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SUMMARY

In this dissertation, The behavior of the solutions of the second order ordinary
differential cquations. is studied The problem of determining the oscillation and
continuability criteria for second order nonlinear differential equation with varable

coclficionts is considered,

The results obtained in this disseriation is compared with the resulis that abtained
helure hy some rescarchers, i is found that their results can be deduced as special cases

from the cquations which we studied in the present dissertation.



INTRODUCTIN

1.} Introduction

Dilferential equations appear naturally in many {ields of rescarch specially in the
natural sciences. The second — order ordinary differential equation are frequently used as

mathematical models of most dynamic processes, in electro — mechanical systems,

Many phenomena in different branches of sciences are interpreted and solved by

second order difterential equations.

The study of the oscillation of second - order nenlinear ordinary dilferential
equations with alternating coefficients is of special interest because many physical

systems are modeled by second - order nonlinear ordinary differential equations.

For example the so — called Emden -Fowler equation arises in the study of gas dynamics
and fluid mechanies. This equation appears also in the study of relalivistic mechanics

and in the study of eertain chemical reactions.

The problem of determining oscillation criteria for second -order  nonlinear
ditferential equations has received a great deal of attention in the twenty years alier the

publication of the new classic paper by Atkinson [1).

Many authors use some different techniques in studying the ascillatory behavior of
the second order linecar differential equations, especially, what so-called averaging
techniques that dates back to works of Wintner [37] and its generalization by Hartman
[16].

[n this dissertation we consider the problem of determining oscillation and

continuability criteria for the second ~ order nonlinear perturbed differential equations of

the form:



[r{f}uf{x(f)};f{f]) + g (t.x{)y = H{r.x(1). x{(1)). (E)

The dissertation consists of many illustrative examples as an application ol the obtained

resulls and remarks. The dissertation compnses three chapters.

1.2 Objectives and organization of the dissertation

We remarked in the previous discussion that ordinary differential equations have
important applications in many scientific domains. Specially the second — order

differential equations are of great interest, the main aims of the research are built on:

1. Study and review of previous papers.

2. Siudy of the differenttal equation and theorems.

The dissertation is divided as follows: in chapter 1 a simple review for previous
studies and the new researches, also it includes some basic definilions, elementary
resuits that will be used in the second and third chapter. and the major results of the
oscillation for the second = order ordinary differential equations that can be found in
published studies. In chapter 2 the study of the oscillation equation (E) with
H (¢, x%(1}, x (1)) = 0, the oscillation criteria that obtained in this chapter includes some
of the earlier results which ¢an be found in the published studies for equation (E) with
(. x(r).x(r)} = 0. that is. the results obtained before is a special case of my study and
it will be illustraled by some examples. In chapter 3 we study the continuability and
oscillation of the second — order ordinary differential equation. Oscillation criteria for
solutions of equation {E) with alternating coefficients. These results extend and improve
some oscillation resulls which were obtained before and these resulis will be illustrated

by some examples, and finally we give summary and conclusion of dissertation,



CHAPTER |

PRELIMINARY RESULTS AND DEFINTIONS

1.1 Introduction

The goal of this disseration is the study of the suflicient conditions for the oscillation

of the solutions of the second — order nonlinear ordinary differential equation of the form:
(f'(f)w(x(f}}x{f)) + &y (L x))y = Hirx(rh x(n), (E)

where » 18 a posilive continuous Tunction on the interval [.rﬂ,,mcl},rtJ Z20, s a

pusiive continuous function on the real line R g, is a continuous function on

Rx R with ME q(¢), for off v 2 0 and feff, 0)where g is
glxit))

continuously differentiable function on the real line R except possible at ¢ with

xgix) >0 and g{x)2{>0 Jfor afi x # 0 and ¢is a continuous function on

the interval [r,,e0). r, 2 0, and # is a continuous function on [t5.50}x R % R with

H it (). x(r)
g(x{t))

<mif) for all x = 0 andr 2 4.

On this study we restrict our attention only o the solutions of the differential
¢quation (E) that exists on some interval [fl,ml“'hcl'e {, may depend on the particular

solution.

In this chapler we list some basic definitions, elementary results that will be used
throughout the next chapters and the oscillation criteria that obtained by a great number of

authors for the equation () and / or special cases of this tquation.



2.2 Basic definitions and elementary results

Definition 1.2.1

A point ¢t = 20 is called a zero of the solution x{) il x{r)=0.

Defipition 1.2.2

A solution x{r) of the differential equation {E) is said 1o be osciltatory if it has

arbitrary targe zeros, otherwise it is said to be non - oscillatory,

Definition 1.2.3

Equation (E) is called oscillatory if all its solutions are oscillatory; otherwise it is

called non — ascillatory.

The next theorem plays a great importance in the theory of escillation of solutions

of linear differential equations:

The Siurm separation theorem ]33]

If x,{t) and x,(r) arc lincarly independent solutions of the eguation

(f(f]-;(i})‘ + ity =0,

then between any two consecutive zeros of ¥, (¢} there is precisely one zero oty (1),

Therefore the solutions of the second — order linear differential cquations are all

oscitlatory or all non — oscillatory. The story of nonlinear equations is not the same.
The nonlinear differential equations may have both oscillatary criteria.

The importance of the classification of the second — order differential equations into

oscillatory categories is due 1o the following well - known fact:



A non — trivial solution of the second — erder ordinary ditferential equation must

change its sign whenever il vanishes, since x{f}and £(f) can not vanish simultancously

{in this case the zeros of x(f)is said w be isolated ),

Definition 1.2.4

The differential equation {(E}1s called

(1) Super — linear if the function y satisfies that

0« ii{m and (0« ﬁ«:m,
; glw) M)

(2) Sub — linear if the function g satisfies that

ﬂ{]du <o and U-r:_j du <oy,

a &u) ¢ X{)

{3) Mixed type if the function g satislies that

If glu)=g (u)+ g,(u) or g{u]:el"lsgnu.

Joralfec » 0,

Joraftc > 0.

(*)

where g, is super — linear and g, is sub — lincar, then we see easily that condition (%)

halds,

The following theorem is quite useful elemental in our study In the nex chapters:

The Bonnet's theorem [2]

Suppose that b is a continuous function on [u,b] 2 18 anon negative function on



the interval [a._, E:r]._, and g is an increasing finction on [a._ FJ]._ then there exists a point

¢e [a,b] such that
4 n
[ot)hts)ds = pia) J‘ h(s)ds |
If p is a decreasing function on [a, 6], then there exists a point ¢ e 2, 6] such that

Jp(s}h(.&-}d.t = p{u) II:(S}G’&' .

This theorem 1s a part of the second mean value theorem of integrals [2].

1.3 The escillation of the equation (E)

A special cases of the cquatton (E) has been discussed by many authers these special

cases are categorized as follows

¥ey+g{x{t)=10, {1)
(r{r)ém] +g{Ox(t) =0, (2)
¥+ gthg(x()y =0, {3
[rm.%u:r] +qe(xN =0, (@)
[ru}mx(ﬂ:&(ﬂ) +gOg() =0, (5)
[rfr}i-(r)] + (08 () = HUEx(1)). ()



where r,g are continuous functions onfi,.®). 4, = 0.and r is a positive continuous
function on (he intervalfi, o). ¢, 20, is a continuous function on B and gis
continupus  lunction on the real line R except possible at 0 with xg(x)}>0

and g'{x}> 0 for aff x = 0 aml A 15 acontinuous function on [In,m)x R.

The oscillation property of the second — order differential equation has been the subject

of interest of many authors since the first paper by Fite [10).

The investigation of the oscillation of {E} may be done by many directions, among

these, an often considered way is to determine integral tests involving function qin

order to obtain oscillation crilena.

x !

whenever, I is written, it 15 (0 be assumed that _[= lim | . and that this Llimit exists in

I—=

the extended reat numbers.

The oscillation of equation (1)

This section is confined 1o the oscillation criteria for the second — order linear
differential equation of the form {1). The escillation of equation {1) has brought aticntion

of many authors since the first paper by Fite [10].

Among the numerous papers dealing with this topic we refer in particular 1o Fite[10)]

where he introduced the following:

Theorem 1.3.1 Fite [ 1]

(N1etg(t)>0 forali¢ 2 ¢, and Iq(s}ds =m,

I

then every solution of the equation (1) is oscillatory.



Proof

Let x(z}be a non oscillatory solution of eguation (1) and assume that x{} > 0

Joraftr 2 1.
Let (s} <0 fort =2 1T,

Mow, integrating the equation (1), we have
x(-x(T)1+ Iq(s]x{s]ds =0,
T

then. for¢ 2 T |, we pget

it

i(1)+ x(1) [g(s)ds - J{i{s) Jq[n)du]a’x = (T
T T

r
()= (7).

Integrating for ¢ = T . we get
D)<Y+ (M) -1,
x> as i wm,

which contradicts the assumption that x(¢) >0 fore 2 T .

If 2(r) oscillates. then there exists sequence {r_} — o such that r)=0(n=123.).

Joralttz T |



define

_An :
(1) = S te T,

Jor aitt = T _we obtain

(1)

)= —qU)-w'(). where g(r)===,
x(#)

then. we have

wiif) = —glr). Jorultr 2 T |

so, for every r,,, 2 7, , we get

Hal =

r

r gt = — Trf,i{-']df

= ﬁ"(rn } - r':";I{rnml } = {] 1
then, we have

r

Tq (tYelt =20

T,

L

This contradiction to the condition (1), then (¢} > 0

Let w(i)= I—E% t2ay,
x

a1} S —qli),

then. for allf 2 4, . we obtain

gif) S —alr).
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then, for r = ¢, we abtain

f

I{r - ¥)g{sidy £ - rj(r = Wy 8 edy

n

then by integration by parts for ¢ 2 f,, we have
_[(I —5hgi(s)ds £ —{(f - S)m(.#]]:l + Im{.s']ds}
= (¢ =1 ), ) = In{x(2)) + Inxcie, )}

. lims fte-5ats)ds s iin{r - 'T'Jm(n) <,
(BT f . a2

this contradiction to the condition (1); hence, the proof is completed.

Remark 1.3.1

The theorem 1.3.2 extended the result of Fite [10] to an equation in which gis of

arbitrary sign.
Example 1.3.1
Consider the differential equation
Y)+{(2=-53sinHx()=0. r=0.

Theorem 1.3.2 ensures that the given equation 15 oscillatory. However, theorem 1.3.1

fails.

Theorem 1.3.3 Kameney {17]

The equation (1) is escillatory if

11



(1) bm 5up—;:r I{r - )" g{s)ds ==,  for some integer # = 2,
= m ll‘

ta

Remark 1.3.2

Kamenev [17] has proved a new integral criterion for the oscillation of the

differential equation {1}. based on the use of the n - th primitive of the cocfficientg(f),

which has Wintner's result [37] as a particular case, .

Theorem 1.3.4 Philos [26]

Let p be a positive continuously differentiable function on the interval {t, .=} such

that

{t - 5) -}
2(5)

[(n—-1yp(s)—(r - .a')p{.s']]z ds < e, forsome integer 2 3,

=3 lr"_'

f
(13 limsup'—j
fy

(2) lim sup;;‘: 0= 5™ p(sdats)ds = oo

then every solution of equation (1) is oscillatory.

Proof

Let x(} be a non oscillatory solution of equation (1) and say

x(1)=20 foralit2 T .

(1)

Define oft) = —=, t=T,
xir)

then, for ¢ =7 . we have

R0}

d(t)=-q(t)—w (¢}, where g{n)= O

12



Then. we get
g{t)=—oit) - @iy, foreveryt27,

then, for £ =7, we have

j[r -5 plS)gls)ds = - _[(r - 5)" p(5)dx(5)ds - _[(.r =" () {3y
r 7 I

a1 1t =5)"" O |
={i-T A TYy+— H- -{r- S efy
(t—T)"" p(TyexT)+ 4Tj o [ =1p ()= (5 = $) 205 s

- 2
mn? SEes + L= (0=0p@0 - -0p))|
T 2.fp(s)

!

f{r ~ Y p(s)g(syds < (¢ =T)™ p(T)ex(T) % j =
T

D [n=pls) - (- i) ds.
£45)

7
on the other hand, for every ¢ 2 T we get

i i r
=9 pls)a(sdds ~ [ -1 psda(s)ds = [(e - )™ p(s)als)ds
I r

s

(-1 j PUNg()]eds

te

Thus, we have

] I -l Lol I g
= I(;—ﬂ""p(;)q[s}d@5(I—§] p{l")m(i‘")q{h%) jp{.s')|q(x)|d,,-

1 ’IU -5

3
ML p(s) [(”_ljpm_“"")ﬁ{-"?]iﬂ'-h

13



Jorall ¢ = 7T | this gives

I I
!1{13 sup% j(r - )" (s igls)ds € p{TIw(TY+ _I-p(.w}|q(5}|u{s'

Iy

(r~0""
£Ls)

+l|1mSup 1 j

g roe

[(n=Dp(s)~ (1 - (] ds

This contradicts to the condition (2); hence, the proof is complete.
Remark 1.3.3

Philos [26] improved Kamenev's result and by puting o{r) =1 in theorem 1.3.4
leads to Kamenev's result [17] (theorem 1.3.3).

Example 1.3.2

Consider the differential equation
¥ +3' (=0, >0

Theorem 1.3.4 ensures that the given equation is ascillatory where p(f) =7, n=3,

Theorem 1.3.5 ¥an [41]

Suppese that there exists an integer v > 3 with
' 1 ' n~l
(1 !lmsupF J-(I -5 g(s)ds <m0,
fa

Let C{r)be a continuous funetion on [In .0 ) with

14



{2 }E{Einf% j{! - gl e =Ty, forevery T2,

n

then equation (1} 15 oscillatory if
3) O, (s =ce, where €2, 1) = max{Q(r).0}, 121,
Remark 1.3.4

Yan [41] presented another new oscillation theorem for equation (1).

Theorem 1.3.6 Philos [30]

Let 7f and A be continuous funetions
hH:D={t.5)rzs21] >R,

and /f has a continuous and non positive partial denvative on £ with tespect to the

second variable such that Hir.e)=0,  fort 2 t,, H{t.s)>0 fort> s> 1,

= Fr{r.s]\.l'!f(hs) forali(t,s)e O,

ind —8H (1, )
A

then equation (1) is oscillatory if

L R VPR
HUJD},!{“{MM{” 4h (:,5}}35 =00,

(1} limsup

I'roof

L.t x(#) be a non oscillatory solution of cquation (1) and assume that x{r) > 0

Jord oz,

15



define

x(f)

ity = —=, -
I{f} 1]
thus, for every 7 2 £, . we obtain
alty=—q(t)—a’ (1),

then, for every ¢ 2 T we have

II Flt.8)g($edy = —‘_“H {f,53ea(5 ks ~ ]H (1,8)" (5)ds,

hence, fort = T = ¢, . we get

JHG$)qts)ds = 1. Tyl T) - jh(:,s}JH(:,s)m(s}ds— }'H(r,x)m“{.s)ds,
T T T

and hence,

f ' 1 H
jHl[:,.s-}g(.w)d.ﬂ' = H{t,T)e(T) + J%hz(f,.v}a’.w - f{ﬁIH(r.sjm(s] +%h{f,.s‘)} ds .,
i r T

!

J.[H{r.s)q(s} —ihz (r,s]]aﬂ-- < H{t, Te(T) . (1-1

7

Dividing inequality (1-1) by H(r.77} and taking the upper limit as ¢ — o . we obiain

. 1
lim sup
e H(t

7 ?II:H{IJ}&’[.S] —%hz (L.i'}:|d.\' <o,

which contradicts to condition{1): hence, the proof is complete.

16



Remark 1.3.5
Philos [3{] extended the Kamenev's result [17].

