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Chapter One

Laplace Transform

1-1 Bilateral Laplace Transform [9, 10, 14]:

In this part we discuss how a function F(s)can be expressed as an
integral of a funetion f(7) multiplied by ™ and integrated with respect
tot from ¢ = - {0 t = = where s may be a complex number.

To this end; let us consider the function f(¢) ™ for a real constant o,
If f(¢) has 2 finite number of maximal, minima, and has a finite number

of points of discontinuities within any finite interval on the t-axis and if,
”;‘(:) e |dt <.

In other words f(t) satisfies Dirichlet conditions, and hence the Fourier

transform of the function f(¢)e™" exists, Let us denote the Fourier

transform of /() e™°* by F(«), this transform is given by
F(a)= _[f(r}e?“ e dr = Jf{f] e 7o dr (1-1)
Also, the inverse Fourier transformation formula yvields

f[r)=% [Fia)e " da, ' (1-2)

Letting s =o +ia, we rewrite {1-1)and (1-2) as



F(s)= -jf(:)e'"n'r (1-3)

o ko

f(:}:ﬁ [F(s)e ds . (i-4)

c-im

" As defined in {1-3), F(s) is known as the bilateral Laplace trénsfnnn of
the function f{), and denoted by L {f(s)} and (1-4) is the
corresponding inverse transform formula denoted by L {F(s)}.

The derivation of formulas in (1-3) and (1-4) is not formal. Based en the

above we can prove that if £(¢) is a function of bounded variations and if

”f(t]e'”ldt{m ,

for some s in the complex plane, then the bilateral Laplace transform of
f (1) as shown in (1-3) exists.
Also, f(¢) can be derived from F(s) by integrating (1-4) over a vertical

line form s = @ — i to § = & + i® in the complex plane.

1-2 Region of Convergence {9, 10, 14]:

Since the bilateral Laptace transform is an improper integral, it
exits only for those value of the varable s for witch the integral
convcfges, and we are going to show the regions of convergence in the

following examples.

Example (1-1):
Consider the function g, (t)=Ae” u(t), #>0  (Figure 1-1).

1, ¢t>0

is the usual ste 101,
o <0 i u p function

where u(¢) = {



The bilateral Laplace transform is

G, (5)= [Ae*”u(:} e di=A je'“"" dt =4 je*ﬁ'"“ e dr (1-3)
- 1] 0

with s=c + i,

A 5D

A

s=0c+ia

Figure (1-1)

It can be found that the intergral {1-5} ::onverges if # - o is negative.
When o> f the function e'®™®' approaches zero as t approaches
positive infinity.

The region of convergence (R. O. C) is defined by the fact that & > f.
For any value of s in the complex plane where o> B we find that

bilateral Laplace transform exists.

Evaluating the integral (1-3).

j‘.—

G (s)= Aﬂ  g=Re(s)>p

where Re(s) denote the real part of s.



The transform result G, {s) goes to = at a finite value as s, which means
that at 5 = £, this point in the complex plane is known as a pole of G, (s).
The points in the complex plane where the transform goes to zero known
as zero of G, (s).

it is often help full to plot the locations of the finite poles and zeros of
bilateral Laplace- domain function in the complex plane. |

The pole-zero plot for G, (s) is shown in figure (1.2) to gether with the
region of convergence (R. O. C) in the complex plane.

The (R. Q. c) is the part of the complex plane for which the real part of s

is greater than 8.

>0

Figure (1-2)

Example (1-2):
Consider the function g,(f)= Ae u(-ty=g (-t) o>0
(Figure 1-3).

The bilateral Laplace transform is

G, (sy= [ e u(<r)ye™ dr=d [de M gr (1-6)



The mtegral converges if ¢ < — 2 and the wansform is

G, (s)=—" =G (-5), a<—-f.

-

The pole-zero plot and region of convergence for this function are shown

in figure {1-4).

Eigim (1.4)
@ 3
g4
A I
.ﬁ fr—— 1]
b‘ {
L]
Figure (1-3} Figure (1-4}

If the function of the be transformed is g(¢) = 42°';

Then the bilateral Laplace transform becomes
G(S)= J-.-{E'ﬂr g =4 J-Eﬂ'r %! E'_h:” di = Ieiﬁ-rlr p=ia dr .

The above integral does not converge.
It 1s not possible to evaluate the integral at one of its limits either the

lower lirmit or the upper jimit.

Example (1-3)%
Find the bilateral Laplace transform of

sinat, 02/<2

o]

0 . otherwise

- s .



Solution: using the definition

) * i
F(s)= [f(sye™ di = [e sinze di

_e" [(-5)sinmzs - meosat | ’

. !
S =7

&

S Lo f{~s) sin27 ~ 7 cos 27 ] = [(=5) sin(0) - # cos(0)]]

== 1 [‘*i'r e -(—:r}]

+

r—me™  g(l-¢)
! T 1 T

&0+ T+ 7

The region of convergence of Fys) is the entire complex plane.

Example (1-4);

=i

Find the bilateral Laplace transform of £(s) = =

B

| + ¢
Solution:
L e'-'l'l' E-ut
Figls | ——— .
(- ) [ T+ 2

We note that the region of convergence is the single vertical line at

Re{s) = — &, because

F(s)= '}' ":':“'T dt = -j

3
B
=l

g
]
o
|
N
g
|
1o | 3
|
——

=T
— =JT.
2



=1r =ar

e

(f Re(s) = -« then the integral [ dr does not converge.

|+ ¢?
Example (1-5):

t , t>0
et, t<0

For the function f{s}= {

the bilateral Laplace transform does not exists.

Since

.:[f[r)e"' dt = uj'e‘“'"” dr+=]re"’ dt .
L]

— -

The first integral converges if Re(s) <-1 and the second integral
converges if Re(s) > 0since these two regions do not intersect then f{r)

has no region of convergence.

1-3 Unilateral Laplace Transform [6, 13, 16, 17}:
Definition {1-1):

The unilateral Laplace transform of a function f(¢) is defined by
F(s)=[floye™ ar, (1-7)

and denoted by L {7 ()}
provided that the integral (1-7) converges.
The unilatera! and bilateral Laplace transform are naturally equivalent for

function that are zero for ¢ < 0.



K

o~

then |L{f(} =

=M <.

or -MsLif(n)s M.
Hence the existence of L{f(1)} .

Remark (1-2):

The condition in the theorem (1-1) is sufficient but not necessary.

Example (1-6):

f(;)=i, | F(t)|> Ke® as 10,
f

b

But £ {/f(+)} exists, since
= 1
J# ie™ dris convergent.
K

To see this we let st = x then st = dx

i
- a -1 L] _l
I[i) E_IE{JE:—L IIIE'_I dx
A 5 's o

\.'5'
Js s

Theorem (1-2) [11, 16]:

If the integral _[f{;] e~ dt converges for s = s,
o

then it also converges for all values of Re (s) > 5, .



Proof:

Let L{f(r) }=?f(r)e"”ca’r = F(s),
¢

and (1) = [e"v',r{r}dr; (0. (1-8)

k!

We observe that limy(sr) = F(s5,}, by hypothesis; and we see that

w{(0) = 0, also from (1-8) we have

dyr (1) -

=g" ).

y F)
[fwetake R>0 andchoose e >0 sothat 0 ce < 8.

