nzl
Therefore, every solution of equation (2.1) is bounded and persists.

2.4 Periodicity of solution of equation (2.1)

In this section, we study the existence of prime period-two solution of
equation (2.1).

Theorem 2.4.3 Equation (2.1} has positive prime period lwo solunens it and

onlv if

14B%(a-p)(B-A) and (=1 ()

Proof: First suppose that there exists a prime period two solution

O equanon (2.1).

N N N
We see from equation (2.1) that
po b
Ap+ Bg
and
g = ey + fip
Ag+ Bp



Then

APt pgB=ap + iy {2.6)

and

Ag® + pgB =g + fip (2.7}
Subtracting (2.6) from (2.7} gives
Alp ~q)=alp-q)+ Blg-p)

=(p—qa-A)

Since. p = g . 1t follows that

=/ (2.8)

Also, since p and ¢ arc positive, { & - #) should be positive.

Again, adding (2.6) and (2.7) yields

2pqB+ A(p* + ¢ ) ={a+ Pp+q) {2.9)
It follows by (2.8), (2.9) and the relation
Pyt = (p+q)= -2py ForallpgelR

Thus

2qu+A[{%ﬂ.T —qu}=(a+;}{“;ﬁ]

Then.

21



2qu+l

(@-Bla-8)] 5 , (azpla-p)

That

Again. since pand ¢ are positive ander> g | we see that 8> A

Thus.

) fla—-5) (2.10)
A(B-4)

g

Now it is clear {rom equation (2.8) and equation (2.10) that p and ¢ arc the two

positive distinet roots of the quadratic equation

;_ﬂ—ﬂf_l_p‘[a—ﬁ):ﬂ (2.11)
P AB=-0

!

and so

(a—ﬁ]‘ _ia=p
A AlB =)

Since {ix - #) and (8 - 4) are positive,

which 1s equivalent to

d4f<(a- 8- A)

Therelore, incquality (a) holds.



Second, suppose that inequatity (a) is true.

We will show that equation (2.1) has a prime periodic-two solutions

1
Assume that

ax=f1 I!'{f::j_f}!u—lﬂ(u—ﬁ}
AV A(R= 1)
pi

P:

and

cr—ﬁ+ II(H-!? 2 _ 3= f3)
A VA A - A)

2

VWe see from inequality {2) that

(@=ANB=A)> 441

Then, (re=fMfand( £ - Ayhave the same sign,

J i (e = /5

(@-fy >———— 21

which equivalents to

a- ﬂ} >4ﬁ-t{a -

( A=)

Therefore, p and ¢ are distinet positive real numbers.

Set
ya=pog =g andy=p
23



We wish 1o show that

m=xy =y andy, =y =p

1

It follows from equation (2.1) that

¥, = av, + Ao = aq -+ fp
' Ay + By, Ag+Bp

faf ,8 _dfa-m|, f fa—;?]]_.nlﬁ[r;—ﬂjF
A=) [ ‘IJ A=)

l:f.f
MrE Ja— BB |, fap_ @B )|
‘_ A AB— ) 4 VA A(B-4) |

a-p

Dividing the denominator and numerator by (T \

pIVeS

x| 1+ fri——-i—ﬁii—— +71- ll—-—ljr—ﬁ,—I—-
¥ (a=SB~-A) V (e=-FiB-4)

h=—F =
141 144

Al flo—28 g a2

i J m—mw—ﬂ;”{ J (@~ fNE—)

N
M+M+m"mﬁ_m-mm—m

i o
A+ B)+(t B}‘nl s

Multiplying the denominator and numerator by

Af11
A+ By~ (A=B) fl-—————
(d+B)=( ]\[ {a—p)8-A)

24




Oives

K%

N (ct + B A~ By —{ci— By(A— BXi— B T
) 141
A+BY —(A-Bf—————
(A+ By —(A-B)"( (a_ﬁ}(ﬂ__d})
t
VA B i _ _agr
it B-i a;;.\]n -
1 1 4,&4
A+ BY ~ (A= DY — B
{ S o vy