Theorem 1.3,7 Philys [28]

Let A and % as intheorem 1.3.6, morcover, suppose that

(1) 0 <inf] Eminf % | < 0.
K2iy| 1era !—f(f.rﬂ)

(M limsup !

d—=m

[ .s)ds <o,

»f0

assume that £2(¢}be a continuous {unction on [r{, , o0 with

3) [0l(s)ds =0, Where (2, (1) = max[Q(1).0},

L

then equation (1) is oscillatory if

. ! ]
4} linsu T g(s)= =R (ns) [dy 2CUTY . forevery T 2
{},,m p”“*},.]ﬂ (r.5)g () A { 5}:| 5 (T). forevery ¥zt
Proof

Let x(r)be a non oscillatory solution of cquation (1) and assume that (¢} = 0

fort 2T 2 4,,
define

_ X
x{ty

17



then for everyt = T, we obtain

o) =—g{t)—w (1),

then, for every r = T, we have
I i) ]
[Ht,5)q(s)ds = - J’n (. ) )y — IH(r.s}ml(s}ds .
T T r

hence, fort = T = 1, , we gel

[H{.9)q(s)ds = He. D)) - Jh{hs]JH{.*,s)m(s]ds - J!f[r.xjmz{s)ds.

and hence,

i i ! i
jH{r..-;}q[J)a‘s = H{t.Ta(T) + Eh*u.s)ds - j‘[ﬁ,’H{r.s)m{ﬁ}+%}r[1?5):| ds
T T T

!

! 7 [[H{f.s}q(s)—%hz{r.s) s < e{T)

T

lim sup

f—=

S 1 ’
- !.14[2 inf "G ![1,‘ff{f,.'r}m{5} + Eh{f.s]} ds .

: 1 f : !
ey z Lugsupm JLH{I,S}(}(&} —t]‘-h‘ it 5)]a’5 + E.Tinf H[:, 7 _[[JH(L:)&J(J}+ % h{:..a']] ds,

then by condition (4} for T = 1, we have

aT) 2 QT}+ lim inf—fﬁ ![\!‘H{r..s]m{s] + %h(;,s}] ds.

18



this shows that

W(TYZ Ty . for¥ =1,

f 2
liminf ] _ﬂ}f”{f“i}ru{.v} +%h{r, .-.'}] dy < ao,

I—+3 H(I‘T) :
hence,
!Lrginf H{:, T] JH(:‘,.&'}&JZ (£)els +El"2ir1f H{i'f'} Tj-ﬁr(r“s']\'.' H{t. sdm{sdv <o,

i.e., we have

Eminf[U{.r)+ V()] < o0, (1-2)

[t melas, raT,

T

where L) =
H(t, T}

and F{) =ﬁ Bt s)JH{t 8l 5)ds .

Now, supposc that
j-ml(s)ds =, (1-3)
;
from condition (1), we have
]
liminf I—Mmz(s}dx =,
f—ray ; H{f‘f:l

thus, limf/(ty=ca, (1-4)

i—2

19



~ow consider a sequence {TH }; p=123.. in [ID ,-:x:) with lim 7’ = and such that

E::[U(Tn VYT, Y] = lim inf U0+ V(0.
By (1-2) there cxists a constant A such that
DT+ V(T ry< A4, n=123.. (1-5)
Furthermore, {1-4) guarantees that
lim (7, ) = . (1-6)
and hence {1-3), gives
limp (7, ) = —o. (1-7)

By laking into account {1-6} from {1-3), we derive

Fi{T,} A 1 . -
F—2-< <= for all n is suffic :
TANGARE or all n is sufficiently large

o ViT,) 1
Fhus, we get L for all large n. -
¢ LT 2 g (i-8)

from (1-7) and (1-8), we have

2
. V(T } : I{J LT } |

| = o -
move (1) U .J_>¢4 (T, 4,{11:2{'”‘?") - (1-9)

on the other hand, by Schwarz ineguality, we have for any positive integer n

-~

V(T )= —1— Ih{fﬂ,s] [H(T, s )m{a)ds}

HAT Y s

2




T,

5—1-— Ihz (T, xhedy # 1
H{TL.T) ¢

Then, we have

15 .
1 < LT syl UT
} (T"“H(r,,,r) T[fr (T, $)dsU(T, ),
2 T
or d (_??"}s : (B (T, .5)ds,
ulr,) ~ H{,.D)

50, (1-9) becomes,

T.

[H(T  s)dv = oo,
HET,.T)

lim
H—s230

Thus, for aif t = T . we obtain

I f
limsu it sds =,
Y- p f!(fﬁfn]r"j ( )

this contradicts to condition (2).

Thus, {1-3) fails, and hence

j’mf(s}d_s.--:m , Jorall T >
r

since (T = {(T) .we have

“]-ﬂi(s]df; < }ml{i]ds <.
N

fa

H(T,,T)

1,
J'H(I;, S ().
;

fe -

Thas contradicts to the condition (3); henee, the proof is completed.



Remark 1.3.6
also, Philos [30] extended and improved Yan's result [41].

Althcugh there is extensive literature on the topic of cscillation criteria of cquation
(1) a complete satisfactory answer has not yet heen obtained because, as {ar as we know,
necessary and sullicient conditions ensuring the oscillatory nature of equation (1}, in

which only the function q is involved, did not appear in the published studies.

The oscillation of equation (2}

This section 15 confined to the study of the oscillation of the equation (2), Tt 1s
interesting to discuss conditions on the alternating coefficient g{t) that are sufficient for
all solutions ol equation {2) to be oscillatory., An intcresting case s that of finding
oscillations criteria of equation (2} which invalve the average behavior of the integral of

q.The problem has received the attention of many authars in recent vears.

Among numcrons papers dealing with such averaging techniques of the oscillation

of equanon (2), we menton the following:

Theorcm 1.3.8 Moore [22]

Suppose that the function p satisfies p e C° ([r{,,oo)}._ ply =0
Tods
1} | —————=
O L erw "
@ o)) + porginls =e.

L

then equation {2) is oscillatory.
Remark 1.3.7

Moote [22] gave the previous oscillation eriteria for the equation (2).
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Theorem 1.3.9 Popa [32]

If r(t) is bounded ahove and

) 1’ Y . .
(1) limsup— J{:‘—S} 'g(sYeds =00, misaninteger B> 2,

,l' H
then the equation (2) is oscillatory.

Theorem 1.3.14 Popa [32]

{1} Let o is bounded and

r{t}
N nt GL5) o
(2) limsup—- I{f -5} ——ds=om, nisaninteger n>» 2,
=z " . Fi5)

then equation {2) 1s oscillatory.
Bemark 1.3.8

Emil Popa [32] extended Kamencv's oscillation eriterion to apply on equation of
the form (2).

The oscillation of equation (3)

This section s confined to the oscillation ¢riteria for the second order nonlinear
differential equation of the form (3). The oscillation of eguation (3) has brought the
attention of many authors since the first paper by Atkinson {11.The prototype of equation

{(3) 15 so called Emden — Fowler equation

J'E(e‘}+q(r}i.r(r)]’ sgnx{f)=10, y>0 ({3-a)

Clearly equatton (3-a} is sub-linear if y <1 and super-lincarif y > [.



The oscillation problem for second order nonlincar differential equation is of
particular interest. Many physical systems are modeled by nonlinear ordinary differential
equations. For example, equation (3-a) appears in the study of gas dynamics and fluid

mechanies, nuclear physics and chemical reacting systems.

The study of Emden ~ Fowler equation originates from earlier theorems concerning
gas dynamics in as irophies around the turn of the century. For more details for the
equation we refer to the paper by Sevelo [34] for a detailed account of second order

nonlinear oscillation and its physical metivation.

There has recently been an increase in studying the oscillation for equations (3} and {3-a).

We lisl some of more important oscillation criteria as follows:

Theorem 1.3.11 Atkinson [1]

Suppose thal
(1) ¢(r)>0 on |ty,0) and glx) =x*" w=123... .

'd

(2} _[-‘Fq(,‘-']a'.\' =y,

n
then equation (33 is oscillatory.
Remark 1.3.9

The previous theorem gives the necessary and sufficient conditions for oscillation

of the equation (3) withg(x}=x"".n=123.....

Theorem 1.3.12 Waltman |36}

Suppose that

(1) g(x)=x""n=123,.
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) [gs)ds = o0,

then every solution of equation (3) is oscillatory.

Remark 1.3.10

Waliman [36] extended Wininer's result [37] {which presented to equation (3)} for

the equation which considered by Atkinson [1] without any restriction on the sign of
g(n).

Thearem 1.3.13 Kiguradze [18]

The equation (3-a) is oscillatory fory > 1if

o

(1) [pitgtods = e,

for g(f) 18 a pasitive continuous and concave function,

Remark 1.3.11

Kiguradee | 18] established the previous theorem for the Emden-Fowler equation (3-a).

Theorem 1,3.14 Wang {351

Let y > ) equation {3-a) is oscillatory if

)
(1) liminf Iq(s}ds » —c0
L

(2) !Lrgsup% I[r - s)yis)dy =<0,
I
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Remark 1.3.12

Wong [38] extended Wininer's oscillation criteria [37] to apply on the equation of

the form eqguation (3-a).

Theorem 1.3.15 Onosc [25]

Suppose that

(1) limsup _[q(s}ds =

I =
{2) limsup ”q[u}duds = m
tuls

Then equation (3-a) is oscitlatory for 0 < y <1,

Proof

Assume the contrary, then there exists a sohution x(r) which may be assumed to be
positive on [T;.w)for someT, >, >0, we distinguish three cases for the behavior of

x(f).

Case 1

Suppose that X(r) is oscillatory on [7.o)then there exisis a sequence
n=123...} such that %(1,)=0 and 1, = as n— w0, dividing equation {3-a) by

x' (i} and integrating from ¢ o 1 where & is some integer, we obtain

. P 1
X ) ds+ [q(shds =0

x'{n 4 sy
20 L X _ | _r+l
xT (1) '.![I [_1.)] o J-q“)d? ¢ where f= 2 (1-19)

26



Integrating (1-10) once more from ¢, /o ¢ as follows

x (5) If[ X(w) ] duds + rﬂq{u)dudx: 0

N Ty

m{-’} “‘[ x{(#) ] chucls + _”ql[u}duds _;j{::»]

Ity

**‘(f) r| J‘[ o }] dudwﬂq(uidmi" =0

iy

Xy

-y

where ¢, =
Therefore (1-11) yields.

]]q{u]duds <0,

If

Now, taking the upper limit as ¢ — oo, we get

!Ln,} sUp ]]q(u}dudi <o

This contradicts to the condition (2).

Caxe 2

(1-11)

Suppose that %(f)>0 forr>T, 2T, dividing equation (3-a) by x"(/) and

mlegrating from 7', > T fot | we oblain

RO R0
x.?’{.r] +?’.[

) ds + rjg{s]ds =c,.
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T,
(T,

_ﬂ"} +},j‘[ {(})] n’e-+_[ (s}l =¢,,

xF{n) T

where ¢, =

then, foralfsr = T, we obtain

]q(s}ds S0;,

Tt
by taking the upper limit as + — o0, we gel
limsup Jq[s}ds < an,
f—an
r

This contradicts to the condition {1).

Case 3

Suppose that (1) <0 jori 2 T, = T, then from equation (1-12)

i £ I{.!l]

Since ¥ 'I.Lx"’{s}} ds >0

Integrating equation (1-12) for ¢ 2 T, , we obiain,

Ir{S

J jq{u}duds 20,1 =-T,),
-y

n nLh

then. for afft = T,. we have

) _x - (7, ) _”q{u)duds‘ <o, (-T,).
=y =y nY,

28
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This implies that

e =¥ e
_[_[‘-?(H]dm'.yEt‘z{f—?'l]+xl '[fz)?

LFRE

¢, <1,

taking the upper limil as £ —» oo . we obtain

lim sup j Iq{u]duds =z,
f—ran -

LR
This contradicts to the condition (2); henee, the proof is completed.

Example 1.3.3

Consider the differential equation
E(y+ {1+ 2sin (0] signx(ty = 0.

Theorem 1.3.15 ensures that the given equation is oscillatory.

Theorem 1,316 Onose [25]

Suppose that

f
(1) liminf |g(s)as 2 0.

()limsup fg(s)ds = o,

e
then cquation {3) 15 oscillatory.

Theorem 1.3.17 Onose |251]

Suppose that

(1} p'(xy>k>0 forallx=0,
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(2} lim sup ! I.jq{u}dudr =
e g

f
(3} lim inf jc;{s)ds > Ay _m A0,
f

Then the super hincar differenttal equation (3} is oscillatory.

Prool

Suppose that a solution x(7}of equation {3} is a non oscillatory may x{r) >0 on

[In*m) for some t, >0, dividing equation (3) by g{x(r))and integrating wi ohlain

_Ho ORI
£(x(1)) ,,Jg{ 0 )}[a( x{x ))] qum T

o

where ¢, =

Integrating (1-13} from ¢ t0 ¢, we have

]g:JE( 0 J fg( (s ))[ ((( ))}] duds + j Jq(u}duds el +ve,,

il toly

where ¢, and ¢, are conslants.
Now consider three cases of the bebavior of (1) .

Case 1

(1-13)

(1-14)

If x{r) is oscillatory on [r,,m) then there exists a sequence {!,.n = ],2,3,_,,} such

that x{+,) =0 as 1, — o from this fact {1-13) and condition (3} we have



Ig( (5 ):{ ;[ES}J ds s finite,

from (1-15) and condition {1) we see that

‘J( I{ﬂ )‘ dj’ﬂf‘-‘rl 1
ok &(x(s))

where N 1s a positive constant,

By Schwarz's inequality we have

1

£r’]1iﬂj| di s PPNY rza,,
ME{t1E)

 du |2=’j x(¥) s
0 B G E)

from {}-14) and {I1-16) we have

Ilm sup - J-Iq(u)duds <o,
'o’!

This contradicts to the condition (2).
Case 2

Suppose that #{f)> 0 then [rom {1-14) and condition (3}, we have

11m sup- j-_[q(u)duds <o,
Yo

This conlradicts to the condition ().
Case 3

Suppose that x(t) <0 then by (1-13) and condition (3}, we have

31
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~3(0) () Y
- A X oy .
R CRT j; “(x( ]}{ “D)

1
If jg( (})[ (( ]J ds is finite as 1 — o

we can deduce a contradiction as a simitar way in the case when x(1) escillatory.

{Onherwise by multiplying (1-17) by

[—g'{x(mﬁcu}]
g(x(1))

(e A f . _-,-} ‘L’{F) Jd ‘
{ (cy + )+J§. (x( J_[W(m s

and integrating from ¥ s ¢ | we obtain,

{

W ) —Xs)g'x(s))
n[{ ' ”I"‘{x{ T w} } J O

J'K( )m > In g{x(T)}
7 glu) g(x(1))

CIR N )Y
A ¥ s
{{‘" ' “I“x( ey ] R0

This together with {1-17) vields

~H0) , gT)
) glx(0)

It follows from (1-18) that

32
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S —gx(TH=-A. A0,

Therefore. 2y S =A{r—T)+ x(T)

x(t) — —a asi—» oo,

which contradicts the assumption thatx(i) » Q.

Remark 1.3.13

Onose |25] proved the theorem of Wong (theorem 1.3.14) for the sub - lincar
Emden - Fowler differential cquation and also studied the exiension of Wong's resull [38]
to the more general super — lipear differential equation of the form of equation (3) as in

the previous three theorems,

Thearem 1318 Yeh [42]

Suppose that

1
{1) Iimsup% J(r - .'.']""q(ﬁ)ds =w for some integer > 2,
f=¢m .l‘ J.

then equation (1) is oscillatory,

Remark 1.3.14

C.C.¥Ych [42] established new integral criteria for the equation (3) which has

Wintner's result |37] as o particular case.

Thenorem 1,319 Philos |27]

let p» be a positive continuous ditferentiable function on the interval [r,,o) such

that

() OB+ -9 pys0  forallt > ¢,.

Then equation {3-a} is oscillawory if

Lad
bed



t
(2) limsup% j[f -5 p(g{s)efs =0 for some integer n=2 and O<y <1,
—sa f n

Remark 1.3.15

Philos [27] gave new oscillatory eriteria for the differcntial equation (3-a) with

Dcy<l.

Theorem 1.3.20 Philus 128]

Suppose that p be a positive twice continuously differentiable function on [.*,J ey
such that

plyz 0 and  H<0 on [r,,w)

(1)lim Jo(Ia(s)ds > o

() Iimfﬂ_lj;}l I{F =) g )l = oo,
| —at fiu

Then equation (3} i oscillatory.

Remark 1.1.16

Philos [ 28] improved Onose's result [25] for equation (3).