R R
Then J-e'” Fl)dt = je'*"““" ™™ f(n)dt
¥}

[i]

R

R ®
= fer™ iyl di = e ()] + (s=se) [T p(n) dr (1-9)
D 3

i
Now if we resirict s sich that Re(s) > 5, and R —» =,

then (1-9) becomes {5 - 5;) f o gty e,
]

provided the integral fe"’ "o wr (1) dr converges.
a

But it does so, and even converges absolutely, as it can be seen from the
facts that

{iY  w(¢) is bounded over ¢ > 0.
(i) ]-e""“" ¢t converges absotutely for Re(s) > s,.
L1}

Thus the required integral converges,

and in fact Jc'” HOYEICEES J-e""""“ witydr 0.
D ]

10



Remark (1-3):
[f the Laplace integral diverge for any particular value of s, say

s = s, then it diverge for all Re(s) < s,.

For example:

The unilateral Laplace transform of e is it diverges at

§-3

s = 3, and also diverges for all Re(s} < 3.

Let s=-3then Ie" e dr = je" dr it diverges.
Q a

1-4 Properties of the bilateral Laplace transform [2, 10, 14]:

In this section we are going to take up properties of the bilateral
Laplace transform.
We shall develﬂp those properties of bilateral Laplace transforms which
will permit us to find transforms of many functions. : |
The unilateral and bilateral Laplace transforms have many properties in

common; although there are important differences.

1- Linearity:
Theorem (1-3):

If L {ri)}and L, {g(r)} exist for some value of 5.

Then so also does L, fe £ (1) + ﬂg[r}'} for that s;

and L, {a f()+ Bg(t)]

~a L {f())+ BL, {g{r)}forall constants  and 8.

11



Proof:

L]

Liefiy+pgnyt= [efa f()+ B glo)}ar

L]

=a [ friyar +f [ griyd = a L{f ()} + p Ly {e(e))0-

2- Time scaling:

Theorcm (1-4):

If L,{f(:)}= F(s),then L, { f(at)}= 1 F(Z) where are a # 0

] "a

Proof:

() Ifa>0 (a=|a])

Lif(an)}= ﬂj'f(a!) e dr,

Let x = ar then dx = adt , therefore

Liftants [r e Zald [ o
=L Fely,
PR

(i) Ifa<0 (a=-|af)
Lif(an}= [e flay .
Let x = —atf then dy = —adt , therefore
Lirm)= ] 0 £

{

-2 Tren et w2 r
d -a a &

=—]-F(£).
la| a



Form (i) and (i1} we get

LA/ (an) ) = F[E} o.

|af

3- Frequency Scaling:

Thearem (1-3):

If L4 f{r)}=F(s), then Fas)= |—!—| L, {f{i}} where a = 6.
a a

Proof:

Using the scaling property of bilateral Laplace transform

L fan}=— F (3.

|l

1 t ! {
Let #=L then £, { f( )} = 9, 00 — L4 (S b= F(89),
et HtF:nf {I(ﬁ]} | 8| F(Bs), or 7 {f(ﬁ)} (Bs)

therefore the frequency scaling property is

|-l—| L {f(i]}: F(as): a=0 O.

4- Shifting theorem on s:

Theorem (1;6}:

If Lb{f(r}}=F[S), then L, p@° f(rj[’:F['s—aJ for Refsi»a.



Proof:

F(s-a)= .]‘e'“'”' f()de

=_°[e-" [ r(n]de = L, r()} o.

5- Shifting Theorem on t:

Theorem (1-7):

If  L{f()}=F(s), then L, {f (1 —a)}=¢" F(s).

Proof:

Lifu-a)}= e f(t~a)adr,
Let x=t—a then dx =dt,

therefore [ f(x)dx = ferm e fx)dx

=g ' Te'“ f(x)de=¢" F(s) D.

6- Convolution:
Definition (1-2):
The convolution of g{(#)with f(#) is denoted by f*gand defined

by g()*f{t)= ]g(r)f(: —r)dr.

14



Note that
gle)* f{ey=f{t)y*g(s)

Since
g()* f(t)= [g(r) f(t-r)dr

Let t — 7=y then dr = - du,

therefore g(¢)* (1) =~ | g0 — #) £ (1) dy

= [glt—m) fQ) du=f()*g(0).

Theorem (1-8):
Let G{s} and F(s) be bilateral Laplace transforms of g (¢) and
f{t) respectively then

L g () * f(1)}=G(s). F(5)

Proof:

From the definition of the bilateral Laplace transform
G(s) F(s)= Te‘” g(t) dt Te'” f{t)de
= [e g(o)do e [(r}dr

T ]e""’”} glo) f{r)Ydo dr .

Fe=0 gE=-m

15



Let f=r+o r fixed o=t—-17 do=d

E) @

JooJergte-r) fizydrds

TE—o [

je‘”[ [gle-2y f(eyde [ar = Li{g()* (0} o,

—@

7- Frequency Convolution:
Theorem (1-9):
Let G(s) and F({s) be bilateral Laplace transform of g(+) and

F(t} respectively then

- Y]

Ligt) f}=5- [GONFG-wdw.

-4

Proof:

By definition

L igy f}= Je@) faye @

= ]’[__‘ jc}(w) e chr:‘ Fitye™ &t
- iz T =1
—-i T -] )
== | G(w)[ [fieyet— dsty
R T=im -3

. Grle

=— [G(w)F(s-w)dw Q.
LY S

16



8- Differentiation:

Theorem (1-10):

d" £
di”

If L {F{)}=F(s), then Lb{ ]: " F(s8)

k

provided %f{f}=ﬂ”{r]—>ﬂ as t—fw, K=0,1,2,..
i

Proof:
We will use the proof by induction

1) For n=!, integration by parts pives,

L, {“"’;”}=e"‘ftr) " es [fy e ar,

hecause £ (s) exists, since f(s) evaluatedat t = - and t = {5 zero,

thus Lh{%} =sF(x)
i

2) We assume it is true for the integer n=k.

3) We need to prove that statement must be true for # = & + 1.

k+ w
L,{——d 1“”]— AL GRS PO

det?

s[s* Fisy]=s" Fo).

Therefore

Lb{d”{f}}=snlp(s’] o.
di"

17



9- Freguency Differentiation:

Theorem (1-11):

[f L,,{f(r)}=F{.r}, then Lh{(—:]" f(:}}:l:TF{s}.

Proof:

We shall prove the theorem by induction,

Step (i) [fn=1

rfF(.‘r}___:.f_ -
ds  ds IE s d

-

= J‘ %[{;‘_hrf(!)]df

=

=(-0) [ e [er])a ==L {ef (D}

k
Step (il) assume that £, {—rj;‘ fit) _ A Fisyisform=14k,
u’sk

Step (iii)  we need to prove that the statement is true for m=k+1

Hii'ad a di‘
o FO = g i "‘"“’]

efs

=L [0 L {t st

el

(1) e [ £(y]a

-

=(-1)* T -a%e'” [;*f(z)]a’:

18



= (-1)! -j’(-:]e'" [ sy

-2

st (s [ penlan

From steps {i}, (ii) and (iii) we have
d"E(s
Lb{{--’j"ffl)]-—— !;"] .
£

10- Integration:
Theorem (1-12):
Let f(¢) be piece- wise continuous and satisfy the exponential

condition | £ (r)| < Ke™ forsome o and &, andif L, { /{1}}=F(s).