= LB DA+ B)~(am PNA=BY A

! , ] A1
(A+BY =(A=BY (1——
& (ﬂ—ﬂ}(ﬂ—rﬂ}

344
eld+B-A+ B+ H-A-B-4i+8H0 | -—F0——
[{ e A (a—,&'}(ﬁ—;i]]

) ) )
A+BY —(A-BY ({-——MFM—
{ A {ﬂr—ﬂ'}(ﬂ“:ﬂ}

A+ B—A+B)+ A+ B+ A-B-44)

M=

. A5

1A B = £ 1248 —Mﬁ”
r?'_

] - — :I',b“ B
b W\a' (e — BB )

) 3BA(A-
L1248 B - A v 24p gt HBHA—E)
a’-.-

434
2B -2 2B -284) |- —-—I .
it ﬁ]\ {a~ 1B - A)
1434(4-8)

ﬂ'_

n=
448~

[
LA



3 - _-_J_ﬁ'!
s m'[”\l' (a-ﬁHB—A}]

14

a—_—ﬁ[s(a-m- pea-5)

_n I S
Aak fif}[HJl (u—-,{f}w—.-:)]
1.

——(afi- B3 - 1+ BA)
a=j

{{IB—,EI-J)[I+ [|.+ 1A }

Y (a-FKB-1
2
m(m’i— AD

I+[I— ! —}
LV (@-AB-a

B 2.
a-f

a—ﬁ+a_ﬁ‘l_ A
4 AV {a~MBE-)

2
a-f f[:—:-ﬁ)’_w(a_@
4 lll d A(B=4)
- 2

=q.

Similarly as before, one can easily show that

=r
Then it follows by induction that
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v, =pand v, =¢ forallnz -1

Thus. equation (2.1) has the positive prime period-two solutions
]

o PG Py

Where p and ¢ are the distinet root of the quadratic equation (2.11) and the

proof is complele.

Lemma 2.4.1 if =0, then equation (2.1) has no periedic solution of prime

period.

Proof: Assume for the suke of contradiction that there exist distinetive posiuive

real numbers pand ¢ such that

N I N - -

Be two periadic solutions of equation (2.1).then, we see from equation (2.1)

that
= ag+fly a+f
A+ Bq A+

and
_op+fp_af
Ap+Bp A+8

Which implies
rP=9

This 15 a contradiction.



2.5 Globa) skahility of equation (2.1)

In this section, we investigale the global asymptotic stability of equation

(2.1},

Theorem 2.3.4: The equilibrium pointy is a global attractor of equation (2.1} if

one of the following statements holds

aBzfd and B a (2.12)

alts fd and a = 8 (2.13)

Proof: let v 1* _ be a solution of equation (2.1} and again let f be a function
— « 1A m q =

defined by

L _eu+tfi
f{”ﬂ} Au+ Hy

We will prove (2.12) and (2.13) are simtlar and will be omitted.
Assume that {2127 s true, then 1t is casy to see that the lunction s non

decreasing in ¢ and non-increasing inv. thus from equation (2.1), we sce that

_ Dt s

Yo
! AyH + Byn—l

(W A0 _a
Ay + B0 A

Then

¥, 551=.u, forali n>1 (2.14)
g
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Also. we see from equation (2.1) that

Avr i

-1I|'1'l|

L &0+,
T A+ By,

o B P

B Bv , B

Then

v, 2%=m forall nzl (2.15)
Then [rom (2.14) and {2.15). we see that
i, =£5}'" £E=M| forall wn=1
B A

it [ollows by the Method of Full Limiting sequence that there exist solutions

£ and (8,10 of equation {2.1) with
f =1y =liminf y, <limsupy, =8, =35,
Where

1.8 e[f,5],n=0-1..