Theorem 1.3.21 Wong and Veh |39

Suppose that

(1} liminf [¢(s)ds 20 for large T.
Jeem

and there exists a positive concave function g on [ty.o) such that



(?) limsuplp _[(I - Y ofsYg(skds = forsome f20,
—r3 f
ig

then the super lincar differential equation {3) is oscillatory.

Prool

Without loss of generality. we assume that there exists a solution x(s) such that
x(3>0 on [Tﬂ,m) Jor T, 2 0 it follows from Wong's lemma (7)> ¢ on [T,«)
Jor Ty 2 T,

Detine

PUIx)

alfy=
o gx(r))

eall 2 T
Then, for t = T, wegel

I o .2 .
o) = LI | pOO_ p)F (08 xtr)
g{x())  wlxn &l (x(0)

oy = SOE) @’(f , 0
a) = ooy~ P00 - ( Fx0).  where (1) = — .

Hence, for aft + &2 T, . wehave

J[r - 5)? p{)g(s)eds < - j{.r = )8 ks + I[I -5 p(s5) ;(;)}) ds . (1-19)

By the Bonnet's theorem. we see for cach 12 7, there exists £ and n, € [T, .1] such

that

5



- r.[{r - ) is)ds = —~(r - T jri,:(.w]d.v
h

=~{t =T, [w(g))~ (T)] S (1 =T (T, (1-20)

and

Y {J d\_ A T {5]
[(r ' ple) sy = (=T :-j{“)
£{m} dﬁ
= (=TT | o1y oy [ S (1-21)
xi]"] I:I:I ,.[r:. (]
It follows from (1-19), {1-20) and (1-21) that
I{I—#]ﬂp{s}qr(s]{f'-i{:‘—!}'ﬂm(f]|+(f—?"}ﬂp(?}j- ‘E”J Vi T,
r[I’|]

Dividing (his inequality by +* and taking limit supremum on both sides, we obtain

f

lim HUPL J[f =5V (g (8 ely < o
fera

This contradicis to the condition {2} hence, the proof is completed.

Remark 1,317

F.H.Wong and C.C.Yeh [39] proved an analogous result of Wong's result for

equation (3-3) to the more gencral equatien (3).

Example 1.3.4

Consider the differential equation



Jr‘{r]+l1x’[:] =0 ,i>9d
i

Theorem 1.3.2! ensures that the given equation is oscillatory where p(t) =1, fi=1.

Thenrem 1.3.22 Philos and Parnaras [31]

Suppose that

]
(1) limim'L1 I{r —.1-]"'11;(.'.']d.1.' » —m for soume integer = 2.
I— .|""I

t

2
() Iimsu;r!l [[Iq(u]dn] iy = o0,
f—ea 3‘

Iyt

then the sub - linear differential equation (3) is oscillatory.

The ascillatinn_of equation (4)

This seetion is confined to the oscillation criteria for the second order nonlinear

differential equation of the form (4).

Theorem 1.3.23 Bhatia [3]

Suppose that

(2) ]-q (%)l =,

Then equation (4) is oscillatory.

Remark 1.3.18

Bhatia [3| presented the previous oscillation criteria for the general equation (4)

which contains as a special case Waltman's result [36] for the nonlincar case.



Theorem 1.3.24 EL = Abbasy

Suppose that

(1) liminf Jp(.-:}q(.-:}n’.v > =,

M

2
(2) limsup} [I:j-;;r(u)q(u]du:| dy =,

where p: [fy.50) = (0,00 is continuously differentiable function such that

2020, (rnNpn)) 20, (rinp) 50 and (HHpW) 0,
then equation {4) 1s oscillatory.

Remark 1.3.19

El. - Abbasy | 7] improved and exiended the resuli of Philos [27] to equation (4).

The oscillation of equation (5)

This section 18 coniined to the study of the oscillation of the equation {8}

Theorem 1.3.25 Grace |12]

Suppose that

(l]i}—g&kbﬂ Jor x = 0,
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Moreover, assume that there exists a differentiable function
P [1g.00) = {0.20).
and the continuous functions

B D={(ts): 25210} R,

andd Jf has a continuous and pon positive partial derivative on D with respeet to the

second vanable such that
Hirag=0 fortzo,, His)>0 forr> s 24,
and

_a‘:“i—s} =ht.s)JH(ts) for all(z,5)e D.
X

{3} limsup

i—+m ey

)jluu $)p()g(5) - ’“j‘:“}[h( 5)— "”f H s ]] ,

then equation (3) ts oscillatery.

Thenrem 1.3.26 Grace J12]

Let condition (1) from theorem 1.3.25 hold and let the functions f7,4 and p be

define s in theorem 1,3.25 and mareover, suppose that

{4 ﬂ«:ml[hm int f, 1ﬁI)}Su::

s}_r,, Ie+m I:F l'ﬂ}

{3) lim sup

j (s}p(v}[h{r 5- 28 *"{ ) JHUs }a‘s‘:m.

if there exists a continuous function Q on [ty.o) such that



i . H
— 1 | _1is3e(s) _PY) ey
{6) !1{2 sup "G Jf!{f.a]p{s}q{s] m [.’r(r,:i} o) H{LJ]] ds 2 Q(T)

forevery T 21,

() tim [0
[-#u o r{.‘.‘:lp{.‘s'}

di =0, where Q2 ()= max{ﬂ(f},ﬂ},

then every solution of cquation (3) 15 osciltatory,

Theorem 1.3.27 Grace [12]

Suppose that the condition (1) from theoren: 1.3.25 hold, and

W, T 4
{8} Jg{u]dl <o and Jﬂu)a’u{ .

and the functions //.# and p are defined as in theorem 1.3.25 and

Ay e and (HOAN) 0 fort 2 1,

mareaver, suppase that

(9) !j[ﬂinf J;J[.ﬁ-]q{.s']d’x > —a0
o

T
10 F e

fa

then equation (5} is oscillatory if there exists a continuous function Q@ on [.rn.m) such

that condition (6) teom theorem 1.3.26 hold, and

4}



TS, __ N
(11) hjrmp(_‘_}m =, where 2, (1) = max{Q().0}

Pronf
I.et x{r} be a non oscillatory sclution of equation (3), sav x{r) >0 for ¢ = ¢,.
Define

o(t) = ﬂ[r}r(r}w(t{r)}xﬂ}‘
g{x(i))

12,

thus, for every ¢ 2 f,, we obtain

AWADRE 1 £00) | [reytep]:
BEYs (37 (38 At h = -
WA= o0 Dwey O o
; _ Jelts k ® oo bo— 8'(x) -
Ay S =p{(n + T ) i) - PR (17, where & = s {1-22)
Integrating (1-22) fram r o ¢, we have
' A () )
al < axr ) — | pldg(anefu+ f du— . 1-23
o)~ Jptatundes ey o (=)

Now. using the Bonnet theorem for a fixed 5 2 ¢, and for some £,  [f,.5) such that

2y (x(u)x(uy . [ (x(u))x(x)
‘! preal R0 }r(ru}j——w] du
LY
= Pt dr(ty) _[wl:y) dy
e 00
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and, since p{ty) 2 0. and

ifx(g)) < xliy)

LB
"’(”dy <

iy Z0¥)
) J vo) .

s s:(}] ifx(£,) > x(ty)

then, we have

J'n(u}r{u)u(r(u)}r(u} dn<k
()

with & = pli)r(te) | “’:{—jr"ffy*

LT}
then, we have

-w{f)z -l + 4 + Jp{u)q(u]du + ILml{u]du.

B L playr(u)

Suppose that

J

) @ ()il = o0
'

By condition {1) we sce that

— clxi)y o )
r;l-pl:")r':lf} w (x{u)) (" {udin =

By condition {9, and (1-23), it fullows that for some constant L

o L0 s
woRt I S vt

42
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We choose 1, 21,. such that

A=L+ :[ l g'{x("]}mll‘:u)du > 0.
J Pty wix(w)

then {1-25) ensures thal the function @ is negative on [1,.00).
Now (1-25) gives

l o=

|i1', + | ! g (xtw)) mz{u}dujl e

r!;}{n}r(uj yrix(ny)

-
{ 1 - S {x(f_)}ru}(.r} l+ I ! £ (x() o’ (idu | = mLAC10) eft)
PO (x(i) 2 P w (s P px()

zw ori e,

and consequently, for aff 1 2 1

Ind L+] LY S€1C)) FEPRN PO 1C1C0))
o ola)riuy p({u)) g(x(1))

Itence,

L+ 'J- ] & (x(w)) a’ (i)elu | = Am
L) wx(e)) glx{r)

Ty

S0, (1-25) yields

Pl () y(x(w))

fa

Wit -[J’. + J ] £ (x(u) m:[u}ﬂ’n]*
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then. we get

Py (e x() . g¥(4))
£{x()) g(x())

and sa,

wix(in s 2T - O

-
plt)rie)
where O = Ag(x{s)).

Thus, we have

il efie

t{w{a)d#ﬂ = J-;}(u}r(u]

-3 as f—» oo,

This a contradiction Lo the fact that (1) > 0 for ¢ = 7, . and hence (1-24) fails,
MNOw we suppose that

L]

J

] () ' (idu <o,

By inequality {1-22). we have

EH(1.u)

IH{I o £ T deot ) = J Y ]

w’ (u)du

—j (1) h(-*,u}—w«”f(f,u}lu(ujn’u
o pla) 1

< H( 1 ol )+jp(”j;(”}[ (.r,u)—i:; ,J"H(f.u]] i
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-r M Y +i playr{u) —P.@ e 2
‘;[{1‘ p(u]r(u]m{ )+ % (h{r.n) p{u}\”“‘u)}] chi

then, we get

"

: ‘ : 2
[|:H(.f,u:|;:-(n}q|{z.']| —W[h{rm‘% .,.IH(:',:.']) j|du g It 1, it}
Futl

Dividing by f/{r.7;) and taking the hmit supremum, we abtain

rr . 2
. ! g, L pl) y
lim sup H“Jﬂ}rﬂ”(t.u}p{u}q(u) m [h{r,u) ) JH(r.u}) }f < @ff,).

By condition (6). we have

. b
Ofty) 2422, + liminf — { kift,u) ;J.{’%[m.u}—i"—%fﬁ(;,n)}} d
porr j) N

iif)f"{u)
This shows that
@ty )= (A1, ).
then, for + 2 i, .we have
0%1) = o (1)

then, we get

Im j a’ ($hls <o,
 p(s)r(s) 2{s)r(s}

'

This is a contradiction; hence. completes the proof.
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Theorem 1.3.29 Greaf, Rankin and Spikes |15]

Suppose thal

0[5 e
(2) !lm I(q[x} - pl{:.‘})d.w <L,

]
{3 liminf I{q{.v] ~ p( sy 2 0, for all large ¢

{4) l1mj [] 3 J-(q(u} plen) kduds = o

fa by

then the super linear differential equation (6) 15 oscillatory.

Thenrem 1.3.3) Greaf, Rankin and Spikes [15]

Suppose that

Hit,x(1))

|
M g{x(r))

s p(t),  for x = 0,

I 1
{2) j—ch J-—-—- J-{q{u} - ;3[1.')}1’11(1’5 =—on for every constant M,
iy r(h} fu
then the sub lincar differential equation (6) is oscillatory.
Proaf

Suppose that x(f)is a solution of equation {6) with x{¢) >0, forf 2 T 2 «,. dividing

equation (&) by g(x{r)) we obtain

ool _ o HEx0) (1-26)

gx{r)) gix(t))

47



then, for 2 7, we have

{1-27)

PwﬂUI=GﬂHmT_ﬂ¢?mthD
HE)) g(x(e) gy

It follows from (1-26) and (1-27), we get

[mmm]_ Hix(e))  H{N& O (x(0)
— o g+ - . ..
q(x(t)) g(x(1) g} {x1))

therefore, forf z I, we have

i, x{f))

glxen

[r(:),i:(z)
g(x(#))

} < pn—g(r). where pi)=
Then, forr 2 T, integrating the above inequality, we obtain

rxey fMET oo
priierr el CURLOL

. . ) 1
Now, multiplying the last inequality by — . we have

) = M - L gy — pls) s
ﬂmn‘m)rmﬁﬂ}fim~

_r{hi(r)
£(x(1))

where A 15 a constant.

and integrating apain yields

¥

TR L TM o, R
o= g [ Jaeo-pwokiuss

From condilion (2}, we have
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o (%)
fin= |———fs = —n as | —» o,
“ j 2

alry
Bui )= J"‘f—”
(T g(h‘]

and if x{r) > x(T) for large t, then [(1)>0.
This is a contradiction.

Hence, for large t, x{r) <x(f).s0

"o u’u |ij- du 8 du ]E:m i

lin= [ =—=- LAY
[T g(H} EIFE ] g(H} 1} g(h’) 3(“] a g(”]

This 15 again a conteadiction; hence, the proot’ is completed.

Example 1.3.6

Consider the dilferential equation

ol (3o )y

Theorem 1.3.30 ensures that the given cquation is oscillatory.

Theorem 1.3.31 Greal, Rankin and Spikes [15]

Suppose that

(i) =n,

@)lim= f ate)= p)Muds =5

iy g

then all solutions of equation {6) are oscillatory.
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Theorem 1.3.32 Greal, Rankin and Spi

Suppose that condition (1) from theorem 1.3.31 holds. and

{3)1iminf j{q{u} - p{u}}du >=2 forall large T.
T

(4) 1imsup% Iiﬂq(n) - p(u]}fu.:.{-.- =,
Fr

then equaticn (6) is oscillatory.,

Theorem 1.3.33 Greaf, Rankin and Spikes |15]

Suppose that

(hrity=1,
(2) }I_.II': I.*;(q{s] - ;:r(.*.'}](a’.s' =,

then the super linear differential equation {6} 15 oscillatory.

Theorem 1.3.34 EL — Abhasy |6]

Suppose that

(Drir}=1,
(2) G{x)= ]g{u}a‘u —o as |- e,
i}

(3) (¢} is continuous real-valued function in every hinite interval,
(D gh)=0 tortzd =0,

Let p(e) > (0 such that
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(3) lim I(p(.s}lp{s){- )ds <o,

(6) lim {2 p'f q)]ﬂ ds <,

U8

n".--::m,

(7 li MJ

(%) (;J is pusitive and decreasing for # 2 ¢, =0,
ol

£(x)

x

(9} lim

|:|-1-m

=],

(10 lim mqul: D s> —co.

i+ p ‘r
(11) ;L:Esupt:[{r-s)%d:s=m

then all bounded solutions of equation (6) are oscillatory.

Remark 1.3.21

El.-Abbasy [6] gives the previous theorem for non homogeneous equation,
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CHAPTER 2

THE OSCILLATION OF THE EQUATION

(r{r)w(xm;-ém) +g,(6,x(r) =0,

2.1 Introduction

In this chapter we shall study the oscillatory behavior of the solution of the differential

equation of the form
(f(f]W(I(IJ};(-’)) +& (. x{1)=0. (E)

where r is a positive continuous function on the interval [0}y 20, yoisa positive
continuous function on the real line & and £, is a continuous lunction on Bx R .with

£, x (1)}
glxfe))

function  on  the real line & except possible at 0 with xgi{x) >0

2 ¢lt) forall x # 0 and re[r,,,oc}, where  gis continuousty ditferentiable

and g (Xl zd >0 for off x # 0 and ¢ s a  continoous  function  on  the

interval [fu,uo)‘ o & (1.

Throughout this study we restrict our attention only e the solution of the differential
equation (E} which exists on some interval [ty.0) fo 20 may depend on a panicular

solution.

2.2 Oscillatory of the solutions

[n the present section we shall state and prove some sufticient oscillation criteria of the

solutions of the equation ().