Then £, {jf(u}d;;}:ﬂ:ﬂ,

L)

and L, {Tf{:;}du}: Fs)

3

Proof:

Let  grr)= [ f(u)du

-m

\g()=| fronde]s [1fGo]da.

Since f{¢) is piece- wise continuous and satisfies | f{r)| < Ke* for

some ¢z and K.

19



[
Then fg(r)|s j Ke®agu=k = (e -0)=— .
o

-

Furthermore g (¢} is continuous and g*(¢) = f (1) .

Now; =~ L {ftnt=L{gW}l=sL {g()}

L {ffi)}=sLy{g ()}, then L, {g(n)} =2 Lis(nl,

5

or L,,{]f{u)a’u}:lv(s).

£

3

Similarly La{Tf(u)du}=F{j] a.

1-5 Properties of the unilateral Lzaplace transform [9, 10, 14, 15, 16]:
Properties of bilateral Laplace transform hold for the unilateral
Laplace transform with the exception of properties (8) and {10}, There are

also initial and finai vaiues theorems for unilateral Laplace transform.
11. Differentiation (UnHateral):
Theorem (1-13):

If  c{ri=Fis).

Then L {i;l} =sF{s) - f£(0) and in general, we have

with f™{) =0 as r—ew. K=0,12,..

20



Praof:

We shall prove theorem by induction,

@ n=l L{——dﬂf”}=J’—-—d};f”e‘” dr=fyen|

+sn]f[r)e'” dt .

Now, F{s) exists, since f () evaluated at ¢ = <o 18 zero,

Thus L{df{ }} sF(s5) - F(0).

(i) Assume the statement true for 7 = & where kis any positive

e ger,

L { : d{—w{” } = st F(s) = s f(0).. = fH{0).

(i) Prove that the statement must be true for n =k +1

Id“f{:u} I SN o gy pr gy |

k=l
dt ;

-k
+5 Im——d f:fr] e ' dr
q 4t

o~ @) + sl F(5) = 8 £(0) = £0(0) |
= st F{s) =s' {0} - SO D

From (i), (ii), and (iii) the statement is true.

Remark (1-4):

The theorem (1-10) is similar to theorem (1 .13) but when theorem
(1-10) was used in solving initial value problem it was found that the
solution function satisfies the differential equation but some times it does

not satisfy the initial conditions.

21



This can be attributed to the integral limits which are —e and « that
make rcsultiﬁg solution function from the theorem (1-10) independent of
initial conditions.

The important questmn here 1s when the theorem will be effective in
solving initial value problem, the answer to this question is to have the

imitial conditions equal to zero L.e,

Y (0) =y 0) = o = (0) = 0

Theorem (1-14):
If £{#) satisfies conditions of the existence of L{f(n} and if

lim f{) exists , then L{f{ )}=]F{E}ds'.

r—4 I

Proof:

-

TF(&'-) ds™ = j{?e"_’f{r} d‘r] ds

I

Since that is possible to change the order of integration, we obtain (sec
figure (1-5)).

= T[]’e‘i’f[;) ds” ] dt = .]f[t] l:n]e"”ds‘ :| dt

]
c.__‘l.
| p— |
"""s
o
-

e
I_—_J

It
[~
=
n
[
" r—,
- |~

-
T
[N
|

22
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"
W

Fizure (1-5}

Theoarem {1-13):

Let G{s) and F(s)be unilateral Laplace transform of g(r}and

£ (t )respectively then
L { J‘g{: -7} (1) dr} = G(s). F(5)
1]

Proof:

-

G(s).F(s)= Ie_‘”g(r,}dr e ) ar
a i

I
- T

e’ g(c)do .}E‘_"f(f:!ﬂ‘r= ._}[ ]E"{"”’g(d}f{r]dﬂ dr .

rall g=0

Let o+r=t r fixed

Fg=t=-1 do =dt

=T[u]-e'”g(r—f}f(r)d£ dr .
¢ -

Since that it is possible to change the order of integration, we obtain (see

figure {1.6)).

: . ‘
je'“gr’r—r) f{r}drd.t‘:L{Jg(I—r)f(r)n‘r} g.
il fl

[

23
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—
r

Figure (1-6)

Theorem {1-16):

If £({) 1s continuous exceptat points t =a, a, > ¢ (i =1, 2,.., n) than
Liret=stirol-r-3 [f@) - r@en.

Proof;

L{rmi= Z Tf'(:) e dt + ]f*(r) e dt
bl

" | a .
=3 Ef(r)e'”l' + 8 j‘f{:]e‘”dr+El—f(a,.+]e""
1] o

Il

+ 8 i[f(;)e‘”dr 1.

Since ¢”*' 15 continuous for all t therefore lim ™ = lim e * =™,

13 r—d;

Now;

i)=Y [fe)e™ - flal) e ~/(0) +

fal

a L ’
sffwerdss [ pnerdal
¢ a”

—sL{f - 7-3 [ra)-r@le” o.

Fxl

24



12- Integration (Unilateral):
Theorem (1-17):
i L{f(n}=F(s)andjf(r)] s K™ for some constants K and a.

Then L { J fin) dr} LG

M L)

and L{ fjm}dr}= Fs) , f70)
- - ¥

¥

Where fF7V () 2 lim I Firydr

Proof:

Let gf(f)= ‘_[f(z'] dr ,then

lg(O}s [|£(r)|drs [Ke dr

Ea‘r

:h" =£(Eﬂr—1)
L

o

a

Furthermore y'(1) = (¢} excerpt for points at which f£(r) is not continuous.

Hence L{/()}=L{g (1)} =s L {gle}}- g(0)
Lifnt=st{gn)}

L{g(n}=1 {7 ()], then L{ 7o) a’r}= e

4]

If the lower limit is — =, then we obtain

0

[flryde= [flr)de+ [fz)ar

i

= fN0+ [ () de.

0



Now L{ ]’f{r} dr} =1 {f“(n) + :jf[r} dr}
]

_ L) | FGs)

5 5

Oo.

13- Initial Value
Theorem (1-18): .
Let L {g(r}} = G(s) then ’113'11 s Gisy=g{0).

Proof:

Using theorem (1-13).

d T d -
L{Eg(f}}=afz{g(f)}€’ di={sG(s)- g(0)} .

Lat 5-—re then

{g(y} e dr = im {s G(s) - g(O)}

B |

i |
jm{g gm}e'"}cﬂ=};qu{s6<s>—g<m}

Now,

Ed—{g[:}}e'”—rﬂ as 5 oo,
r

Therefore 0= lim {sG(s)- g(0)}, thatis g(0) = lim 5 G(s) O.

f+m
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14- Final Value:
Theorem (1-19):

It lim g(t) exists, then lu‘n gty = lu'n s G(5).

I b

Proof:
From theorem (1-13).

lim [% (g()} e de =tim {sG(s) - g(0)}

= {tim {g; {g(r)}e‘“} d = lim [sG(s) - g(0}]

23

[ < {g(n)ar=1tim {sG(s) - £(0)}
tim [g(1) - g(0}] = tim [sG(s) - 2(D)].