It suiitices to show that

Now, from equation (2.1) that

_el B S
AL +BL, AI+BS

H
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And so

wl + AS — Af* < BSI (2.16)

Similarly, we sce from equation (2.1} that

¢= (S, + I8, < e’ + fit
U AS,+BS, T AS+BI

And so

a8 + B — A5% = BN! {217

Therefore it follows from equations (2.16) and (2.17)
That

af + 85 - AI* s aS+ gl - AS?
Ifand onlyaf

S — 1)+ U =Sy AT +SHI=8) 20

Thus

(f=SHAT +S)+ f—ex] 21,
And so

FeSif A7+ + f-a=0,

Now, we know by (2.12) that

Bza,
And so it follows that

1z8.
Theretore

=85

This completes the proof.
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Chapter 3

"(n some properttes of solution of third order dilference

equations”

A1 Introduction

In this chapter, we will prove some results considering third order
recursive rational difference equations, which pariicular cases of the

following raticnal difference equation

fs"“ oy ‘JF1
_ H+J|Ir}“ +}.1 =1 +t2}"" N =U_L.,_...,

. ma]

a+b¥ ot vy,

The results involve some elements of qualitative theory of difference
equations, namely .oscillation, periodieity, global attractively and

houndedness nature,

We believe that the results of this chapter are of paramount imporiance
in their own right and furthermore we believe that these results oftfer
prototypes lowards ﬂ'lﬂ development of basic theory ot the global behavior of
selution of non-linear difference equations of third order. The techniques and
results of this chapier are ulso extremely usclul in analyzing equations in the

mathematical models of various biological systems and cther applicalions.

3.2 On the dynamics of the recursive sequence: y, | = %
}yn—!

In this section, we investigate the global behavior and the periodic

character of the solutions of the third order recursive difference equation



=ﬂ;::l;lr—q.u=ﬂ.l,,,. (3. 1)

-rrr-tl

where the parameters e, f.p and p are nonpegative real nmubers and

the initinl conditions v_,, y_,, v, are nonnegative real number such that
A+pl, >0¥nz2

By generalizing the results due to [5], the study of such equations are quile

challenging and rewarding and is still in its infancy,

The special cases affyp=0

We examine the character of solution of (3.1) when one or more of

the parameters of (3.1) are zero.

There are five such equations, namely,

=0:
¥ =0n=0L. (3.2}

p=0:
Vol =%Jr:ﬂ.l.... {3.3)

p=1
Yot =ﬁ?y,_1,n=ﬂ,l.... (3.4)
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]
=

7

[P
LA
s S

.}Ifnl = EJIH.| = {].].... {

]
o

f=p

P = i yog.=001 {3.0)
Y

In cach of the above five equations we assuime that all parameters in the
equations are positive. Equation (3.2) is trivial, equations (3.4), {3.3) and (3.6)
are linear. Gquation (3.3) can also be reduced to a linear difference equation by

the charge of variables

};Hze.n

The dvnamics of equation (3.1)

We investigate the dynamics of (3.1) under the assumiptions that ail

paraneters i equalion are positive and the initial conditions are nonnegative

g

‘The change of variabies y, =[-) x, reduces (3.1) to the difference equation
y

= Tact Jr=01,... (3.7}
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Where r=Z2 %0,

Note that =0 is always an cquilibrium point of (3.7),when r>1,(3. Nalso

|
possesses the unique positive equilibrium xg =0 - 13"

Theorem 3.1

The following statements are lrue:

(1) The cquilibrium point x=0 of (3.7) is locally asymptotically stable iI"and

only Hr<l.

(2)  The equilibrium point x,=0 of (3.7} is a saddle point if and only ifr >1,

{3) When r >1, Then the positive equilibrium point x: =(-1}* of (3.7) is

unstable,
Iroof: The Linearized équation of (3.7) about the equilibrivm point ¥, = 0 is
g =z, =002
So, the characteristic equation of (3.7) about the equilibrivm point x, =0 is
A-ri=0.
And hence, the proof of (1) and {2) follows from The Linearized Sability
‘Theorem.
For (3), we assume that r =1, Then the linarized equation of (3. 7) about the
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1
cquilibrium paoint x: ={r=1)" has the form

P Ul S i

m-| . =

f

|

1
So. the characteristic equation of (3.7) about the equilibrium point

P P i ek (3.8)

F

|
ILis elear thut £3.8) has a rool in the interval (=on-1) and 50, 2 =(=1}" is

unstable equilibrium point. This completes the proof.

Theorem 1.2,

Assume that r>1, and let {x,}7_, be asolutien of (3.7) such that

Yoy B Xz =(r= !;rF and x,<xr={r- UF (3.9)
oF
1 — L
XX < x, ={r=0" and x,zx,= (r-1)" (3. 10

1
Then {x, ", oscillate about x, =(r-1)" .

with semi cycle of length one.