Theorem 2.1

Suppose that

(1) ! 2l >0, jorallxe R,
w(x)
[2}Iim—-]— =k, €[0,00), where R{f)= ;I&— Jor it > 1.
f=em R(f} ! i r(-‘;}

Furthermore, let for some integer r2 3

I
R™

{(3) limsup

(1) HRU) - RU‘JI”" gl )ds =,

Then equation (L) is oscillatory.,

Proof

Letx(r)be a non oscillatory solution of the differential equation (E) and that x{r) =1}

Jori 2T, 2ty
define

_ rw o)

@) £{x())

127,

then. for every ;7 = T, we have

— g (t.x(0)) _ @} (Ng'{x(1)
g(x(0)  r(Ow(x(O)

alty=

From the condition (1), for all 7 2 73, we obtain

o) S -l - 11, @) ey

r{t)y



@* (1)

)= —glty—k 0

where & =1, isa positive constant.
Hence, for every 12 T, we have

j[;e(;) — R(Y 7 gs)ds < — _ﬂﬁ’[r} - RO o5 ety — & j[ﬁ:m — R % ol

aop L4 (x}

<[R(N - RETD| " wfy) - jk Rr) - B(5)] = s

j(u BlR(Y - RH] “":”

T

(n-1)° 'j[Rm R

< [Reny = RT) wlTy) + = |

'l MR- RGP L =) J[Rm—ms)]”'i P
[|1'i rl:_\‘] m{”-" E.JE rl:.f.')

n

then. forall r = T, we get

(n 1} I[Rm—ﬂ(s]]“'_’ "

ﬂRirJ RO q(s)ds 3[Ry - RA)) ofTy) + )

then, for r 2 T;. we have

34



][R(r) - RO gis)ds < [R(r) — RITD] o(Ty)

T

=1 - RTH[ 2-1
e CURLICHI (2-1)
Now, we know thal
[mm R flaids = [mm R glsyels + [[R(r} R el
Dividing this ineguality by .we have
R.-j(}j'[R(r) R :f{s]ziv—R_l HR(:) RO g (s )l
el
Hn.(}ﬁj[f%m R()™ gl
’ TjR"‘(;) ()elv +] ] @n_1fu(;r')
Fml R(r) :
N Gl (—R(T}) . (2-2)
I(n- 2RO\ R

then,

limsup i
roa R

o [l#t) = R alsrds < (= b REDF wlTy)

k(n-1
+41H”_2][ — kRO + jq(f)dum
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then, we gel

|
Rt (r)

lim sup JlRe) - REHT gs)ds < on.

This contradicts o the condition (3Y; hence, the proof is completed.
Hemark 2.1

Theorem 2.1 extends the results of Chriska and A. Zulova [23].

Example 2.1

Consider the differential equation

Y l+x(). T Y
[[r](zﬂ‘(z)}m] Ll + 5 n)=0. 150

We nole that

{1}r[r]=}>ﬂ Yizi, =0,

ol 2 i
I+A_4:>Dand 1 = X 2l ¥xre K.

2wt =
(2) wis) 2+ x pix) 1+x'

TR 3 :
{3} ?-!U..x{”}zx (f}(11+x (I}):1+1‘3[f)21=(f[f) ﬁ}rﬂﬂlxiﬂande[fﬂ,m}
glx(4)) x'{n

and xg(x)=x'>0 and g(x)=3x">0 Jforallx=0,

ol | : :
{4) R(t)= J-—I{r!—: _[L';."te{S':}r =Ll Jort > 0 and IimL=ﬂE[D.m],
orls) 2], 2 == R{)

ih



et n=3, we have

3
. 1 ! - Ja-1 . 4 r 'rl '1;1

| R s = Timsun—t— 15 | g

(5) .‘IE‘:“““,re'f"m,gﬂm RO gt *m‘-mp{r’-su’)’,:L 2}“

. 3 "t s x|,
=limsup——5 || ————+— ¥
e (1P -rg) oL 2 4

r 4 f‘j 1.133 +..‘1'5
= lIm 5u —_— —_—
me P TIT T T T T 20

5 5 5 4 2.2 1
{f it f
=|in]5l|p% 'r___lr_+r___ﬂ+._n_i =z,
e oY 4 620 4 6 20

it follows from Theorem 2.1 that the given equation is oscillatory.

Theorem 2.2
Suppose that (1} holds. and furthermore

Jet for some integer n 2 2
- ] ' n nl y=1

(4} imsup— [(-‘-—5} g5y =——(t= )" r{s) v =0,
G Ay 4k,

then equation (E) 1s oscillatory.
I'rouf

Let x(f)be 2 non oscillatory solution ol equation (E) and that x{(r)= 0 fore 27, 24,

Defline
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_ O )

i) 127T,.
UEI) 3
then, for every ¢ 2 T, we oblain
w’ (1)
() S =g - . t=2 T,
+1)
et (1)

i) S =gl =k o

Hence, forevery « 2 7. we obtain

1 I ) ' . ﬂ'..'lz(_'i':l
ftr=rgexds s - fo -y asyds - k, [ ="1ds
T, T T r(s)

s(t-T, ) a(7,)— :J-n(r — Y wi(s)ds - Iszr -" -

n h

then, for r 2 T, we get

" " g yH ”2 ‘ n- f L {'r _""}” : 1 H{"_"'I}ml
Fj;{lf—.vj skl st =1) m{?}}+¥2 r;[(: —5) 2r(5)a’5—~r;[ | : o ﬂﬂham
Vo)
Tu " T "1 I' n-2 - I_
S(t=-1)"ax 3]+EZ_T‘!U_S] ris)eds,

then. forall ¢ 2 T, . we have

58
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)
JLU -5)"g(s)- ﬁ—(r -5)"? r{a‘]]ds <4 -T))"e(Ty)
2

n
E[I—fn]'m{ﬂL Pz T, .

Naw, wo know that

H

r 1 I
_ﬂ-{r - 5) g5 - %-{: Y r{.s‘}ldﬁ = f]:(f -5V g{s)- ?‘:’c_“ —$)" )
2 , 2

n o

t

i 2

< :[(f =) q(s)ds + {1 —t,)" (T},

Iy

By the Bonnet theorem for a fixed ¢, €[¢,.7;] such that

T <,
[u =5 gtds = - 15" Jats)ds
io LY

Then, for ¢ 2 T, we get

T 2 L2
f[[: — 1" () —%{f - ) r{.w)]n’.s S —tg)" glsdds + (1 =) ofT5).

5 Iy

Now if we divide {2-4) by " take the upper inut as  —» oo, we get

i T 2
lim supiﬂ ﬂf: —.-:}"q(s)—a”k—{r —5)" T r(s) |ds <o
, s

=

This contradicts (6 the condition (4): hence. the proof is completed.

+ IL{I —5)gq(5) - fﬁ;_ (1 —5y"? r{.s-]]{f.v

(2-4)



Remark 1,2
Theorem 2.2 extends results of Ohriska and A Zulova [23].

Example 2.2

{onsider the dilterential equation

Hrwﬂ+2}vﬂ +x(N0+x* (1) =0 (1>0

.r"‘U}+4
We note that
{(Nr(N=1>0 , t2i,>0,

42 l
o

(2} p(x) =

. 212} {0+ x*0)
g(x(n) x{r)

=1+x'(Nzi=g{n forx=0and £ e},

and vp(M) = x>0 and g'{x)=1>0 Joralt x 2 0.

Leta ez 2, we ot

J 1 . 1 ! 1
(4) ]ir'n:-u.lpl ff=x)" —L(.' -y |ds = lim sup— || (4 - &)" —L(r -5y |ds
) " : 4&2 r—x { . 4

= limsup—| -
==t () -1}

[ =9 Au-x" ]

L]

= limsup—
e ] () in=1)

1 f =1 N -1 }

6l



i+l ? a-)
. ! ! " fa
= limsu [-— -2 +—[l——) =w,
1= p[nﬂ[ ' ) sl s

it follows from Theorem 2.2 that the yiven equation is oscillatory.
Theorem 2.3

Suppose that
(5 0<dy sp(x(0)) 84, foralfx e R,
and moreaver, assume (hat there exists a differentiable function
P [in.m]—> {0o).
and the continuous functions
hif:Def{ts):ezs>r}- R,
where £/ has a continuous and non positive partial derivative on £} with respect to the
second variable such that

ff{t.ry=1 for e 20y, Hit.s)=0 fort>szty.,

aned % = Kt s FIE, 5) Joralf (t.5)e 1),
i)

{(6) lim sup[}{ (frig) =~ % Y(ri, ]] =,
d—s 2 Fity

1

|

h N =
where (t:fa) Hir1,)

J’H (1. ) ()G (s)ds .

iy
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and  Y(rty)= H[ ) [ (5};}(9)[}*(3}#!1’(1 )+ LA, s}]'dv.

then equation (12) 1s oscillatory.
Let x{rybe a non oscillatory solution of equation (1) and assume that x{t) > 0
Jorallt 27, 2 1,.

Define

rlt gy ()

a(1) = pif) 2 ) . rz

then, for every « 2 T;, we obtain

() = - pE ) | oy (x()x(E) _ 20O (N (g (x(eD) |
glx(r ) gix(r)} el

Therefore, tor all £ 2 7, we have

n;rl[f]ﬂ—p{r]q[r]+‘g{} ety — L T;ﬁﬂ (). r=l

ali) s -plg(r J——[-ﬁ (r]+r(fim{t}].

Lp(n

where »(f)=- .
’ PU)

02



Then, forall £ 27T, 2 ¢,. we obtain

IH(t,3)

S ] 0l (x) +y[.v}ff(f“s']|m{s]]ds

IH{.* S)p(shy(s)ds = - JH(: 3)&](1‘}‘3’5‘__ J-L
1

IH(E,.I.'}pl[,s']q{,ﬁ')cr’.y5 —{H{r,s)m(ﬁ']l;i = J””;:: ) m{u}:hi‘

T R

_l: jTH(f,.&') 1. ; . L
{ ,J:L{s]aﬂ(s] @™ () + p(HH U, sl ]]r ¥

Then, for t 2 T,. we have

JH{I S5kl < HL T el 1) — Ih{.r sh,JH(r $hen seds _!_ 4::;;1{ }} af (5)+ (5 Hit, 5}&{5}1‘!'

IH(t, )

S M e - —J{ )0 )m iy }+lﬂ’ e W Y+ (0, :.}}m{s}}u'i.

S el + jr['?;(ﬂ [}f(yjq.,l'ff(f,x} +/, I:-(.'..\-}]xd.f
L 3

1 [HHG.9) ’r(ﬂp{,] _ '
_Eﬂ r(s)p(-x}“’“ \ (’3”{'~“}+?‘(“‘)\’”{”3)] as

< 11 Tl Ty =0 T+ j’(‘l‘f’{” [T + e ) s (2-5)
1

R

whete

, 1 IHG r(s)ps) | =l
JUJI):";”“-?” rj’h r(ﬂp{s} os) + |~ (i’lh{r..‘,]{h}*(s}wH{Lﬂ) ds and



¢, =#, is & positive constant.

moreover {2-53) imples that for ¢ =7, we have

I.H[I..E'];?{.ﬂ':lff{.‘i}l{f.‘r'—4L jr{.ﬂp{s}[y{:r).,."H(L.i') +£'3|{I{I,.5')]Jci’~' S [Tyl F )
-

f

then, forr 2 7, we puot

H{1.1; ][.\i{r. 1Yy - ﬁ Y7, ]] < H{t.T,)e(T,)
|

<H@lo(M),  forT 21, {2-6)

In view of {2-5) and (2-6) we can easily obtain that

ity J{Kih W=V, J] - ]{Hu‘ (81 s) " TG + o] }dﬁ.
|

ol In

. I{ Hts) p[_ﬂq“}_i‘iﬁ’j[}f{ﬁ]ﬁf”(hﬁ] st }ds

T

< H(1.1) [lo()gto)lds + Hr.r, T,
[q,

then, for 7 2 f}, we have

T
lim sup{}{{:,rﬂ) - l.l_y{.r,.rn )] = .ﬂf){,h'}{ﬂ:ﬁ}liiﬁ' + |m|[?'| }: .
Cy fy

f=m

This contradicts the condition (6); hence, the proot’is completed.



Remark 2.3
Theorem 2.3 extends the results of A Tirvaki and A.Zafar [33].

Example 2.3

Consider the dilferential eguation

[I[ﬁ + ] :1(::!}}1&0}} + x(r}(r‘ +x° (;j): . =0

We noe that

(1) r{ty=1>0, te o, > 0.

4

[y 0chaw(x{t)) =6+ <7 foralf xe R,

L
1+x*

1 gt x() _ I(,}(,: "“I‘(f})

I :_ .
{4 ) 0 = +x' (D2t =gty forx=0and reft, o)

and xg(x)=x>0 and g'(x)=1>0 Jforx=0.

Let ;J{f]=% and FI{t. 5}y = {t = 5)°

BH it )

£y

Then

==2(t=%), h(t.s)=2. >0,

1

J”[I,.ﬁ'};){.ﬁ'}(f(.ﬁ']ffg _

(5) X(h.t,) = L -5 s
'rliljha\.,

FH(t4,), (r—

- “—]-F rj[rzar — 2t x"]d'.&‘
1o f

u



1
Hiity),

(6) Y(r.t,) = _[r(s)p[x}[y{.-,-),,‘ 1.5) + f,h(:.s)fds

?.(L.,-}=_M;_'j.ﬂ= 7

FHEY ¥ 5

1 7 . 39 e 7
Y = —ft—sy+id | dv= —— || ==1| &
(f.04) P JL‘[: s+ ] iy 1) ‘:[5 ] s

= e f— 5+ —+1
I 2 .
=i} ;L X

- t
= { 49 }? {i+21 1n.s‘+.~.]
f—1, ¥

4 1
= 2 N Erlnr+L—1rlnr,-f, .
(=1} I

49 2o ]
= CI’.E'

(N lin'! Hupr}({r.fﬂ] - —I—Y{Lrﬂ )]

L d¢,

: I A . T N 7 T,
= limsu 7 ——— = ==t — ) | =,
1= (- \12 2 3 4 2 q, 2 4 )

tn

it follows from Theorem 2.3 that the given equation is oscillatory.
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Thewrem 2.4

Suppose that (1) holds. and moreover, assume that there exists a differentiable funciion
2R [fofu:-} —» (ﬂ,no),
and the continuous functions
R D=l tzszl- k.
where #f has a continuous and non positive partial derivative on D with respect to the

second variable such that

Hirn=0 Jort =1, Hit.x)=0  fort>vair,.

-3 (s :
and {—!iqﬁ = At s Hin Joralt{s.5ye 12,
€5

i . 1
fr(s}p{s}{h(f,y} _PB) JH (:..-,-)] de <o,

]
(7 imsup
e L) o)

(2) !Ln: sup 7 rl. % ';[H {(+.5) (gl s)ds =,

then eepuation (E) is oscillatory.
Proof

Let x(rybe a non oscillatory solution of equation (13) and assume that x{r} > 0

Jorallv2 T, 2 1,.

&7



Define

pLr (O (x(r))x(e) ‘

= gix{))

12T,

then, tor every £ 2 7, we oblain

oy = 2208 (Ex(0) | A0 O p)rEy ()0 (x(1)
g(x(1)) gx(1)) g’ (x(r)

Theretore, forall £ 2 T;, we have

(1) S —p{r]q(r}+%a (r)=1if, 1 — {1}, t2T,.
el

Pt}

Then, for all 1 2 7, . we obtain

J‘H[: pls)g(s)ds < - [H(r @(s)ds + j”{' []‘;’(‘} a(s)ds - j;;(;r{?]m (5)ds .

where &, =1, 15 a positive constant.

‘Then, lorall « 2T, we have

I!![.’..&r],{}(s}q(s}ds = {H(I.s}m[s}]; J'ﬁ”{f :4) {5 )y ]+ |fﬂf—;[}$?£w{.s']dx
T

k 'I H{r )

2o
sz 2 05) " (3 )els

S H T ) - r[[h{f.s),ﬁf {8 +ﬂ;ﬁﬁ}u(s}m— ky ILIEJ (5l

1, 7, PSS
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sHE T, ) - I{i;‘j—;‘% w’ () + ] 1, ;,-)[h{r,s) - i{% o H(, .\'}}ﬂ‘(#’}}tﬁ'.

T

)

X
I o L PO o 560 s
T[i p(.-r}r[_f)fb(-H W & [h‘(i‘_-ﬂ o) Fir.. )]} s

Then, g afl 1, 2 1, , we have

i) \ . L 1
< H(tTaAT,) + J-M[Fr(f,x)— n(-'r}] s
Lk .