Then lim g(n)y=lims G(s) O.

Theorem (1-20):

The Laplace transform of a piece-wise continuous perioedic

function f(¢) with perioed P is

Lirwle = [errna

Proof:

= ’ H

Lifn}= e findo= e fleydr+

o

e f (1) dt +

- J) Sy

+ ]1 e () d+ .

ip

27



Let =7+ P then 4r=dr

ip I

:
[e flyd= [ f(r v pydr=e [0 f(2) dr .
0

r 0

1z n
Let ¢t=rt+2p, then Je"” Fltyddr = I e " 7' Fr) dr.
Ip

4]

F

L{fn)= Je"'f{:}d: + e ]e"’f{r}dr +
13

1]

Therefore

F
t o NP Ie"‘f{r) G+
g

[I + e T ....]Te‘" HOX:
o

] P
— - j{*""f{!]cﬂ 0.
]

i—E’TF

Table of Laplace transforms.

Table (A-1) Basic Laplace transforms and R. O. C.

Function Transform R.O.C
fn=1 % Re{s) >0
HOLY . Re(s) > 0
fi=r nlfsm" Re(s) >0
fliy=e™ lfs+a Re(s) > -a
F(t}=coswt sfs? e Re(s)>0
£(2) =sin wt wis? 4w’ Re(s} >0
F(£) = sin hat afa’ -5 Re(s) >0
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Table (A-2) Laplace transform properties.

A function Unilateral Bilateral
af(1y+bgit) dF{sY+hG(s) al (s)+ bG8
fit—a) e Fis) ¢ T F{5)

1 5 1 5
fian) iTlF(;) i_aTF{E}
e™ f(1) F(s-a) F(s—a)

) & el
—tf(1) ;F(S} EF{S)
St *g(s) F(s).G(s) F(s).G(s)
9 fe) SF(s) - £(0) SE(s)
ot
]j’[:)dr ! [ £(rydr+ Fis) F(s)
w J & 5
Table (A-3).
71 F(s)
() sF{s}-f(0)
fr{t) sTE(s) =5 F{0) = F(0)
tf{e) - F'{s)
TR0 _sF(s)-F(5)
1 fo{t) st F(s)=25F (s} + F{0)
ffey Fo(s)
D SF{8)+ 2F'(5)
et () SLF s )+ A5 F{s)+ 2F(s)
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Table (A-4).

() F(s)

-1 /(1) F'(s)

£ f(2) F(s)

£ sF(s)~ f(0)
— £ = f{1) SF'(s)
1 f1(2) + 2t f(1) sF(s)

£ S F(s)=sf(0)= f'(0)
— ST = 211(0) sPF(s) + £(D)

NG NOEPIL s F*(s)

1-6 Elementary Evaluation of Laplace Transforms [12]:
In the present section we shall develop some elementary transforms

by using theorems 1-3, 1-6, 1-11 and 1-13.

I"

Let L{ }is denoted by F, (s) we shall first find the Laplace ransform

n!

of f(t)=1.
If F,{s)=L{1} then by theorem 1-13 we have

L{oy=sF(s)-1 or Fﬂ{s}=l.
5
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Exampte (1.7):

Show that the Laplace transform of f(#) =I;—I 15 :;"1*‘ for n

any positive integer.

Solution:

By induction.

1. Let n=1, by theorem 1-13, L{l}:sFl(s}—f{ﬂ},ori::sF,{s] ot

1
F(s)==.

. : : ]
2. We assume it is true for integer » = &, thatis £, = .
L)

3. We need to prove that statement must be true for » =% +1.

By theorem 1-13,

Ii

L{—]= F,asF,, (s)- f(0), OF ——=5F,(s),
k! 5

1
or F.l-l.{s} = F .

From {1), (2), and {3} we have L{f;} = L .

1-7 Some Difficult Transforms:
To develop less elementary ransforms it is useful to prepare the

table (A-3) we shall also need the following asymptotic theorems.

[) I riey~ A" (e>-1)as ¢t >0,

then Fsy~ 222D o o0

Sa+l
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BT (S +1)
T—HS 5=,

I If f()y~BP(B>-1asi—m,then Fs)~

Fxample {1-8):
Find the wansforms of Bessel's functions of the first kind J; (¢} and J, (1)

Solution:

Jo(ty isasolutionof ¢ p" + 3" +o = 0.

Using the table A-3 and J, (0) = J; (0) = 0we get
(sTH1) Y (s)+s5Y(s)=0,

by integration we get

[

1,|.'I.5':+I

F(s)=

Now;

!
Jo(f)y~1 as t+-»0, hence Y(s)~— as s 5 »,
¥

but by inspection ¥(s) ~ £, hence e=1.
¥

I

Therefore LiJ, ()= :
{Ja(1)] =

Using the fact that J; (1) = -/, (¢) and theorem (1-13) we get

Is? +1 -3

§ _ N

+1 =
fs? +1 \.I'sl-kl

L {J.(f)}=sf.[—..fu{r)]+ Jo(0) =~



Example (1-9):
Find Laplace transform of

a) f(¢)=sinar and

b) £y =2 ;ﬁ

Solution:
a) By differentiating twice (1), one readily obtains.
¢ ffOY+2@)+a’ f(1=0.
Using f(0) =0 and the table A-3.

iy
.

as' F'(s) + (65 -a’) F(s)=0, thus F(s)=—e™"

3
31

Now f(:)~a.ﬁ as ¢t — 0, hcnce‘F(.s)- HJ,; as 5§ > w©,

25t

aym
-

c
1

by inspection F(s) ~ ,hence ¢ =

5t

Therefore £ {sina.ﬁ l = af:? Pl

£l
252

b) Now by theorem 1-13 we have

L{ ”°°5F_ﬁ}=s L{sin @ J7 }-sin(0), thus L{‘“’” ! }=
{

24

Example (1-10):
Find Laplace transform of f(¢) = J, (a+f1)

33



Solution;

By differentiating f(r) and using the reiations
. 1
D so=zlan-s.m]

i) (=20 50— L 0.

We have 41 f*{¢)+ 4 (t)+a’ f{t)=0, the ransformed equation is

45 F'(sy+ (45 —a*) F(s) =0, which gives at once

—17 a1
Fis) = ce

¥

Now, f(t)~1ast—0and F(s]-vlas 5>,
£

¥
—dydr
£

thus c=1and L {J,,(aﬁ)}:—s-.

-8 Inversion of The Laplace Transform [4, 10, 15, 16]:

The operation of finding the inverse of Laplace transform matches
the following question, if we have been given the function F(s) -how
could we find the function f(+) if we have L' {F(s)} = f ().

The answer of the previous question is that we can find the function (¢}

by using the definition.

reim

fmzﬁ;jFuw%w (1-10)

=i

This metnod depends on evaluating {1-1G} and reguires an understanding

of cnmialex variables.