Proof: Assume that (3.9) holds [ the case where {3.10) holds is similar and wiil

be omitted |.

30



Then

rx —
I = _Ip R
i+ 1
1 £Xg —
and Y, = =X,
1+ x4

Then, the proot follows by induction.

Theorem 3, 3

Assume that r<1, Then the equilibrium point x of (3.7)is globally

asymptotically stable,

PriwF:
We know from Theorem {3.1) that the equilibrium point x =0 of
(3.7} is locally asyimptotically stable.

Solet {x, 1 be asolution of (3.7}, Tt suffices to show that

I'r.ljr--l
lim x_ =0
A=+ =
Since
rx
O<x, , = = Ly <x,,
1+x),
So
al.”!]u x, = ]

This complete the proof.

Theorem 3.4

Assume that r=I1, Then (3.7) possecsses the prime period-lwo

solution
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U~ I - I | (310

with ¢ >0. Furtherinore every solution of {3.7) converges to a period two
]

solution (3.11)with ¢ 20,

I'roof:

Lot g e AL

be a period-two selution of (3.7). Then

v r
= ——— and i T —
v |+ " v 1+
50
- -y
W = (i ,,.{f_::{; ,.-.] z 0
Which implics that
r=-1 =0

If r<l. Then it implies that

g <0 or w <0,

which is impossible, So r=1.
To complete the proof, we assume that r=1 and let {x,};

.., be asolution
ol {3.7). Then,

. R
- X X
M=l =1
X -x | = ——————— =2 0
nal n-| I o
+ X

So the even terms of this solution decrease to a limit (say ¢ >0}, and the
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odd terms decrease 10 a Himit (say w20 ). Thus

vy

@ =
|+ g

and =

which implies that
1

o *=0  and e * =0

This completes the proof.

Thearem 3.5

Assume that r>1. Then (3.7} possesses unbounded solution,

Proof:  From theoremn 3.2, we can assume without loss of penerality

that the solution {v,}” ,  of (3.7} is such that

1 1

o, { X =(r=Tyand 5, > 5 = (e = 1)7 Fn 2 0.

Then,
rr rx
‘1"‘”-1-" = a0 :} 2 = II.I‘P*
U Nxl o 1+ (r=D)
and
x - E:i - —!‘-—l-—-ﬁr‘"' =T
n=3 T = *a.l"
i 1+{r=1)

from which it follows that,

lim x,, = = and lim x,, ., =0

Aes m "— B

Then, the proof is complete.

Hemarl.
It g =1, 1he resulls ot [6] follows directly.
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3
hyes

JI0Ondhe dvnamiesof [y = —e
A+ H_‘L‘“_:

e

The asymptotic siability, periedicily, and trichotomy character of

__.Ey"_"_._..n:{},l,... {3.12)

Was tnvestigated when 4. 8 and b are non-negative parameters and with
initial conditions concerning y_,.»_, and 3, to be arbitrary non-negalive real
numbers, see[3].

Now, in this section we want lo generalize the above results.

consider the third order non-linear rational difference equation

¥
J‘.-.=—m;"nn=ﬂ,l _____ (G.13)
A+ By

where the parameters 4, % and b are non-negative real numbers and

the inttial conditions conceming 3, 3, and 3, to be arbitrary non-nepative
real  numbers. We investigate the global stability and periodic nature of the
solutions of (3.13).

The results which we develop for such cquations zre also uscful in

analyzing the equations in the mathematical .models of various biological

systems and other applications {8).[17].[19]and [27].

The special cases pdf = D

We examine the characters of solution (3.13) when one or more of the

parameters are zero. There are three equations namely:

by, j -]

Fou ==L =01, (3.14)

Jr:l-z
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- b . . L
Yoal _—“E}’Lzr”:[}rlw- . [3.]3}
Yoy =0, =0 (3.16)

In cach of the above cases we assume that all parameters in the equations

are positive.