5”{!’.?;}&1’:?})+L Iﬂ.&']r[s)[fﬁr.s}-@,,‘ﬁ[h.f}] ds . foraflT, 21, (2-7)
"”{3 I iN5)

Now if we divide (2-Ty by H(z,1,) . lake the upper limit as ¢ — o0, and apply {7).we obtain

!21; sup T ,IH (8 o5 )g(s)edy < o,

This contradicts to the condition {8); hence, the proof'is completed.
Remark 2.4

Theorem 2.4 extends the results of Grace [ 12] and [23].

Example 2.4

Consider the differential equation

[[IZ +EI I:U’)'H}i{r]:' +.r’{.*][£+lsinr+x‘(f}}=[}, { >0,
f+3IAX+S {
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We note that

(P2

l[l‘_ir{!}=fz 3:-(]" Yrz i, =0,
'+l 1 x'+5
{2y wixn)= ->0 and =—21 Yye R,
5 wix) x +1

M

. m(-’-x(f} [r){ +2sinf +x (r]}
3)

— =24 2sinr+ <7 (1)

glafi) ) t

b4 E+ 2sint =g{r) jforallx 2 0and f i, =),
{

and xg(0)=x*>0 and g'(x)=5x">0 forallx=0.
Let fins)=0-5)7 20 LYtz szt, >0

L, 5)

v

then =-2{f—5) andthen Airs)=2

and taking p(1)=3>0  fort > 0, then p{t)=0

i1
{4} Iimsup Jp( )r(_;)[};{f ,,]_M W] dy = 1m1 sup{ 12 } Is +2d_-,~

2 2
—H) 0y +3

= limsu - :
oo p{:—;u]‘ Sl a3l

e 12 [ ,[s)]
foex p{f'fu]:- ﬁ 3
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}m.

_ 12 1 ,] 1 _.[ ]
= himsup————| ¢ =—tan" | — |-, + —=tan | —=
i "(r-fu)’[ 7 LG R W

. I : : 30 2l 2.
{5) !ﬂsup T jH{{J}p{:.-_}q{.a;}d_q = ,ln.tu! tmp( z I{f —S}I[:+25m .s']u’.s-

alty, f=1y i

3 ‘Lot

= lim sup

i—® (a‘—Jf,,}2 f:[ 5

— 4+ 25+ 2 sins - 41ssins + 257 sin .ﬁ]ds

. 3 .
= llm.'su;::——I[E.rI Ins—drs + 47 =2t  coss+ Hscosy — Hrsin g

i=+m —
)
- 25" cosy+4ssing + deus ""I..
= limsu [0 1nr =317 + 4coss =20 Inty + A1, — 1 +207 cosi
T e pr—3 I a o ‘o *le

LI}
— 31y cost, + HSing, + 2, cost, — g sintg - 4cosrn]= o,
it follows from Theorem 2.4 that the given equation is oscillatory.
Theorem 2.5
Suppose that (1) holds. and
(9) N St, on [y.).

assume that n be an integer with 723 and p be a positive continuously diflercntiable

function on the interval [{D ,c)such that

! =1
(10) ]imsl.m!-"l‘—I Iﬂ%[ a=1p(s) -t —.v}p(.r}]z ey <m,
LS B i p _5'
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(11} !Em sup :—:_—I J{.‘ =517 p{ g8 deds = o0,

fu

then all salution of equation (F) 1s oscillatory.
Prool

Let x(¢ybe a non oscillatory solution of the differential equation (E) and that x(:) = 0
forea T 2> 0.

Define

_ rnpr (x(iN*)

A= )

2, >0,

Then, for ¢ = T.we have

_ (rOw i) A () (g ()

: teT.
glx(t) o (x(r)

win

Hence, lorall £ 2 7, we have

_ =g (hx(0) _ r(y ()% ()" (x(1)
glx(1) g’ (1) '

axt)
Fram the conditions (13 and (9), tor all £ 2 7', we have
1) £ —g() -?Lm‘(;).
.
Then. for alt ¢ 2 T.we obtain

1) £ —g(1y = A’ (1}, 12T,

12



i, .
where 4, = — 1s a positive constant.
dq

Hence, for every 1 2 T.we obtain

J{'_.‘ - 5" p(8)gis)eds S - I{:‘ — )" pUs)a s hely = j;!, (t — 5" )t (x)ds

F ¥ ¥y

Then, for 2 T.we get
ﬁr—s}*',:(s)q(s-)c&{u - oDl - j»w )" Aisyl (3l ﬂ{n D=8 ) (-9 Ao

[ i | R 0 o e S0 P
<(=1) p{?jru{fj+?__[ O oo o

)

—‘I JA - 5™ pls)ls )+ ' [(" Dt - )72 plsy = (¢ - )™ p(s) .

7 JA -5 pts)

1

=1
5(:—?)"";3(?‘)m{?‘}+4j4 j“;:i) [(n = 1yp(x) = ¢ = )p(s)] es.

T

Then, forall £ =T, we get

_
j[.r =Y Aig(s)ds S - J"J"';J(T}LU]+—J‘( i [{n s - — ip(s]l] ifs.

. 44,7 o)

Now. we know that

fir = 53" ptsdls)ds= it = sy plsdglsdds+ [(r -5 pls)glsdes.
T

Iy L



Dividing this inequatity by +™" and taking the limit supremumn on both sides. we obtain

}E’ﬁuprj—_l J(.' — 53" P35 Yels= lim SUFI"L" J{f — 5" p()g(8 el
i fa

+| imsupﬂ% ]{r =5 oS3 eds
f=wn A

-
< |il1‘|£llp% J{! =" e eds + 1 :I]sup-—ﬁl;lh {t =" o TYeh T
[ —=r I . Jars ln‘

[ =]
+hmuup ! — IU_ ]) {n-l]p(.-:}—(:‘—x)p{s]]"ds <oy,
f=vm r P

This contradicts to the condition {11); hence, the preof is completed.

Hemark 1.5

Theorem 2.3 extends the results of Philos's Criterion [26]. Kameneve Criterion [17].

the results of {35] when p{f) = 0 and the results of [19], [20] and [23].

Example 2.5

Consider the differential equation

R EOTEA N R TR
[[:*+1I4fu)+5}rm] 2@+ n]=0. >0,

We note that

<} Vet =0,

(1) 0<r()=~—
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L2 3
{2) Lf"(-"]'=211+3}ﬂ and ! :4I1+§2] Wxe R,
4x° +5 wix) 2x°+3

3) 8,01 T[f}) X li"‘}["‘ X ["}] =¢ +f?(1}2f =g(t) Jjor af x # 0 and 1 e[1,,2).
g(x(} X0

and xg(x)=x'>0 and g'(x)=3x">0 forallx = 0.
1 -2

Let p()=—>0 and pU)=— forall 1> 0.
! i

where =3 | then, we ot

¢ r1+'l
{4) !L”_]S“I’I..l_l j-{ e [(n Dp(s)- (f-s}p(»]]*{h

§ = { ' X Lepm
u

r _ t b
= lim sulc:»l I\‘[ y . el Gl ]n = lim sup 11 Iid\
x 5 ¥

L

= |im sup I -4t
I (71 357 "

i r __ il J
(5) !imsup%.— J(r — )™ p(5)g{s)ds = ]imsupiz !{.‘ -s)Yds= Iin‘u«:upli —(I—b]]
apnol r .r“ —g I :“ f—a f r“

A

[y 4 33
—llmaupl Ul ]:m

it follows from Theorem 2.5 that the given equation is oscillatory.
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Theorem 2.6

Suppose that (8} holds. and

1
wix)

{12} =0 Wezll,

a3 J%%du{m and Iig;duqm,

and moreover, assume that there exists a differentiable function
e ["n .,Lﬂ] = {0,
suchthal p(1) > 0.4(nN =0 and {r(f);'){r)]' <0 forall rzy,.
and the continucus functions
hif: D=t zsztl >R,
where # has a continuous and non positive partial denvative on £ with respect 1o the

second varable such that

Hieny=1{ Jort 24y H{ ) =0 frr> szt

and @ =k JiH(s)  forali(r.5)e D.
Al

1

‘ b4
H(f,;“}JJp“}’"(&}h (7,5 ey <

(H]

{14) limsup

§ ot 2
Then eguation (k) is oscillatory.
I'roof

l.et x(¢ybe a non vscillatory sclution of equation (I} and assume that x{) > 0

Jorolti 2 T, z1,.
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1¥eline

LI ()
e 0 .

aft) = r27;.

Then, for every £ 2 7, we get

- plg, X)) +ﬂ(f}r{f}w(x{f))i{f} p(rjrir]w(x{f])r (g’ {xm)
g(x(r)} g(x(1)) £ (x1))

@)=

From the conditinn (12) tor all £ = T, we have

£
(N < -ptigy+ =2 a() - 1C
@ Pl +p} ol = {f)(r}

@ (1) T, z1,. {2-83
thus, for every r 2 T, 2 1,. we have

' i 0(5) L M
. de S —H do v [LAMAAS) 7.5}
r! (r.s)o(5)g(s)ds S TJ: (1. 5)() 5+;[ i w{(s)eds = IC '[pmrmm (5)dds

< HL T, )m(T]—J[ o {’ "")L;( )ds + IW ols)ds
T i '

-y f—lw (s)ds. (2-9)
whete A, =/C 15 a pusitive constant.

Wow, we nole that

His,5)p(8) b= TH( s r{sW (e()0)
J R J“’m s
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e =) g {x{ad)xei) .
_ JIL('—a )j(,m: o) S }

h

By the Bonnet Theorem, for a fixed s 27, and for some a, € {T, 5]

J (w)r (v )V_{"Mm, AT, }J’th
(x(u)) PO

g(x(u))
e
= P | 2
:I‘,]
and , since p{T;)r(7;) >0, and
" ix(e,) S x(1y)
J- w{ﬂdm <
0 E0Y)

'j YA b ifd(a) 2 (T,
T} gix)

then, we have

' . w ({0
T{””“ Oy sk

where k&, = p(5r(1) I W{J}d}
x[]r'l'. [ }

Then, {2-9) becomes

]H(I.s)p{s}q(s}d-; < 116, T)a(T) - [htr, TG s)w(s)ds
h

h
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+ 4, j{_ e }r'x— A, J;_S{;;'E_L (el

LA o

@' (s)ds

< G T lokTy )+ |- Jhe T aks)ds =y [
n ., ASIr(s)

frte, .
< HO o) + &)+ Ih (:..j,j(.f]r(a) d

L :

M

R T sy
AV plsins) 2 AT )
¥ p(s)r(s)

h’(:,.uj;:(sir{sl i (2-10)

1

< H(t (T + &)+ j-
TJ

Now if we divide (2-11 by #1(¢.1,) . take the upper limit as ¢ — oo, and apply {14),

we oblain

IH(L,\'};JI[.-r}q[.ﬁ'}ds <o

]

lim sup
i-v o IR

This contradicts to the condition (83; henee. the proof is completed.

Bemark 2.6

Theorem 2.6 extends the results of Grace [12] and [23].
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Fxample 2.6

Consider the diflerential equation

! IO N —
[[f+|][.t*(r)+1]x“}] + X [f}(-'+x (.r)]_ﬂ L 120,

We notle that

M r=——>0  ¥r21,>0,
t+1

wix) x

{2} =1 S atf x 2 0,

g0x) _ @)+ 510

3
) g(x(0) ()

and xg(xy=x">0 and  gix)= 3xt >0

let p{fy=1 wehave p(y=0 and (p(Ir(1)) =0 Jort 2ty >0,

let Fi{t.5)=(t—5)" Jort 2 52, > 0weget

)

FH ) (g {s)ds =limsu
Hw,! Dot)g(s)ds =limsup— .

l 4

(4] limsup

J{.r — 5)F el

= limsup ! s’
- (1=1)F] 2

= limsup

In'l
f—= “_ro}l |:E_

g0

3

2
e,

Jor aft x = 0,

—t+x N 2r=glt)  for x = 0 and [15.0).,



t f .
(5) !'ﬂ'rlsup TR Jp{s}."{x}hl (t, 5y = !i_msup( 4 IL:}\

H . ¥
o) f=1g)" 8 +1

4
= limsup : [.\' - In(s+l]l‘,“
i—n — 0}
= lim:-'.up( - [: —ln(t + I —r, + Indr, +l}]¢:m*
i~ t=1y)"
#y‘(u} 5 l N
6 fir = —tan” <o
(JJ {u]l j1+1.- M3 -
and Mduz }‘ al y zfu=llan"' |l <o,
giuw} 1+ 2

it follows from Theorem 2.6 that the given equation 1s oscillatory.

Now we need the following lemma which is an extension to that of Lirbe (9], Wong [38] and

Gireaf and Spikes {14].
{.emma 2.1

Suppose that

() hm_{

SO

(i) liminf [gts)ds2 0 for ail large T
T

(iify O<d, syplx()) s, forallx e R
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then every non oscillatory solution of equation () which is not eventually u constant, must

satisly x{(O)x(1)>0  for off larget.
Proof
Suppose thatx(t) >0 fort 2 1) 2 1,
It the lemma is not irue, then cither () <0 for all large L
or () oscillates  Jor all larget

In the former case we may suppose that 7, is sufficiently large

jq(x}dxz{} Jortz T, and x(r)<0 forez ¥,

L

but
[r(r}w{x{rj}.:c{r}] = —g (¢, x(r1}

< —g(x{t))g(s).

" (r{-’)w(r{r)};{f}) +g{x(t)g(n) s 0.

Now integrating the last imequality, we have

. . r r I' t
[rmw(x{:)}.rm]—[r-:ﬁ WD, )]+ 2t fats)ds - _fF{ng’-:xun qudu}fs <0,

7 B h

but 2lx(rn _[q{.\')d.w 20 und - Ji’(b'} g x(s)) qu(n}dudﬁ' >,
%

h i
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‘Then, forevery 2 7. we get
[r{rwtx(r)).lu }]—[r{?‘. W )T, )]sﬂ.
) .
[r(:}w-:x{r)}im]s[rt?;wutnn;iﬂ }].

Dividing by #(£)w (x{t)). we obtain

iy < W CEDHE)]
i (x())

Then, for afi t = T, we have

v ]

0= I )

[ntegrating, we get

[ xT)] 'I ds
':i ] r(-""} .

() S x(T)

then, we get )= —m  Gs f ~r o
This a contradiction 1o the assumption thatx{() >0 fort 2 T,

IT #{r) oscillates, then there exists sequence {rn}—> eo such that x(r }=0(n= 1.2.3...)
forallez2T,.

_HowGEORD g
ey

Delinc 0



Then, forall ¢ = 7, sweobtam

_ -~ g (x) i x)F 0 (<)

alr} 3
g{x(r)) Lo {x(e)

Hence, for ¢t 2 T, we have

_riny () g <)

() < —
@0 & =a(0) )
Thus, for allt 2 T,
aft) s —qlr}. -

Thus, for every 7,,, 2 r,. we gel

n«l

L} Taul

[ gtryetr < - Jatyar

= wfr,)- o(r,,}=0.

. r":rq(r]df <0.

rl

‘This a contradiction o the condition (i) ; hence the proof is compleled.

Theorem 2.7

Suppose that (5) holds. and

(15)liminf [g(x)s 2 0 for alt large T,

d=rT

1
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[ L

(16) lim [%:«:1,
h!‘.’i‘

(I?}Iimsupriﬁ j-{.'-s]"q{.c}ds =0y Jor some 20,

Then equation {E) 15 oscillatory.,
Prool

Let x(1) be a non oscillatory solution of equation (E) and assume that x(¢} > 0
for t 2 T, 2 ¢, Tt tollows from lemma (2-1}, that &(¢) > O on [T, ) ¥T, 27,

Pheiine

_ o ps0)
#(x(0))

oty Jore2 T,

Then, forevery 1 2 T, we obtain

oy = LW CEEO)_ W (i (g (x(6)
g{x() ¢ {x(e)

Henee, fort = T,, we have

o = () e NN ()
wif)= 3 :
glx (1) g

Then. for all ¢ 2 T, . we obtain

et) & —gli), Yez2 T,

®5



Then, furevery ¢ 2 Ty, we obtain
I(r —~3)Pg(shds < - J-(I — Y0 ax5)ds .
T] r:

By the Bonnet Theorem, for a fixed ¢, € [Tl,r]

- f{: —s¥ asde= -1 - T)* :[a}{.s'}ds
L

T
= (=T, wle )+ -T,) {Ty)
s{r- sz'ﬂm{?;j .