We recall that the integral in (1-10) is a line integral along a vertical line
in the region of absolute convergence according to a result in the theory

of function of a complex variable;

if F(sy—=0 as 5 — .

then for >0, the value the line integral is equal to the sum of the
residues of the function F{s)e* at the poles that are to the left of the
vertical line Re(s) =&,

For ¢ < 0 the value of the line integral is equal to the negative of the sum
of the residues of the function F{s)e'" at the poles that are to the right of
the vertical line Re(s) =&, where the residues of function F(s)e"at 2
sinple pole s, 1s

= lim {(s—s,) F(s) &}

ey I=+1g

Res F(s) e”l

and the residue of the function F(s)e" at a kth-order pole s, is

ﬂ-t-l.
(k=1) 45

Res F(sye"| = lim {

=l ==

(s = 5% Fsye” ]}

Example (1-11):

If F{s5) =;3 . Re(s)>-3thenfind f(1).

5+

Solution;

. Gxl= $4

- e
-5 [ e

r=-i®
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Along a vertical line in the region Re(s)>-3 we obtain, (see

figure {1-7)).

1t

f(t)=Res z
1=~}
= lm{s+3)——=e”, 120
1—+=3 §+3
fny=0, 1<0,

hence f(#) = l 0

> G

Figure {1-7)
Example (1-12):

1
If F{s)= G o _— 2 < Re(s) <3 , then find f(r).
Solution:
_i el E'”
= — d
A I GroG-3

along a vertical line in the region -2 <Re(s)<3 we obtain, {see

figure 1-8).

E1



ar

@

= Re.
/0 RETEETY R

im-}

t
ES

=i 2 =
G G Ty
f(t)=Res e o -
(s+2)(s-3) | 4

fim — —
s—=3 4 ds

! : [(54,13 {

5+ 2

1t Y'Y
— tim i[e -]=.:'r'm {5+ 2)re £

s 3 ds s 1

==t e' =——e", r<h
4 16
Hence
; }I—_e'h ¥
fley=¢4
Lidto Lo 1cp
+4 i)

(s+2)3

Figure (1-8)

<3

>

ESI

(5+2)r’$—j’)2

]



1-9 Evaluation of inverse Laplace transform without contour
integration [7]:

Method §:

Since F(s) =L {f(¢)} then we can evaluate f(¢)in two steps.

Step (1):
Try to find an ordinary differential equation satisfied by F(s), of
the form
" H=1p- .
a,(s} d F+ &1 5) d £ tontayfs) £+au(s,l F=Gfs),{l-11)
ds" L] es

where a,(5)(i=0,1,2,..., 1) are at most polynomials in s and the

inverse Laplace transform of G¢s) is known,

Step (2):

Taking the inverse Laplace transforms of each sides of equation
(1-11) {use table A-d).
Then we have a linear differential equation with pelynomial coefficients

satisfied by the function f(+) this equation usually easy to solve.

Example (1-13):

Find the inverse Laplace transform of £(s) = ! tan™ (s + &), where a > 0.
¥

Solution:

Let L'{F(s}}=r(0).

Since lim s F(s) = fF(0) then we have f(0) =% .

Tl



Now; by simple differentiation we find

dF 1
$—+Ff=——rr.
ds l+{s+a)

df

Use table (4 - 4) we have -+ == e sint

—di '
e " snr
dr

then the solutien is f(¢) = % - |

e %' sin bt
)

1
Since I dr = tan™ & + 1 E(a+ib),
£a
q

where £,(z) =‘j

H

e".’

di=Re(E, (z))+ilm(E (z))
u

r=x+iy, ReE {z) and im £, (z)denote the real and imaginary parts

of E, (z}respectively.
Therefore

L‘i{i-tan" (5 + a)} =tan™ a—FE (at +it).
Example {1-1I4}:

a7
If  F(s=2 -

, then find L' {F(s)}, where a20.

Solution;

Let L"{?(:)}:f(:}.

Note that i’*‘{::]=l when a=0 or f(t)=1 when a=0.
LY
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Now; differentiation of F{s) shows that £ (s) satisiies the equation.

pfl 2l g (1-12)

Now; lmsF(s)=/(0)=0, and f()=1 when a=0,
then the solution of (1-12) can be expressed in the form

flty=¢ +e J e~ du . where ¢, and ¢, are constants of integration.

FTS3

The application of the boundary conditions f(0)=0 and f{¢) =1 when

a=0gives ¢, =0 and ¢; = 2 and hence

G

2 " H [
Fitye—— | e™" du = erfel
£ N ‘j fkm)

¥

Example (1-15):

If F(s)=5 | thenfind f(1)= L {F(5)}.

L)
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Solution:

F(s) satisfies the differential equation

sd—F+ le.
ds 5

Using table (A-4) we have

—r%:l, therefore f(i}=-c-Inz
{

Now;

5 In
Ie'” (—c—1ln¢) di = 25
a L3

In particular, when 5 =1

je" (-c-Ini)dt =0 , giving c=—je" Inf dr .
Q a

Reference to a standard table of integrals identifies ¢ as Eluler’s number,
0.5772 ...

With the notation y = &* we then have

L {E}=_ In{y¢).
5

Example (1-16):

—afi
If F{s}=%._—, then find f ()= L' {F(s)].
Ly
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Solution:

Note that F(s)-—% as 50
5

Differentiation of F(s) shows that F (s) satisfies the equation

45 F (s)+6F -a* F=90

From the 1able {A-4) we have:

b

48 F1(1)+ 20 f(1)-a (1) =0, therefore F(f)=—=e *.

7

Now; f[r)—-—f_— as { = =,
Ve

Hence by asymptotic theorems we have

F(s) = L{é}=ﬂl=£ as 50,

Je Js J;

i 1
SInce .F{.v:)a-L as s—0then c=—

el 7=

o -
Thus L"IE,_H}= L o=

Vs

Example (1-17):

(45" +1=-5)
If F =
“)== Jst 4l

. thenfind f()=L"{F(s)}.
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Solution:

By differentiating twice F(s) one readily obtains.
(P + 1) F +3sF +{(1-n")F =0.
From the table A-4 we also have

Er )t - f{=0.

But this is Bessel's equation / (1) of the first kind of nth order 1.e.

r o4 onslr
© -1 -
f—1) (2)

e
fult) rg[} rlfm+r M
Now:
{1“‘524‘!.-5]” 1 ]
= = a5 §F — .

TR S il ok L _
-.II.S'=+]. \‘.T1+1(1\II.53+1+.T:|- 2"‘5 l

We should choose f (1 )such that

A

Fy
ATY

as t = 0.

Jlur=

Thus f,(t)=J,(1}.

Method I1:

if F(5) can be expanded in the power series of the form

n-1

F(s]=ians"‘,13[> R, then f(r}zi [ar:rl}' :
aml nwl -1}



Examples (1-18):
1

If F(S}=S~—l then find /' (:)= L {F(s)}
Solution:

sl—1=§si" vlst=1
then by method I f (1) = 1 e.

Sy

Example (1-19):

If F(s)= ﬁ then find £ (1) = L' {F(s)}.

Solution:

l iL for |s|>1,

54—t B

Then f(1) = i - = sin? ,

o (2r—~-1

1-10 Applications of the Laplace transforms {7, 8, 9, 10, 13, 15,16, 17, 18}:

The Laplace transforms have a wide range of applications almost
include all the science branches. A lot of the physical problems lead o
differential equations with initial conditions, these equations can be
solved simply if we use Laplace transform.
We can also solve a lot of boundary value problems which arise in the
science and engineering and we are going to explain there applications in

the following examples.
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1-10-1 Ordinary differential equations with constant coefficients:
Example (1-20):

a) Solve a, v {(iY+a, 3 +ayy =), ¥y(0=h, y(0)=4
b) Solve y—-y=4r ¥(0)=1 p{0)=3

where a,, a,, a,, b, and &, are constants.