Equation (3. 16) are trivial and has a solutiony, , =0, for all n>-2. The equations
(3.14) and (3.13) are non-linear third and second order respectively, and the

change of vanables

}!ﬂ - gxﬂ

reduce (3.14) and (3.15)to a third and second order linear difference
equation respectively

Now ,We can investigate the dynamies ol (3.13) under the assuniptions
that all parameters in equation (3.13)are positive and the initial conditions are

non- negative,
: : ! - . :
The change of variables y, = %x,. reduces (3.13) to the difterence equation

2
LA

=0l ' (3.17)

'xlul

1+x,,

Where

li is easily to seen that x, =0is always an equilibrium point and when =1,

we have also an equilibrium point
- I
In=E-—.
r=1
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An oscillation resulis:

Theorem 3.6:

Assunte that =L and let {x,}7 . be a solution ol{3.17) such that either
*

Y, x5zxand x,<x, (3.18)
Cr

xp<xiand x> {3.19)

Then {x, 17, oscillates about x; with semi-cyele of length one.

H Jlun-l
Proof:

We will assume that (3.18) holds. The casc where (3.19) holds is similar

and will be omitted.

Thus we obtain

and this completes the proofi.

Existence ol prime pericd-two solutions

The foltowing theorein shows that (3.17) bas a prime-period two
solutions.

Theorem 3.7:

Equation (3.17) has non-negative prime period-two solutions if and only

i either

L

=0 and  oxy = (3.20)

-~



ar

¥ I
x, =0 and A= 3.21
A T (3.21)

i

The peried two solution must be in the form

. P .
=0 (3.22)
r r

Prool: Assuime thal
OO Y TS - I TR

Is a non-nenative period two solution of (3. 17).

Then
_ 290 and v = ry (3.23)
I + L+ p
Hence,
@-w =r(pl -l
Irom which, we can see that
oy = (3-24)

From {3.23) and (3.24), we pet the period two solution in the form

Then owe have cither



If v,=0 \[Theny, = x, = L S0(3. 20holds.
J.

kY | x> |

1+ x_, #

..
-
I
I
[
o
]

ir

.and(3.2)holds.

Andso x. = x, =0

This completes the proefl

l.ocal and stobal stahiliby

It is cleariv thatx, =0 is always an equilibrium solution of (3.17).

Furthermare when r>1, (3.17) also possesses the positive equilibrium x = —
"=

Theorem 3.8:
Far (3.17), we have the following resnlts.

{1)'The zero equilibrium point is tocally asymptotic stable.

. _ - . :
{(2)Assume that r>1, then equilibrium point x: =— 15 unsiable. In particular
o

xz i3 a saddle point.

Praof:
The linearized equation associated with (3.17) aboutx, .

has the form

-

2."‘; L
L o on=04,.

“u+l '1+;‘ “n-l [1+L}I
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So the linearized equation of (3.6) about x=0 is

Zg =Har=00

el
and the characteristic equation about =0 i3

x>=0.

Sa, The prool of { D{ollows immediately form lincanzed stability theorem

- . . . . - .
[he hinearized equation of (3.6)is a boutx: = i
e

Zr11'| _2‘?”4 + -?-,,_j = U..I’T:{]..].‘....

- I

- - . - .
and The characteristic equation & boutx; = =Y IS
r—

A =22 +-I~ =0, with r>1,
r

Sel,

fye Bo2i-t (3.

r

LI}
o]
LM
\:.-"

Then {(1)=-1 +l*i ( and iim f(A)=co, so {{A)has at least a rootin (1,05)
f . LEL ]

e 1
and the product of the roots of (3.25) is —<1.

r

Hence, there exists a root in a unit disk.

This completes the proof.

Theorem 3.9:

Assume that =<1, then the zero equilibrium ot (3.17) is globally

asvmptoticallv stable with basin

S= |02} x [0,1)F
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whore
(x.,. 5} & (0.1) and (x,. x5 )7 (0.1.0). (3.26)
We know by Theorem 3.81 that v,=0is locally asymptotically stable
cquilibrium point of (3.17), and so it suffices to show that 7,20 s a global

attractor of (3.6) with basin [0.2¢) x [0.1]* such that {3.26) hold.