Hence, for ¢ 2 T, 2 t,. wehave
- ][I - oldy s -T,)? A1) (2-11)
i
Now il we divide £2-11) by #, lake the upper limitas £ — o0, we gel
!jmsupiﬂ IrJ{llf -5 gq(s)ds < w,
P

This a contradiction to the eundition {17); hence, the proof is completed.

Remark 2.7

Theorem 2.7 extends the tesults of Wong and Yan [40] with p(¢} =1 and [23].

Lxample 2.7

Consider the differential equalion
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7, by '
[[:242154}:“;2]}(;)} +x(;}(1+3.~;im+x1{:})=ﬂ. 1),

We note that

2 = f I
M r=-""50 ¥r>0 und nmjﬁ_h I——-dx-llsnj[l—-z—}ia'
f‘+3 t (¥ 3 5 N v.‘.I

(2) <S5 Spln) =5+— <6 forallxe R,
X+

] . ?
3y Rlex@) 2+ 3sinr X 05 5o xiy 24 3sins = () forx = 0 and
g(x(1)) x(i)

r2iy >0 and xg{x}=x*>0 and gx)=i>0 Jforx=0.
? i
{43 hmin{ Iq(.v)ds = liminl J[2+35in5]¢1‘5
-l T Rk r

= liminf[2s ~3cos sk = llrnml'['?'i.r ~3cost— 2T +3cosT]=»>0.

=+

By king f#=1,we gt

(5) limsup—}ﬁ- I(r—x}"q{s]du llmaup I{r—s]{2+3sm\]ds
[E2 ] II'

= limsup- [EH-*. -31mw+3acoss—3a1n-.l

(% L

P 2 R
. Jsins 5 =gost, +3sing
=hrnsup{r— +3cusrn—2fu +[ o g "ﬂ:
I—iﬂ I .|l

&7




it follows from Theorem 2.7 that the given equation is oscillatory.
Theorem 2.8
Suppose that (5), (15} and (16) holds, and

(I8 O </ =r(1) Wiz,
SRR e =
{19) !!msup;f:[lml;[q(u] n lds = o

tien every solutions of equation (E}) are oscillatory.

Proof
Let x(f) be a non oscillatory solution of equation {E) and assume that x(r) >0
for 1 2 T, 2 £, It follows from lemma (2-1), that x(1) >0 on[T,.=) ¥T, 2 7,.

I refine

0260108

Y= T

Jorr2T,.

‘Ihen, for every 1 2 f,, we oblain

=g (LX) PO () (g (<)
g{x(1)) g (x(r)

wff) =

Py (DX (g ()

)y S —gif)—
e gif) ngx[f]j

ence, for alf t 2 T, . we have

axn s ~qle). t2T,.
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Then, for ¢ 2 T, we get

t

[m(s)dx 5 -—qu[s)ds' :

L5

sy s ally) - ]q[.-;]{fs .

!

By the definitien of ., we get

{0 (x(0) () |
() < offy)- ﬁ[q{s]d& _

vl off) ! ],
ST R0 AD; J“’{""}”

y w(x{e))xli) Em(Tz) 1 .[ (s)ds
g{x“}} ‘..5 (r}r

Then, for every £ 2 15, we have

T (NR) o) s ;- )
r:[ g(x(s)) 4, (=) ,!Lu)!‘i’(u)du]d, (2-12)

Now il we divide (2-12) by ¢.take the upper limitas ¢ = o, we obtain

i

hmsup I Wl ]duﬁhmsup [ iy }(f—T}]—hmtup JI-— Iq(u}du] =—0.
i

ETE N R

‘T'his contradicts; hence, the proof is completed
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Remark 2.8

Thearem 2.8 extends the results of Philos [29] and [23].

Fxample 2.8

Consider the differenual eguation

O +1

Hm a g” }f:{:}] +[21+x2[fj}\'5{r}=ﬂ. t =0,

We note that

i
(DA =150, ¥rzt, >0 and lim ﬂ—hrn Ids -I1m-.1

form r[qj r-m.lu

¥

(2)0<10<p{x)=10+

—— <1l Yxe R,
 +1

g _ e+ P00
£(x(t) x* (0

(3) =x+x (N2 =g(t) foraitx = 0and f €[ty.m}

and xpfxy=x" >0 and g0 =5x*>0, forall x # 0,

! i
(4) liminf Iq(s)ds = ]im inf j‘lscf:; = liminf{:‘z - T’) =0 > Jor all large?,
f=ri —
T T

=z

(%) }Etl 5Up % J[ﬁ f;l-q(u}:!u}fx = ].Ii]l sup % j sza’m."ﬂ;

fnfa

PESY ] i—x _j_!'

‘A
—llmsup [(5 ~1 M\—]Imsup<—+—‘}-~rn> o

1'1

it follows from Theorem 2.8 that the given equation is osgillatory.
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Theorem 2.4
Suppose that (5). (15) and (16} holds. and morcover
assume that there exists a differentiable functien

P [tye0) = (0,09,

suchthat p() > 0,502 0 . [riNpM) 20 forali 124, .

{20) !im Ip[.ﬂ'}q(s}ds =m,

T

(21) lim f[p“;m Iﬁiu}qtu)tﬂr]ﬂ’s =,

dusmm 4
t i

then every seluion of eguation (E) is ascillatory.
Prool

Lel x{r) be a non oscillatory solution of equation (13) and assume that x{s) > 0

Jort 2 T = 1. [t follows from lemma (2-1), that %(s)>0 on [f,. ) 97, 2T

o)

,we obtain
g(x(e))

Multiplyving equation {E} by

POy NN | P& ) _
Kix() 2(x(1)

Then, for every ¢ = T, we get

(PO RGOy, (20X, g
7, E{x(s)) qo st |

01



Thus, we get

PN ) 'Iﬂ{s)[r[s)w{r{s)}i(x}] i 'jp(er(s}w(x{.mf () o1 xgds
gl by p s R O) '

s,
gl{x(sh)

. POV pGIATR I Gy (i)
#(x() 2 (7)) i )

- Ip[.\')q(s}dw_
h

Then. for all 1 = T, we have

plyr @ (i) pArT T DAL | ‘J;:-v{s)r(.v}w(x(s:rm.«-a "
e10) g(x(1)) i g(x(5)) |

- fotsygtsds.
T

By The Ronnet Theorem, tor a tixed ¢, e [77.1] such that

! £

PO IR 5 5 oms ) HEDFE)
,,I g(x(s) o =tom ‘]}rjl’ gy

~ 0.
= p(T)rT) j Yl du=N<w,

iy

_ pTrMwAE)
£(x(1}) '

lLet b

02



then, forall + 2 7). we have

f

pOF R, =.-
gLx(t)) <h rljﬂiéic‘f(s}d.,

From the condition (20), there exists 7 2 T, 2 T, such thal

Ip(,h')q[.\' Jeds 2 25,

T

lmnplies that

b <= [pla)ats)ds.
)

then, for ali ¢ 2 T, we have

PO anin . 1]
£ —-= shds
DO L fpoucns

then, for « 2 T,, we have

)

w1
S T T i 1 Pa(s)ds
g{x(t)) 2 psyr(s) T_J:p(:’)‘f(ﬂ s

Thus, for every + 2 T, , we oblain

] T | i x
IMds £ - — L [ pu)gtadu |ds
i s(a(s)) 22| o)),
Using the condition (21), we get
L) ]
Mr.‘u —y —c) as t = w

sty £

(2-13)



This a contradiction ; benee, the proof s compieted.
Remark 2.9

Theorem 2.9 extends the resulis of Graee and Lalli [11] and [23].

Fxample 2.9

Consider the differeniial equation

K 1 I3+ ium ]_i(r}] +x’(f)(1+x‘[:}>=[} el
t+1 X (n+1 !

We nole that

1 ) Crds s J
4} r{r]:m}ﬂ' Yezig >0 and !Egﬁ_llﬂJ-(S+”d""k?.1["f+ﬁ] =0,

[ IS

12
(210 <3<yl =3+

— <4, forall x e R,
X+l

R
: g1(1_:r{.']}_x {rj[r+.r [r)]

v S

=—+xl(r}al=q{f] Jorafl x = 0 and 1 e[fy.5).
! !

and xgfx)=x'>0 and g{x)=32">0 Jor ulf x = 0,

f

ey .
{(4) limint J‘q(.f:}c:’.v=limmi Iﬂ :I1m1nf‘in.ﬁ-1;_ =0 for aff larpe .
S [-wi r ks

P
T

Let p(f)=¢ we have () =1>0 and (p()r(0}) = -
{i+1

<0 forrzi, >1

(5) lim ]{ p{.ﬁ-;- 5 Jp{u}q{u)cm]ﬁrﬁ = 1Lmjif—' [ =1, bis

04



. '
= Iim<% + ¥ -—.'[,(5 +In u]) =0,

— o
it Tollows from Theorem 2.9 that the given cquation is oscillatory.
Theerem 2,00

Suppose that {3), {15) and (16) holds. and moreover

assume that there exists a differentiable function

i ['rn*m]_} (0, o)

swchthat p(r)> 0, 4120 and (r(Np(N) S0 forall 124,

(22 l:l-r:n]—':fi <o and T

; glu) )

ch <m Yex(,

{23) |irr'||f~}l.1p|fij_,I Il[r - o )g(s)ds=w  for some A 20,
[RLT =}
.

then equation (E) is oscillalory.
I'ruuf

Iet x(t) be a non oscillatory solution of cquation (E} and assume that x{f) > 0
Jort 2 T, = 1.1 foliows from lemma (2-1), that x(1)>0 ¢ 2 I,zT,.

Detine

PG (x () 5()

Wil = . Joraltr 2 1,

g (x{1))

Then, for every ¢ 2 T, . we obtain
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- PR POr O I _ pr(w N O 1)

flt) = 1
glx{t)) glxi(r)) £ (x(s))

Then, for all 1 = T, we gel

POy (U oy 7
gy z

ait) = —plt)yle) +

Hence, for ailt = T, we oblain

J{: -9 pls)gls)ds < -J{r — $)? is)dds + 1, !{r —sy %ﬁ%‘” ds

By 'I'he Bonnet Theorem, lora fixed i, & [7,.¢] such that

! LA
- Ju- 9 as)ds = ~(—T,)" axs)ds
T T

== =T wln,) +(=1;) o(Ty)
= “ —Tg }ﬂ m(fi}

But,

[{r -5) [pls }r(.s-)]]' = (t - Y (p()r() = B =" (ployr(n) <0,

By the Bonnet Theorem, tor a fixed ¢, € [I‘z,r] such that

“ s M) TV i)
r;[(; )P 3{(s)r (s} pravn I = =T, T, )r(?})r!g o) ds

Lt
= (=T pTpr(ty) | 2
ity &000)

96
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l'rom inequalities (2-13), (2-10} and (2-14), we gel

F(TJ du

[ie=5)? plsg()ds S ¢ =TpY @) +HU -T) AT | oo
ary 1)

L

Now dividing by Pand wke the upper mit ax f = o« we obtain
ey bp

]imsuplﬂ j{r - ) p(s)g(5)eds < o0
feuid r

Iy
This a contradiction to the condition (23); hence, the prool is completed.

Remark 2,10

I'heorem 2.10 extends the results of Wong and Yeh [40] and [23].

Example 2,10

Consider the ditfercnbial equation

43 ) . ' sendl ) .
[[r’+212+.r‘(r)+1]xm} +x“)(r st (l}) 0. t>0.

Whe note that

2 I i
(1) r[f]=r2+3}lil and 1|r11j—ds——1|mj1r +2 ds = lim! s — ] an”| —
! +"}I —x r(.ﬁ'} (4@ =B 3 i3

- I

{2}U{2£w(x]=2+x:'+1{3 Jor aff x e R,

a7



x"{f](lrsinwx:{f}) ||
(3 )‘ﬁ” ':":']'___ f =——sinr+x2(x}ET—sim:q{r}

2 (x(N) X' (1) ;

forali x # 0 and 1 € [fp,) and xg(x)=x* >0 and gxy=3xt >0 for alt x = 0.

i ir
(4} liminf fg(s)ds = liminf Ilesins}ds
[ELL - J—+0 - ¥

= liminf[In¢ +cost —1n7 - cosT]=m> for all largeT',
(5]U{IJL=IJ—H=—17<M and I—du—- d_:::_l_{m Ve 0.
JE@) Ju 2 b9 () A 257

Take f=1land p{r)=1>0 then p(1)=0 {r(1}p(t))" = 0 we obtain

{6) lim sup—IF J{r — 5 p(Ng{s)ds = lim sup% j{.‘ - 3'){&: =sin .*:)r:a’.'.-
Fmwa .I‘ ,f. d=em r'

—x

1
1] 1s* 5 .
=limsup— ?+Icu35'—?-.¢cnss+51ns =m,

Ty

it follows from Theorem 2,10 thal the given equation is oscillatory.
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CHAPTER 3

THE CONTINUABILITY AND THE OSCILLATION OF
THE EQUATION

(r(f}wx(f));f(ﬂ)+g;(-',x(f}] = H{t.x(r). x{1)).

3.1 Introduction

In this chapter we shall study the continuability and the escillation of regular solutions

of the equation
(w30 ) 8,020 = 3050 ®

where 1 is a pesitive continuous function on the nterval [ty )ty 20, v is a positive

continuous function on the real line R_ g, is a continuous function on Rx R with
r oL xlf . . . - .

%2 q(ty for aft x = 0 and rety,00), where g is continuously ditterentiable
it

function on (e real line R except possible at 0 with  xg(x)>0 and

g'(x)2 >0 jor ¢lf x # 0 and g is a continuous function on the interval [fp )i, =0

and H is 2 continuous functionon [r,,) xRx R

We consider the Continuability of equation {E} in the case wherew({x}=1 and

g, (. x(1) = g(t)g(x(1)) for all x & R and i€ [1;,}.

i.. the equation

(r(f];:(r)] + g, (. x(0)) = H{t, (0, x(1)) . (ED
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Throughout this scction. the following notation is used

Fix)= jg{u}u’u.
[}

We write equation (E |) in the following equivalent form:

= y.

LR 2 P A0 (1)

rif)

3.2 Continuability of selutions

Tn this section some results of the continuability of solutions of the equation (E )

will be established.

Pefinition 3.1

The solution +{¢)of eguation (E [} is said to be a continuable solution of cquation
(Epifit 15 defined on some interval [;‘\m}~ T = 0. where T depends on the solution x(f) .

We shall give two theorems concerning the continuability of the solutions of the

equation (T ) in the case where |H (1. 5(2). x()| S |1} forallx i & R and 124, 20

140



Theorem 11
Suppose that

(1} F(x) is bounded below and F(x) — o as |y > e,

(2) r and ¢ : [t,.0) —> {00, 20) are non decreasing functions on [t,-) and g(/}is bounded
vrat,.

then all solutions ol the cquation (E f} can be defined forall ¢+ 2+,.

Proaf

Suppose that there is a solution (x(r), »{r)) of ([ and T 2 ¢, such that
im (o + ]y = =. (*)

Since #(x) is bounded below and F{x) —» =0 asM — oo, say F(x) 2 -a, for some

a, >0 and forallee &,
We deline the function £ as

f+a, ¥’

zll]= . f 1
V=0 240 “

then, for all s 2 ¢, we have

oy = SOSCO)_F@raF) 57 p40
i) r () g 297

§01



By (1} we gel

Hgxy _{Fa+a)) yHE 00 _y AN _ e

2= -
rir) re{t) r{t)gir) r{ekle) rii)
.
270 ’

'Ihen, taking into account the above conditions, we get

¥ (). x ()
r{1qlt) '

VIOE

P2

Then, fort 2 1, we have

EOLICSIOEO

Zns Z(’n“h r(s)g(s}

Hence, for alls 2 ¢, we obtain

OPPN J-}(SJH(M(-&'LI(SII) n
Ec;m r(9)g(s)

. |
Since y £ ;(y: +1) . we have

M 1 e+ J'I(SJH{J.-}*{-E}J(S})tH

YA
g(r)  2q(7) r(s)g(s)

Since q is non decreasing function, we obtain

ol U T SH G )],
c;{:}szqtr{.}”“““f RN
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Then, we have

YN g

\ﬂ < o eer
qis)

¢(f)

ne o

+ Z{t,) is a positive constant.

where fi, =

2g0io)

By the Gronwall's inequality. we have

#0) |mtsy
) = f e.\p[j—r{” d.S:l, 121,

a

Thus ﬁ‘ is hounded on [£,,7] and since g{r) is bounded, () 1s also bounded on
il

|#5.F]-

Integrating the first equation of (1}, we obtain

x() = xl1,) + I_[y(s}ds el T].
IQ

Since (1) is bounded onft,,T], it follows that x{f) is also bounded.