Solution;

a) Taking the Laplace transform of both sides of the differental

equation and using the given initial conditions, we have

a, L{3" (0} + o, L{y' (O} + e L{y ()} = L{f(D)]

a, (s Y (s) - 5y(0) = y'(0)) + a {s¥(s) = y(O))+a ¥ (s} = L{f (1)}
a, (s Y(5) = shy ~b )+ g (s¥(s) -+ a4, Y (5) = L{f ()]}

},(fs}_ L{f ()} +a,sh +a,b +ab,
i, st 4+ & 5+ a,

thus _}’(f} = L_I{L{f“)} +&"1.!'bu t+ asz + 4 bﬂ ]

a, s* +as + a

b) Similarly

4 }+L_,(5:+3

Y=L (5 =

st (s?-1)

)

Now; L~ {%} = ]f(r — 1) g(7) dr by theorem (1-15)
s°(s°=1) ’

Fu)=;4mnfu)sm then f(1=7)=4(t—1)

1

G(s) =
57 =1

then g(¢)==sinit
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st {s7=-1) 8

L' {—4-—}= i[-’-l{r — 1) sin Ar dr

=4(r—71)coshr |; + 4sinhr|:1 =—4r+ 4 sinht

And L” Sf” =L :S + L 23 = cosht + 3sin At .
57 —1 st =1 57 =1

Therefore  y(t)=—41 + dsinhr + coshs + 3sin At

=—4¢ 4 7smht + cos it

1-10-2: Ordinary differential equation with variable coefficients:

Example (1-21):

Solve F 42ty —dy=12 y(0)=3'(0)=0

Solution:
Taking Laplace transform of both sides of the equation then we have

52}'(5)—$y{‘ﬂ)-y*(ﬂ)+2|:-M]—4}'(.r}=£
ds 5
where L (y{£)) =Y(s)

521”(5)+2(-5F'($)-}'(IJ)‘“”(UZE

(52~ 6)¥(5)-25F(s)="
I 5

" K R =
J’[’s}+(;-3}}{.s)~s—z.
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Therefore

K

— 2

4 l 4

] - — ce

Fis5y=—— |se ! ds+
e

S X
ed o
ce
I——e + ds + 3
5
.T: I! ;:
2 B Ll s
2et -5 cet 2 redt
=l =,
5 £ 5 5

Since the Laplace transform is a convergent operator then ¥(s) -0 as

e

therefore the constant ¢ must be equal to zero.

2
o

Then Y(s)= and therefore

W =L (3()) =1
1-10-3 Integral equation:

Example (1-22):

Solve the integral equation
yity=t+ 1 '_l‘(r -ty yir)dr
6 L]

Solution:

The equation can be written y(¢) =7+ % (£ * »(t)) taking the Laplace

wransform of both sides we have
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1 1 6¥(s
g
}'{5)_”:‘}:_17

A 5
}(s}(’”—ﬁh;‘;
F(s)= —Sm= &

Yol (sT-D(sF 1)

Using partial fraction, we have

Therefore  y{+) = IE [sine + sinAr]

[-10-4 Application to boundary- value problems:

Example (1-23):

1]

Ju T
Solve — = 2——

ot :

&

%3]

#(0,1)=0 u(5,0)=10

u(x,0y=10sindrx

Sojution:
- -1
Taking the Laplace transform of both sides of —Cij = ZG—I:+
ot ox
d2U( %,
SU(x,s) —ufx.0)=2 ——{izﬂ
dx

ar

2':1’1 £ (x,5)

: - SU(x,5y=-10sindrx,

ef x

48
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The general selution of {1-13) is

1
A

N K

. i
Ulx,s)=¢ gt ? +cle"

L3

[N

— 5in 40X,
s+ 3277

Using the condition 1 (0,1)=0, wehave ¢, + ¢, =0 0OF  =-6.

Also using the condition u{5,¢()=0, wefind ¢, =0 and ¢, = 0.

Theretore Ufx,5) = 0 sind x x, and consequently
s+ 3

TP .
P gmdax.

afx, r}=10e

Example (1-24}):
A semi-infinite solid rod x 2 0 has its initial temperature equal to zero.

A constant heat flux A is applied at the face x =0 so that

—ku (0,1)=4.

F£ind the temperature at the face after time t.

Solution:

The boundary value problems is the one dimential heat equation.

a—“:k'-al, xx0 =0

a3t ax?

uf{ x,0)=0, u, (0,0)= -k—

| (. O] <M.
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Taking Laplace transform of the heat equation, we find that:

d"U{x.5)
Uix,5s)~- )=k —,
sbif{xy s)-u{x0) e
or d'!f{f,s}_sUiI.-¥}=ﬂ (1-14)
dx k

, then we have

Now:
(5= —
‘( ’ ) sk

L {“.-(ﬂ.-f}]=:_k ot

.tztf{x,s)"suix.sj=u
(1-15)

k

of .'E':

U,(0,5) = %1 U (x.5)] < ™= N,
¥ L1

Solving (1-15) we find

fr ‘»-I

+ o8

Hixs)=¢e

Then we choose ¢, = ¢ sothat {x,s) is bounded as x — «,

i)

- wehave  U(xsy=ce!

iz

ve ' _-Ad
vk

¥s
J(x,sd==g, '—e¢
(x,5) : T

3G



by example (1-16) we have

=3 = I r
L T &[f“ dr
thus

A ' LI
—_ o
ﬁjme r

H(x.t)=

Now, at the face x =0 the temperature is

u[u,f}=-‘3-j | ar.

s

or w01} = iJE.
k¥

1-19-5 Application to Mechanics:

Example (1-25):

Supposc a mass m, attached to a flexible spring {ixed a1 0, is free to
move on a friction less plane PQ sce fig. (1-9).
If the mass m has a force f(s), + >0 acting on it butl on damping forces

are present then find x at any time if f(¢) = £, (a constant) for {>0.
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Sotution:

Lot the mass starts from rest at a distance x = g then the displacement x

at any time ¢ > 0 can be determined from the equation of motion.

mX +kx= (). x(0)=a x'(0}=0.

Taking the Laplace transform of both sides of the equation we get:

" [31 X{5)y-s5x(0) - x'{ﬂ}]+ kX(s)= L}
L
Fo+stma
Xisl = ——————
( (_s-{m.ﬁ': + k)
Using partial fraction we have
Fgm .
Fg mas Tk
Xfs)=—+ - \
ks oms® +k ms? 4k
therefore x[f}=f‘-'-{l - COs Er ] +‘a cos JEL
k Y m m
A
%
O w2
Z IR
P Q

Figure {1-9)



1-10-6 Applications to electrical circuits:
Fxample (1-26):

Find the solution of

d'g dg 2 _ b -
— L2l = t+wig=— o 0)=10
1 T L G{0) = g '(0)
Where

] R 3 1 )

i=— . wi=— and £, 15 constant.