Solet {x}2 , beanon-negative solution of (3.17). It is sufficient to show that

Im x =1

L]
LIS ]

Assume that r=! and (3.26) hold, we have

1
M

vy=——— g} g xl 2
1+ x_,
2
rx
PRSP P
l+x_,
F
FX
v, = < xS x5
1+ x,

So. by induction, we have

0 x,<1l,n==-10.1_.
and
t
Y
X g el s xi 2
I+ x, ,
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So . we have

{""‘J.u }:=._| and { 1=

Vhnet Limth
are non- increasing sequence and bounded.
1
Now, suppose hat

limy,, = and limy,, =1

Had Herm

S0, we can write

]I X r
rdf and rl
+ P+ S

Now, we want do prove that A=l =0},

We must consider the [ollowing cases:

{)If M= 0 and L# 0, Then L=1 4 >1, which is a contradiction to {x, ,I7, is a

=1 Jumd
nof-increasing sequence.

1=
aa IIlr-—l

(2YIfMZ0 and =20, Then M =lE] .which is a contradiction to {x isa

p
NON-TNCEeasing sequence.
{3}I1' M #0 and L# 0, Then we have

AM=]=—— <0,

r=1
Which is a contradiction, So, we must have L=M=0,

This completes the proof,

Theorem 3.10:

‘The zero equilibrium point of (3.17) is 4 globally asvmplotically stable
with the basin

47



S [00m) x {0, <] 2
.
where

P P
{¥_p. X7 0500, :,ﬂj and { x_. v, )70, ;} {3

"l
1.4
]
-

Proof:
We know by Theorem 3.8 that ¥,=0 is locally asymptotically siable

equilibrium point of (3.17), and so it suffices 1o show that x=0is u global

attractor ol (3.17) with basin [0,20) = [0, ~1-] *, where (3.27) hold.
F

So, let {x, 1", be a non-negative solution of (3.17).

m=]

It sutlices o show that

limx, =0.
H—e
It is eastly 10 scen that
1
FX I
x, = =L £n’_:1£'r_z,£—
I+ x_, -
i :TT 2 2 I
X, = R
|+ x_, '
ol 2 1 |
X, = 2, & x5 —
1+ x, "
So, by induction, we have
1

=
A
b
1A
n
|
=

=]

=
(LY
=
il
14
7
-
148
-
L
|
]
=

Which means that {x,,}*_ and {x, )., are non-increasing and bounded.
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Now, suppose that

M=limx,, and L=hmx

= =t

FER|

So. we have

A f Jl
y A =t and 7, =~
1+ L 1+ 17

Now, we want 1o prove that M=L= (0. So, we must consider the following
CASCS!

]

(NI M=0and L0, Then = ~, which is a contradiction te {x, 17, isa

) ‘

non- jIlCl'EHSiI]g SCQULIICS,

(2} 10 Mz 0 and L=10, Then M=L. which is a contradiction to e, 17, isa
"

nonN- Increasing sequence.

(30 M#E 0 and L# 0, then. we have

l
= i
1 ¥
L=1=—0:
r=1
W0 i
|
which is a contradiction.
S0, wo muost have
L=xI=0.

This completes the proof.

Existence of unbounded solutions

[n this part, we show that when r=1, (3.17} possesses unbounded
solutions.
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Theorem 3.11:

Assume that =1 and x.,. xge [0, l]. Then (3.17) possessan unbounded
P

salution, \

[n particular, ¢very solution of {3.17) which oscillates about equilibrium

Yi=. with semicyele of length one 15 unbounded.
r—-

Proof:
We will prove that every solution {x,}7, of {3.17) which oscillates with
seo-eyveles ol length one 1s unbounded (see Theorem. 3.6} for the
existence of selutions which oscillate with semi-cycles of length one).

Let >0 and without loss of generality that

{x. 12, such that

Xae = X and Ny> X a0

Then
d H
Faas rx
LS B> 2 = (r - 1)x5, >,
b+ xy, 1 + i
r =
and
) X daed X 2oy 2 .
Xyper & T < ”i‘ ={r=10x3,., “%5.0-
1+ %.,., L
roe

{rom which it lollows that
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limy, =  ond mx,,, =0

2 TRY|
A H—z

This completes the proof.
¥
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