This is o contrdiction to the assumption ( * ). This completes the proof.,

Example 3.1

Consider the differential equation

[(L]i’(;)] +20%x() = 1E40) x x'{f) x—_xet. 1>0.

f+1 2+l '+l i+1

13



We note that

!
{r+1

(1) 0 < #{f) = —— and F(t)= =50 ¥z, >0,
t+1 )

(2) g, {r.x(1)} = 27x(1), then ¢{) =2 >0and 4{=H%>0 Wi 21,>0,

Q) |[#H () <e™ =|m)] Vx. ke Randizy >0,

i

and yg(x)=x* >0 ¥xz0and F{x)= I:E(H)C."i!d = Iu:h.r = EE—E 0 -a,
L1} Q

Vxe R, »0and F(x) - @ asp| - .

it follows from theorem 3.1 that all solutions of the given equaiion are conlinuable.
Theorem 3.2

Suppase that {1) holds. and

(3) rifrg.o0) [D*n:_o} is non decreasing function on [, ) and g{1) is a positive on

["nsm)-

{4y yi1) -M is a positive and non increasing function on [rn.cr.-} .

r{t)

I'ben all solutions of equation (L 1) are defined for allt 2 7.

FProof

Suppose that there is a solution (II:.':L_}’{I}) of (I1)and T =1, such that
tim (st + s} = 0. (*)

104



Since F{x) is bounded below and #(x) — o as|x| — @, say F(x)}z-a, for some

a, >0 and forallxe K.
We dellne the lunchon 7 as
+~ '
Zin=UT00 0 ey
Then, for alls 2 ¢, we oblain

PPRNRE(0)7.(6.0) B GRS A0
' r(e) 0

85 QU - PN

By (1), we get

)= ygx) (Fuy+a, Jit) 20050 CYORO 0g0ex)
o 0 ) 0 A

Then, taking into account the above conditions, we have

2 < YUYH (). XU
r{t)

—y((g(x{}y. 1214,

Then, tor everyf 2 ¢, we obtain

ZU) S Z(,) + j}'f""]'H {':*(-’:g"]""{“'n ds= [r(sp(s)g(x(s))ds

By using the Bonnet Theorem, there exisis #, € [tg.] such that

' ™ o d
= [P g (N ds =~y (1) [@lxls)Gs)ds = =7 (ty) e
In Ty Xyl
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0 x(m
:—y{!u}l: jg(u}dﬂ+ jg{u]rfid

L]
] z|m )

=—r(rn)[— [t + jg(u}du]=y(rn)f-‘(xum—ruu)F(x(mn
B 1]

<oyl ) + ¥t ) F{x (5, )

[lence, Wi 2 ¢, we obtain

20 % Z010) 1l + YEFGUD + P DD s

Then, for alls = ¢,. we obtain

(s, ), x(s
:‘2—5 2003+ e, + Pl P+ 22 {‘ré‘;” D g

Iy

and therelore. we have

Y e Ly 20 e + UGN+ j-‘“” AL g

Sinee y = ]E[yl + 1), we ebtain

Pmntu ) o

Mo < ’5+ Z(1)+ 7rg), + Plie)F (i)} + o

then, we have

OB+ IJ‘}-‘(.'.')J’r’(.*:..f_:-:g.s)*x{s)} .
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where f3, = -;—+ Zity )+ +y (o e, + p(1)F (x(T)) s a positive constant,

Thus, we obtain

m( 5 )]

()< B, + J bm‘m

By the Gronwll's inequality, we get

|m{ ‘,|||
MO EF:A ﬂw“ .

¥{r) is bounded on[s,.T}. Integrating the first equation of { 1 ), we oblain

M= x(ey)+ [y(sids . reliy.T]

Since y(f) is bounded onir,, 71, it follows that x(r) is also bounded.
This is a contradiction to the assumption { * . This completes the prool.

Example 3.2

Consider the differential equation

R TN it Y cos2t XD 0
3 = x . :
HIHI}Y“}] T (U[ +]+f’) 3l )+ A () +8 =0

We note thal

X

(N r)=——=>0 and #1)= >0 Wizr, > 0.
i+t {1+

;}*
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I 2
2) g1{r.z{r)}=.ﬁ{r{3+]‘—1} then q(1)= 3+ ! >0 and )= 20 Vrze,>0.
+ +

(l+11]2

X E 4
and xgloy=x' >0 Ve 20 and Fix)= Jg{u]u’u = J-n:’{fn =x_4_ >0 - Yxe fa >0
i} 1}

Fix)—r o3 as M -0,

_ 2 - -
4{r) ]=3" +2}n and }}(;]=$=_145[] vrzi, >0,
20 i £

(3) yi) =

(|HG 2O 1= [m(r}. Vi xe Randr 214, >0,
it follows from theorem 3.2 that all solutions of the given cquation are continuable,

Remark 3.1

Theorem 3.1 and theorem 3.2 extend the results of Theorem 12.2 of Bushaw [3]

and Theorem 2.1 of Grael [13] to more general equations.

3.3 Oscillation of solutions

In the present section we shall state and prove some sufficient oscillation criteria

H( %G x(0)
glx()}

Juraff £ € R, x # 0and r[t;,20)and we restrict our atiention only 1o the solutions

of the solutions of the equation (E) in the case where < m, ()

of the dilferential equation (E) which exists on some interval [to.0) . £, 20 may

depend on a parhicular solution,
Theorem 3.2
Suppose that

(1} riny 51, Vizt,.
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(2) ;Ef, Jjor alf x € R .
wix)

it

{3) !L!u% ”[q(n}-r.-:-rl{n)]dudﬁ=m.

Tyt
Then equation (E) is oscillatory.
Proofl

Without loss of generality, we may assume thal there exists a sohution x{¢) > 0O on

["01‘“"") for someT, 24, > 0.

P¥efine

OO

A= )

Then, fort 2 T, we get

_ e ) rw ) () g (o)
g{x(t)) 2t (x(1) ’

i)

and su, by eyuation (E), we have

A1 X x()) g (Xt POy Ce(n)a* () g (xie)) .

aif) 0
ELx{r}) glx(r)} ¥ (x(r))

Then, [or everye = 7). we oblain

B rOw N (N (x(1) _
g (x(0))

{r) S m {1} = g{/)
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Thus, lor everys 2 T;, we have

A QA G eh D O R 16 SR | Y SRN N
wlr) = wif)) ]J: T x(s) s J‘[q(.s] mli.s}]d.x.

Then, by definition of @ . we get

OGO g (Wl
g(x(1) ; 7 (x()

where d is a constant,

From the conditions (1) and {2}, we have

Oy DA 'rr(s)w(r[s})j(s}}zd B . ,-
g{x(r)) i T.H- g(x(s) s T_II.[‘J”:S) m1':5:']d~

Integrating again and dividing by t, we obtain

Imwmmmhg{ _}ﬂ'ﬂmmmmmqﬁﬁ
;o gy ,i glx(u))

1

- j_ﬂq[u}—m (u)]dud:. 127, .

Ui,

i . -
whare o) = — s a positive constant,
1

Then, fors = T;. by condition (3}, we obtain

RLCTICOLT
e gl()

110
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Now, defining

R {18

and applying Schwarz's inequality. we have

o Nerweyie VA=), |
s I 2(x(5)) ‘} fl ) Ill
1 . ?
Y G2 CIE0100) PR
=4 'jfl a0
Thus,
rl - H
" r(W N
15 =t} efy .
“© ’T-,[I e |

Ry condition (3) impties that for sutticiently large tsayr =7, 2 T} we obtain

—¥i{t) +i IJ-"J-{r(u}f#{x{!f)}'-i‘{h']Tdudy <0,
I3 o gl{xfah

'
Then, for alls = T, , we have

vy 4 I:f’{-;}

i tq s

dv 20,

it fallows that

“ rJ‘wm prduiy
f

f T &

L1

(3-1)



Thus, for allt 2 7, inequality (3-1), becomes

1
rE LYY :
d_{ j*_ﬁm] JAlGY

L ¢

Then, fors 2 T,. we define

] V 2y,
plf)= j () s .
Ty I
Then, we get
Eﬁiﬁp]_
tooen

Fort 2 T, . integrating the last inequality from 7, so ¢, we obtain

= -

dfm[f)_ Lo
1 ofly)  olf) @7}

This is a contradiction: hence; the prool is completed.
Remark 3.2

Theorem 3.3 includes theorem (4) of Greaf, Rankin and $pike [15] and extends the

results of [21].

Example 3.3

Consider the differential equation

[( l IIZU}H];ir}] P+ 0) e 50

r+H1A x3(0)+2 PO+ DO+
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We note thai

(n D«:r{r}:L{] foralfe >0,
(+1

_1 1 1 :42+2

:»Gand > =1 ¥Yxre R.
r,ef(x] X+

(2) wix)=

alx) _xoP+C O} (2, ar caty for x N
{3} s o [.* +x {r]]ar =gl S # 0 and re|f,.m)

and xg(x)=x">0 and g'(x)=1>0 forx# 0.

- A 1
e, X0 X0 (0 L=m.(f] W2 0.5 R 150,

o gx(r))  x(PE DT+

I‘i'l:ll'

(5) lim-— jﬂq(u) m](ulldﬂdrl'm [ -—];}1

:, Is

il follows that the given equation is oscillatory by theorem 3.3.
Theorem 3.4

Suppose that {2) hold. and



{5 j[q(.\'} - ml{.s'}]d.-; =0,

then every solution of equation (E) is oscillatory.

Prool

Let x(r} be a non oscillatory solution of equation (B} say x(1}>0

Jori e T, 21,.
Dietine

W )X

= o)

Then, for ¢ = ¥, . we have

H(,30)x() _ &0 xU) _ riow () (g (x()
glx(r)} gx(th gl (x(r))

iy =

Then, tor r & 7, . we get

() =m{H)—qglt).

Then. for every £ = T, . we obtain

w( < o(T) - fla)-m (s)kis.

Then, by definition of e, we get

A

()} rf[ff{ﬂ-m.mldq.

114



By condition {3) there exists 1) & 7 such that
<0, forez ¥,

also, by condition (3) implics that there exists 7, = 7] such that

r

T,
I[ql:.'i') —m, (.-:}]u’.a' =0 and Hq(s) - m,{.w]]d-.' 20, r2T7,.
; .

n

Integrating equation (L} by parts, we get

Fhy (O)R(Y = R(T W DRI+ [H (s (o). x(s)ds = i, (s.x())ds.

I

Then, fort 2 7, , we have

f

PO (REOMKO = (T T - Jolatonlgtn) = o () s

T

< P TT) - g (30 [la(s) - my () s

+ 15 (s I[q(u] - ml{u)]ce’ur.f.s- .

n Iy

Hence. forr = T, . we oblain
r(ey (x(Nx() S r (7 (DT
Then, for everys 2 T, , we have

PR 2 P (DT, 12Ty,



Thus,
. gy | o
s flr{]‘"l}w[x{?'z Nx(1y)—. (3-2)
Pt

Integrating the inequality (3-2) from ', fo £ . we obtain
‘" ds
x(1) £ (T, 4+ 4, (T, e (T NR(TY) j—(—) > asf—reoo.
(s

which is a contradiction to the fact that x(#) > 0 ; hence, the proalis completed.
Remark 3.3

''heorem 3.4 extends the results of Grafe Rankin and Spikes [15] and extends the
results of [21].

Example 3.4

Consider the differential equation

R ERUEEAPN| [1 : ]_fn}r"u]{sim—l}
[[11+112x2(f]+4]x“]] > X . @ i+t o) t0.

We note that

¢t Tl T ]
1y e rity=— <l and —= (1+ =Yg =, 120,
() 0<r=—~— j S j( s
b - 2 4
() wiv)= 2:{2 T2 0 and L 2_1'1 LN Jorallx e R,
2x° +4 wix) 2x°+3
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L,
£, 0 X(0) _ x“][r i ]

3
{ LX)} ¥(1)

=[l+x“{ﬂ)31 =gt} for i x = 0 and 1€ iy, )
{ f

and xg{x}=x">0 and g'(x)=1>0 forx =0,

Hix (0. x(¢ xtising -1 . .
® (EIE*(]:}J;( - (1 :xg):{i‘ + 1)) < (sinf =N =m,(1) VieR.xe R and 1 €ffy.),

m

(3) H‘f("'} ~m (5 s = []:-1' —sins+ I]{fs =fns+coss+s| =,
3 {l

Iy Yy
i1 follows that the given equalion is oscillatory by theorem 3.4,
Theorem 3.5

Suppose that (4) holds. and

Oy wi{x)si vxeR,
{7} ﬂq{.-.'] —m, [3]](!:; <o,
"

t
(8} liminf’ J‘[q{.'_r) - m,(.-rj]a’.s' 20 locall large T,
i =k

(9) !L’ﬂ J-;{ITJ[?(H] —~ ), () Haels = o0,

then the super linear differential equation (E) 15 oscillatory.
Proof

Let x{7) be # non oscillatory solution of equation (E) say x(r)>0

forr 2T, 21,.
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Detine

olf) = PO (XA =T,

g(x(0)

Then. for ¢ 2 7, . we have

H{A0.x(0) _ gltx@)  rop () g’

()=

g{x(1) e o) 27 (x(r)
Then, we get
af)<my-qly. 127,

Then, for every T, = T}, we have
]
wit) <1, )— ﬂq[,s'} =, (.!i)]d.s' .
;

Then. by definition of &, we get

ritw (x{r))<(s)
glx{f)

so(l;)- [lgtsy-m(s)ks.

Now, it #(f) =0 forallz 2 ;. Then, by condition (7}, we obtain

5r(T2)W(x(T1}.i'(?'l]_“° ) |
2(x(T,)) r]:[i?(s} m, (5) s

Hence, for alls 2 7, . we have

a

e OGO @3,
ﬁM)*ﬂﬂhﬂ a0y g
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Now, by integrating the ineguality {3-3), we obtain

f_ J[ {)—m (H)]a'ud'; i _[ x(s) dy =t "j" el
of 1 = (x(5) = |t{mg(“] .

Henee, Tors 2 15, we get

r L] ey
j‘]_ _[[G’(H] — m, (uyuds < 1, e <oy a8 o,
r(s) | i

x{ r} 1
This is a contradiction 16 the condition (9).

Il x(#} chanpes signs. then there exists a sequence {u, }—» o such that #{a,) < 0choose

N large enough so that {8) holds. we obtain

F{ e (e) < ey Wrxla, Nx(ay, )
glx() aixfe,))

- j[qu[.ﬂ'} - L.\'}]d.\' :

Wy

Thus, we gel

ey glag)

L}

DLOVGORO _ ey wlagDita) | Im[ ’ﬂqm-mlmu‘} >

which contradicts the fact that x(r} oscillates.

Then, there exists £, 27 such that 2(¢} <0 forr 24, by condition (8) there exXIs1S

¥,z 1), such that

][q{s) —ms) s =20, 27,
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Choosing 7, 2 f, as indicated, and then integrating (), we have

PO (X)) S F(T) W (T NRT) = g(xe) [[gts) - my () ks

+ Ii{.\'} g'{x(s)) Hr;(u} - m, (n)]dm.-',f .

L
Hence, for everyf 2 7y, we get

PO XUNE@ S r(T Dy (T NECE)

Hence, fors 2 T, . wie have
1 P
) S AT+ (T (TN [ — -= as 1o,
'I'l T, r{j)

this is a contradiction to the fact that x(r) > 0 fors = 7}; hence. the proof is completed.

Remark 3.4

Theorem 3.5 extends the results of Grafe, Rankin and Spikes [13] und extends the

results of [21).

Example 3.5

Consider the difierential equation

1Y P@+1), ] {_ :)_ x* (5
l[flx’um)xm] OGO s

We note that

m

I dy %,
(1) 0<riny== and :ur—{g_'uj'e.m_?