L Le

Solution:

Let L{g(r)}=0(s)

Taking the Laplace transform of both sides of the differential equation,

we have

[53 O(x)— sg(0) = ¢g' (1) l+ 2A [sQ(s-} - q{[})]+ wi{(s) = %

I
+ 245w

E
0(s)= % (3

Eq

Ls[:;2+1lv+.ﬁ.2—r’iz—w2}j !

or Q(s}:f-u—[ ! ]

Ls | ¢s+2)2 —(21-w?)

1Y If A >wthen @fs)=

Let B=.A —w", therefore
E o
tYy=— te* " sinhBrdr
0=

- Eﬂ‘
£ Bw'

[e'“ (=Asin hiBr — BeoshBr)|, ]
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g{1) = £ (e (2 sin hBi - BeoshBt)+ B]
LBw

g(ty=Ex¢ [e'“ (1—e™* (cosh Bt + Bsinh Br)].

2} If A=w then we have

Q(s) = [

{.5' + A )
q(r)=% ;[r e dr
g(ty=E,c[1-e"({1+An].

1 ).
s (s+AY +(w=24")

3 if.). < w then O(s) = (

¢

Let { A=.w' = A", therefore g{¢) = f—; je'“sin Ardr

g(¢)=[e™*"(~Asin At - Acos Az ) | ]

E,
LAw

[e* (=2 sin At — Acos A1 + A)]

gt)y= Euc[l—e”“(cnsAr+%sin A ].

I-10-7 Systems of linear diifereniizi equations:
In this part we show that Laplace transform combined with the
Leverrier- Faddeev methed of finding solution of the matrix differential

equation

d-zI(I) =AX{n, X(ﬂ}=f, or X'(I]:AX{;). X{(0)y =1 U-lﬁ}
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where X'(1). A, X (+) are nxn mairices and [ is the ron identity matrix.

Also we can solve the homogeneous differential equation,

X ()= AX, (1), X (0)=B
by ., {f) = 8 X(r) where X' () solution to (1-16) and X,{¢), B are¢ nxn matrices.
Also, we can solve the non homogeneous initial value problem,

Xi(r) = AX, (1) + ¥ (1), X, (0)= B.

]

by  X,{r)= [3+ [x =) i’{;)ds} X

where X (1) is the solution to {1-16) and ¥ {r)is an (#x #) - matrix.

Remark 1-5:

We consider only initial value problems with ¢, = 0 otherwise we

replace by t—1,.

The Leverrier — Faddeer Method:

Consider the special matrix differential equation
X =AX (), X0 =1.

Taking the Laplace transform of both sides we have
SY(s)-f=A¥(s), where L{X(}}=V(s)

ie Y(s)=(s!- A"



The Leverrier- Faddeer procedure gives an easy way to compute the
solution of special matrix differential by the determinant formula for the

inverse of 2 matrix.

Now, let ¢at{sf - A)=5" +¢,5"" +...+¢,, bethe characteristic polyno-

mial of A.

Qur goal is to computc the coefficients ¢,,...,¢, by comparing the
coefficients in (sf — 4) C(s) =det (57 — 4)1,

One sees immediately that the matrices

Q....0._, aregivenby

g=cf+4
@, =c, I+ AQ,
Q=6 I+ AQ, (1-17)

If we compute the sequence {¢, | first, then we could easily compaute the
sequence of coefficient matrices {0, } from (1-17).

But there is a better way. Leverrier showed

g ==-T 4

2¢, ==T AQ,

Z r

ne, =-T, AQ,., where T, A Is the trace of matrix A,

Hence ¥{s) we can write

b
ORI, - oy



Example {(1-27):

Solve X'(f) = AX (1), with X (0) =7 for A=[ 42 31]

Solution:

o =-T.A==-(4-1)=-3

—1+A—‘3”+4 31 [1 3
Q'.":’ o -3 -2 -1 | -2 -4

2¢,==-Trd4Q, or 2c,=4 or c,=2

Hence det (sf-A)=s? =3s+2=(s=1)f5-2)

And C{s)=sI+§

C s+l 3
or C(s) -2 s-4
In order to find X (¢) = £ y(s) we use partial fractions,

sy _ __ ° 0 o i
det (54 — A) (5_]}+_,_2* or C{s)=(s=-2)P+(s-1¢

C{l}=—-P.C(2)=0.

-2 -3 3 3
Thus X(r,l:e’[ . }+e‘“[ ]
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Example (1-28):

| ‘ 7 0 4 3
Salve X; (1} = 4X,(t), with X{ﬂ}-[ﬂ 3] fc:-rA—-|:_2 _1:],
Solution:

Comparing the solution of this problem with the solution of

example (1-27), the solution of this example will be as following:

—e'+3e% -3 +37| 12 0
X{y=8X(t) =
1{ ) i:) [22'—2&“ 3&‘]'—28:;][{] 3}

—4e' +6e -9 +9e%
X1(!}=]: jl

4g' =42 D' - ge¥

Example (1-29):

Solve X(¢) = AX, (1) +V (1), with X{ﬂ):[s 2] ,

Solution;

Comparing with the solution of example (1-27}, the solution of this

example will be as following:

X;()y=X{)| B+ ]'X(—s}V[s} ds

. {1r-1-2]15:'"—[3“E)r;?'l’-i 0
Now; [X(-s)¥(s)ds= ' 2 f ; ,
6 —{2:+2)e"+(r+;]e"*+§ 0
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therefore X, (1) = X{) [B + j X{-sYF(s)ds

-fe +2—e +—:‘+; —0& + g™

1l
I

Gt - 9¢' - Ge''

Example (1-30):

Solve X'{1)=AX(2), with X(0)={ for
A= 2 -1 =2

Solution:

e=-Trd==-3, Q=ci+d=)2 -4 -1 ¢:=_?ITrAQl=3

4] 1 1
O.=c, 1 +40,=]-2 3 2|, e,=‘T'rrAQ:=-1
I -1 0

s -5 -5+l —s+l
C(s)=|2s5-2 s'-d45+3 -25+2
-5+ 5-1 -y

we use partial fractions,
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csy __ P, _ 2 . R
(=17  (s=1) (=1}  (s-1)

we get

C(s)=(s=-1¥P+(s-1)0+R.