=m fort>0,

T
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1
() U-r:w{,r(l}]=x=—+lil Yre R
x+2

g5} _ “’[ X “’]
20 )

) _{%+x1{f]]2%=ff{f] Jor x = 0 and -'E[-‘n.‘:ﬂ)

and xgi{)=x* >0 and gix)=5x">0 jforallx =10,

s, 50, u[H]l

=mff) YreH xeR and t€ [rn
g{xtf))

{4}

o v a4t

= -ul'z 1 _2 ] L
(0) HQ':S)_ml{"‘}L'{"'= ‘[I.‘_:'_FP =T+E| < 1,

(D I1m J— ﬂq{n] m, [u}}fuds llm _[[j-—— J'Iud:-

| I _n ! T
{5y liminfl ﬂ-:;{.s—} -m, {,\']]d.-.' =liminf J‘{% —lq—lds = iiminf] — +L] === L >0,
=~ S ,:

4 -I

td ] = du  Trdu ]
_— |——_— d = I— = —_— v u .
® j ; &lu) ‘I AT .{g{u) IR £

i1 follows that the given equation is oscillatory by theorem 3.5.

121



Theorem 3.6

Suppose that {8) holds. and

{1:1}}%:(:. C>0.

(1D w(x)>0 Vrz0,

(12) ‘jmf.m <o and ‘IM@ <w ¥e>0,
o g} o (i)

(13 -I-(_]s)h I[q(u} —m, (u)]du-:.".s' =z,

i iy
Then all solutions of equation (1) are oscillatory.
I'runf

Let x{r) be a oun oscillatory solution of cquation (E) say x()>0
Jortz 420,

Define

_ W GORG

i
o) == o)

121,

Then, for every? 2 ¢, we have

alr) = Hix(.x)  gilexi) FOy ()£ (08 (x(e)) |
ix()) E(x(t) g2 (x(1)

Then, we get

1y s my () - 4(1)
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Then., for every s 2 7,. we obtain
()= o)) - ﬂq(.w} -m, (:.'}]J.‘; .

Then, by the definition of w | we get

riny (x(ENx()
glx(n)

<a(n) - [lgts)—m (ks

[{x(r)>0.forr 2¢,. we have

RO ) D NI
g(x(1)) <4, hﬂ‘ff-‘) m () Hs.

where o, is a constant.

, 1 .
Now, multiplying the incquality {3-4) byE, we obtain
r

pxNIn

g(x{f}] r(r) “) I[P(‘s‘} m {'I}L;'.i

Then, for every¢ 2 t,, we have

[U(I{J] x[‘r} i

b ge(s) f T J"‘ ﬂ‘ff"l = (a) el

Then, we get

i) o,
el & o 1 i
:J.h £} IP {£) . ! Hﬁf(h‘) m {”}]I tely
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From the conditions {10) and (13}, we have
i

' W)
J= | —=du.
@ :['r[.] glu)

andif x(£) 2 x(t)  for large !, Sy =0,

Then, W't 2 ¢, we obtain

xirl

.[ win)
80

ey —» —oa @9 f =y oo,

This 2 contradiction.

Now, 1fx(#) < 0, we obtain

r{f e (x{1))x(1)
g(x{1))

Swit)— j[q{s) — (s}]ds.

Then, we get

pxni) _dy, 1y
g) ) {;)ﬁ‘f“} ()}

where ¢, is a constant

Forallt = ¢,. we have

J‘W(T{‘»}]x{':)

' i ’
Jooglx(s) j “r(s) _;:[ r(s} J[q{“}_m'{”)]‘ﬁ-‘ﬂ-

From the conditions {10} and {13). we obtain

ds = - as =,

J(t)= j'W(T(S}]x(S]

124



Since x{r) < x{t,}, then for allf 2 5, we have

) L] xnl xn
Jf)= _[ W{H] !I}'{H} Mdﬂ— _[ mdu =— J w{u)du}-m.
i) g(h':l Lil)] K(H] B g(") 0 g(“)

This a contradiction.

Now, il i({t)changes signs, the there exists a sequence {Hn}—}:& such  thit

#{a_ ) < Ochoose N large enough so that (]) holds, we obtain

OV N rletn rta(an ity )
RX(Y) K (ety, )

- ],[IF(S) —m, {S}]ds .

iy

Then, we get

AW (DR rlagrOlay D3Ga) 1 T g
it g(x(r) : gix(a,)) +]I*'m“{ D![q(a) mlm]{ﬁ]{ﬂ.

Hence.

limx(r) <0,

fa=—m
This is a contradiction to the fact that %(7) oscillates; hence. the proof is completed.

Remark 3.5

Theorem 3.6 is an extension of theorem (B} of Graf, Rankin Spikes [15] and

extends the results of |21].

Fxample 3.6

Consider the dilferential equation

[I ( {.r} J ("1] +-1(i}[1 ey }) 3{r)¢0dﬁ.r{f]sin?2i[f) 150,
l+x A+
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We note that

(1) Deriy=1 und J'i“""—}
FlL&

ty T

ob oh
is =1 ]

= {—2 = — = — 1 =0},
& LY Iy

x?

(2) wix)= >0 Vxz0.
l+x

1
x(0] =+ x7 (1)
H](L-‘-U})__ {II ]_[L 3 ] L_
) = 0 =| 7 +x7{1 | E =g() Vx=z0andre [r[,.u:]

(3
and xp()=x* >0 and g(x)=1>0 Vy=0,

Hix(hx()  x’(Deosx{)sink{r) |

I
4 = —_ = Wi . VL
(4) ) -‘3{1+14(I]);1+i2(1]}x1(~')51’ m () Vie Roxe Rand 1€lt,=)
o er{s) “ u i P
(3) !mm = jmdﬂ =Eln(l+u’lu =51n(1+{z:}2]«:m and
jw;”}u’u=rji 5 du=—ln(1+u2J =lln(l+(—e:}2)::m Ve =il
» &l4) g l+u7) 2

3 s t
(6) }'ﬂ inf J.[#(s} - m,{ﬂ]ﬂ‘s = !an inf J‘l-::—z - :13—}1’3 = liminf[—] + %] >0,
T

f—s j -"1

i .
{7y IT‘*) ﬂq(u] —m, (u}]duds = j.ﬁ': J‘["—z - Hl—!}lud.t

L I
=S¥t ooE T ot
22 3, O |,
it follows thal the given equation is oscillatory by theorem 3.6,
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Theorem Y7
Suppase that

(14) I, swix(enst, for alf x € R,

(15) g, (0.x() = g(g(x())  for ail x = 0,
(16) H(t, 50 x(0) = —m (O (D) Vaie R and (& [ig.),

(17) {}qud“{m anl Iwcht{m Vel
;&) &)

Furthermore suppose that there exists a function
g :[tg.m} = (0.0)
such that a2 0, {rHOp)) 20, {r(npt))" 0, [r(0)p() = pleym, (3] S 0.

(18) limint [pts)ats)ds > —o.

[ 2
(19 ]ml SUp % '.r|_ Ip(u)q{n)du] ds =00,

U ll

then all salutions of equation (E) are oscillatory.
Proof

let x{r) be a non oscillalory solution of equation (E) say XN=0
Jortz T z 1.

Define

_ priw (x(Nil)
glx(th '

t=T.

i)
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Then, tor everyr =T, we have

_ PO Ov i | p@lrw RO pOrovei £ (g (<)
2 (x(1)) g(x(1)) £ (x())

it

- AN = POHE ) ol (LX) Ay () pAor(ry Ol NE 0 (x(1))
&lx(n)) glx(r)) gx(rh g* (x(7)) '

Then, taking into account the above conditions, we have

_ZPmEE GO o POTOVEEOH) @' 0860
g(x(0) g0y Ay )

(i}

Then, fort 2T, we obtain

(O

w{x()x{t)
T PO (x())

glx(e})

) = — i)t + [J'{I};I(r]—;J'{{}ml{fj]—

Then, for all¢ = T . we have

!

YIS T U)o

Sg($)ds = = |of{s)d {1 sy s = pts
I;}(y](f{ﬁ)d& ?Jﬂ}{i}f 'i+ﬂ:r{u]p{n] ﬁ‘(ﬂm[ﬂ] g("“],} f;J(ﬁ}r(ﬂW(’fU}]

L
Then,

NSO m,_'f SOLES) 4 (g5
1w ey

Jitsxtoxs=—atry+aD)+ | o) o) = I s
r r

Now, we consider the following two cases:
Casc |

w0’ (g’ (x(s)) s
2{5)r{s ) (x(5)}

is finite,

The integral j
T

12%



then there exists a positive constant M such that

] OWOECEN o garall 12T (3-6)
bt I?(‘r}f"('s}iﬁf(l(i}l

MNow we know that

otsxtsnds= fptoiends » [ogors

= _[IJ(-"'JG{-*WF—&J(T J+elD)+ J[r(.y} ;{.ﬁ}—p{.'.'}ml( ]]M XS ]11{5} el I @' (R ¥}

] oels) A e
_ Moot i) |, @ (98 (5D .
_-mm‘ﬂ[ﬂ”m} o e Loy O

r
where C, = a{T)}+ Ip{s}q(s)ds.

By using the Bonnet Theorem for a fixed +2 7 there exists b, e|7.¢] such thal

'j[r(,.;.p.,,) nmm.(a}}Mr —[rmpm PT)m, U}MMM

() i gt
L]
[r{T)ﬂ{T] p{'r}mltr)] [RAL¥Y
«r 0 ]
0 ifxlh Yy« (T

Sinee [rﬁ”l;?{?'}-p{ﬂﬂhiﬂ}iﬂ and I yin) i1 < ¢
iy #00) (1) : '
j‘f—au ifx(,)>x(F),
Lrift gl:“}
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Then . fort 2T . we have

i) J[r(.h‘} ;){.';} — ), (5]:|Mu’s <k,
;

Lix(s)}

where & = [r(T} AT — p(:r)m,(r)] wj AT
5T gln}

Then, for 2T ,we obtain

& (8)g'(x(5))

K(x(s))

[‘.[‘){""}‘f {'""}‘i‘] = {C} —Xf)+ ]‘[-"(-‘5 };’(-r} = X ¥, {-v}} PI) ely—

$4C} +Aatp)) + {J{’fsm :n-m)m.ti W( R ] {f[

£4s))

therefore, taking into account {3-6) and (3-8). we have

3
[Jp(.s']q(.ﬁ')n’.s] <y + At

Ty

where (=37 +4[IL,{5)F,(S) ~ pis)m I()]'P'{'f( NHS) ]

glx(s))

‘Ihus, for everye = T, we obtain

-

7 XS ()

([ SN
Tmmwmsn

ot 2 i 2 PloT 1
[|:I;:r{_:.‘}q|[u}dn] s = Y{Ip(ujq(n}ch;] oy + J{jp{n}g(u}mr} efy
[ falfa it

of \']

Ao I
AW OL)



I rl 2
=C, + _[l !p(u}q(u}du] ely

rls,

<y + (0 =T+ 4 [ (wxds
;

: @’ (38" (X0}
=C,+C(1=-T)+4 - I
ML e i

SC+C(e-T)+ j @ [j}g Gl p{s)r{skds.

7 Pl (x(x))

‘I'hen, fory 2T . we obtain

2
i A T 0 )
J{J;J{u}q(u]chf} ds < C, +C,(r f}+ j;)[ i )W{‘k(ﬂ)ﬁ WEwl{skds .

By using the Bonnet Theorem for a fixed ¢ 27 there exists &, & [T.#] such thal

@M ()gx(s)) ) D (Exls)
fr ey e =P “}’“}J A W)

alsa, since p{NF{1) is a positive on [r,;.00) and (r{r]p[r)}' is non negative and bounded
ahove, it follows that p(r(e) < fr for all large t where >0 is constant and this

implics thai

’] s
,, ALr(s)

=,

Then. forf = T, we cbtain

i

T J‘ w (?]g{f(‘s‘])

ds<C,+C,(-T)+
I FEEEEEE

J{]n{u}q[u)du

131



Dividing (he Jast incquality by t and taking the limit supremum on both sides. we have

2
llmsup ’{jp(u)q(n}dﬂ} oy 8 €, +—2— J‘{

fy| fa

this is a contradiction to the condition (19}

Case 2

The integral I @ ()8 (x(+)) oy

7 ol {ais))

15 infinite.

From (3-5) taking into account (3-7) and (3-8) for everyz =T . we obtain

' t @ ($)g'(x(s})
ds < - A= ds . 39
r!:af-’f'[::}"t;-'{::} w(t) + ,Jp{s]r(s)w(x[s}) (3-9)

where A=0C) +4.

Then, by condition (18) and from (3-9), it follows that for some constunt B3 for

everyf 2T, we obtain

s gl LPOEGE ‘1o
w2 B 19

Then, forf = T 2T, we have

T
g=8+ [2 HOTAC OIS
7 A (e(x))
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Then. {3-10) ensures that @(r) 15 negative on[7, @) . Now (3-10) gives

[ VRO Yy [0 ) " 00RGeY
sorowey ) dpereweon ™| = oo eow

o LN ()
POrw (x(e))g(x()

Then. for everys 2 T, we have

<w‘{r)g*(x(r)] >{3+'Im ()g'(x(s) } 5 B
POr O] 7 prshe () )

and consequently fbrallr 2 7, we obtain

¢ E IR YL
| [*’”I @} (3)g'(x(s) dj]m Dy

ln—
"o 7 oS (x(s)) elx{n

Hence fore 2 7). we have

"'II mz{.s']g'(x(ﬂ} > S(I(T )}
; p[.!:}r(::}l_pf{x(::)} L(I{f]}

8a, inegquality (3-107 vields

NEGOTEDN

o) = -
v Pl (é]w(‘f(‘*}}

U (x(f))i‘{f) g(xU ]}
g{x(y) g(x(f]}

Then, fors 2 T;, we bave

g D)
PO ()R (0

L=
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Then. loreverys 2 T, we obtain

s —"
S o

g{e(T N

£}

where b= ¢ =0,

Thus, forr 2 7;, we have

R
x(1) < x(T)) _b,:fﬂ(s)r(s) , 12T,

This leads to limx(f) = =

dmdg

This contradicts the assumption that x{7) > @': henee, the proot is completed.

Remark 3.6

Theorem 3.7 is an extension of theorem 2.1 of E.MLEL. Abbasv. T.S.EHassan and
$.H.Saker [8).

Example 3.7

Consider the differential equation

[l] = .if(-*]l.+ 1) -— ) H) t=1,
t M +xin {1+ 12 (1)) i1+ x4 |

We nole that

{1) ¥{n =% >0 fort>0,

X

(2) 0 <ty sp(n)= -
1+ x

<] foralixe R,
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(3) g,{r,x(:}]:rl[]x — then q(:}— for afl x # 0 and { & [ty.2)
+

x°)

% St 42"
and xpix)= - >0 and p'fx)=———n—0r
#0¥) =7 g'lx} YGE

=0 for ol x = 0,

2 -

X
(t+x%)

{4y H{r x{n).x(i) = -—[ :l then m{{)=- Vx.xeR and i [t,. ).

e 2 2 =
(1) "—j U x]+nr _ pan
7 E(n) sl+us i S U 2

(5) 0< j’

- s -
Jr,ffl[u)", _ J- t ><1+" it = J'I-I'J';‘= I: < o -
RAq AR R S 2A=ET)

Let p{ry=¢ then PN =1>0. {p(r()) =0. {ptryr(n))" =0 and

[r{f)p{ri ;?(r}mn:r)] _—11 <0,

1 i
(6) liminf [p(+)g(s)ds = liminf [ds =liminfs], > e,

[} [T frem
3 :
-lI X . ]l’ L]
7y limsun- Wi de (0t | s = limsup - e | ofv = limsu ~ | efy
(7) lim pIJLLr{m) } lim prf{j } lim sup - ﬂ o

r
i 53
= I1mﬁup — %ty +igs
3

Iepem
Iy

1| ¢ fa
—Ilmqup — -1 Ity +tlg — 2

F—e3 J A

1,2 IH-
=limsup| ——#f, +{ =2 |= o0,
[imsup 3 ot T,

it Tollows that the given equation is oscillatory by theorem 3.7,
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