Now, C(1)=R=0Next C'(s}=2(s-NF+{

C'(1) = O finally C*(s)=21=2P , F=1,
Then the solution is X {ry=¢ [{+C(1)].
Example {1-31):

Solve X'(t)y=AX(n with X(7)=1, for 4 =1: 13 ]

Solution: :
Comparing with the solution of example (1-27), the solution of this

example will be as following:

_ -EEr-T +3EIE‘-H _3‘3:-?+3E1f-l.4
X“) - 234-1 _zezr-u 384—1 -2&.’:"“ !
1-10-8 Difference Equation:
Example (1-32):

. Show that the function f(t)=[t] for r>0has Laplace transform

L{f{r}} = ?e—_—] where [r | is the greatest integer S ¢
5 -

b. Show that the solutionto y(r + 1) - y(t) =1 »(¢} =0, forr<1is

given by the function in part (a).
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Solution:

a. L {[r]}:]‘[r]e'” d£=;[ae'” di + 1{[2'“ dt + :{2&-'” dt + ...

b. L{y (r+1)}= Ie"'y(:+l]dt, Letr=t¢+1

= J’fe-r{r-ﬂ }’{'I'-':' dr

l

=¢' ]e"’y[r} dr - e’ Ije'" yir)dr,
0 g

then Liy(t+D}=e L{y(n}

. 1
Thus the difference equation becomes ¢’ L {y(t)} - L {y(&)}= B

] _ e’
s{e" =1) (1 —e*)

Liyin}=

From(a} y(r)=[t]-
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Example (1-33):

Solve for a, if, a,,,-7a,, +12a,=2", «, =0 a =-1,

Sclution:

To treat this sort of problem, let us define

y(1)=aq, nst<n+l n=>0,1,2, ..,

then our difference equation becomes y(1+2) =7y(1 +1) +12y{1) = 2l

taking the Laplace transform, we first have:

L{y(r+2}} = Ie'” pit +27 dt Let t=1¢+2
G
= Ie"“'” y{r)dr =e" Ie'” y{r)dr -
1 9

! 2
—e¥ J-e'" g e = e*f Ie'” adr
b 1

= e L{y(r)}+ i{l -e "),
s

o

Similary  L{yft+1i}}= J'e‘“y(r+}jdr, r=t+1
0

=e’ Ie'"y[r) dr=¢' je""y(r) dr -
{ ¢

|
- e I e T a, dr = ¢” L{y{:)}.

1]



Thus the transform 1s

ar

Now;

and

23 I {},(r)}.!.é[]— et y~-Te' L {_}’l:f}}+12£' {.}’(f}}
=L {21}

(e = 7¢" +12) L{yp()} = L {211 }-iu -e™),
5

__ it} e (l-e*)
- {y{r)}— e —Te +12  s(e™ -Te +12) '
e fl-e™) 1 _e'(l-e") 11
5 {(E’—4][e’—3)] - 5 1{e‘—-il e’-—3]
11— 1 1= 1
5 {l—de" 1—33"} T (1—43" 1—33"]
= {4t} {3114, (1-18)
DAL N i }
(e'—4) (e =3) s{1=2e") (& —4)(e'-3)
_ e’ ~1 ( 1
5 (e =2)(e' -3} (e’ —4)
o l-et 2 if2
= 5 )(e'-i 1-3¢™ ¥ 1—43")
1 1-e~f 1-¢” 1 1-e™
=5 e Tt T
2 s(1-2e7)  s{i-3e7} 2 s(l-de™)
1 ¥ ~ 7 1 t
=EL{2[ N e = o {ald} . (1-19)



From (1-18) and (1-19) we have

L {2[”}—%{,[4"]], then y(r)=%(21’]— alely,

1-10-9 State Equation:
Definition (1-3):
Consider a differential equation of the form

r L] . -
. dyﬂ}+c d_yl) |

Sy Y= e+ €g ¥{1) = E, x(t), where E, Is constant.

If we define the state variables to be

A ()= y(t)
_dyi)

A.E(I.r]— 0

] _d7 ()

A (r)= Pyt

then the state equations are

dA,(r

it =4,({1)
di
% = A, {1)
d1,.,(0)
e
o (1)
da, (1)

-1 .
- =.;_[,_~ﬂ At )ey At )4t p Aol ) — Egx(i}]
¥




Example (1-34):

Solve
Aal) 24 (1) = A1)+ x(4)
ot )
adi,{t -
ﬂjl:f—} = =4 () +34(1),

where x{¢)=sin2r and 4 (0)=0 4,(0)=2.

Solution:
Let L{il(rj}=;11(.‘;],L{Az(r]}=lﬂl{5) ,
From the state equations, we obtain

e
o

.'.'I,ulf.ﬁ'j=__.Iu||[(.5'j-,uz|:'.ﬁ',i'+ 3 4
5

Spa(3)=2==du(s)+5 (5},
or
2
(s =2) () + () = 7
b )+ (5-3) iy (s)=2.

Solving these equations, we get:

_B 1918
10050 25 _ 100

)=
#(5) 5P+ 4 s—1 §s-6
Boo® 12
iy (5) = 25 + 25 +25 23

s=1 s-06 st—4

3 1
Thus A (1) = J—Hc’— Egr' LS cos 24 - 1% sin 24
25 100 Lo 100
AIU)=EE' +Ee°' —lcusﬂr--l:SmZI; t =0
25 23 23 23



Chapter Two

Z-Transform

2-1 Introduction:

Z-transform, like the Laplace transform, is an indispensable
mathematical tool for the designing, analvsing and monitoring of
systems, The Z-transform is used to transform discrete sequence domain
into complex variable domain.

The Z-transform plays a similar role to that of the Laplace transform in
the continuous tunction domain.

Before we start to define the Z-transform, we should firstly study Dirac
delta tunction because, the Dirac delta function is very important in
explaining the relation between the Laplace transform and the

Z-transform.

2-2 Dirac delta function |9, 10, 16]:

Definition (2-1):

The Dirac delta function its defined by ]'f[:} S(t)dr= f(0);

i

whenever [, <0<t

and provided that f (¢} is continuous at £ '= 0 and it has the following
properties,

1y 1t 4 =0 then &ty = 0.

D Ifer=0thend(t) — 0.
3 [s()de=1
4} §(1) is an even function, thatis 6 (-¢) =& (¢) YrekR.
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Remark (2-1):
The Dirac delta function is not a usual function bur it is a generalized

function and it can be obtained as the limit of usual functions, that is,

F(4) =lim & (1) or o(t) = ]qu 3. {1}

Example {2-1):

n(tA+1); _—l{r{ﬂ
M
Show that the function §, ={ n{l-rn}; 0O0<t<—
n
0; other wise

represents delta function as n — 0.

Solution:
Bt o w, then §(0) = lim 6,{0) =<0

1} lim &§,(0) = lim

0 atherwise

1

m, <t <0
{:& , i=10

2yFort=0 §(1)=limd,(¢t)=42,0<t <0 =
0 , other wise

Since &(1)=1im &,(1)=0, vt=0,then 6 (¢} =0 forall r # 0

2

1
jn(m +1)dt + ]n (1—tn) dr

3) [ fim 6,0 = i

tin ’ |
==+ +nlt-—n
' (2 }‘1 n( 2"
1 1
l 1,
—[l—n(-——)+n|[——5)—ﬂ
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‘]cﬁ'[r}dr = n]}ijllﬁ_{f}fﬂ=l

-

4) Clearly 6, (~)=46,(r), then S(ty=8(-t), Vie R

Therefore &, (¢) represents the delta function &(r) since

5(t) = fim 8,(1)

5,(0

L

=11
=

¥

Figure (2-1)

2-3 Properties of the dirac delta functien {9, 10, 16]:

1- Shiting Property:

by JAC fi <& <4,
[ ftyst-tydi=3 0, o<t or t> 4

i
Ef(fu} » fg= 4 or =1,

Proof;

1) If 71, <t, <t,,

Thenletr=1-1¢, ,
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=iy

j SUOS-1)di= [[f(r+4)8(r)ds

fuiy reiy =ty

whenever f =<0, — 4,

=f(0+ru)=f{ro)

i) ¢, <1 0r t,>14,

a)  Letz, <t thenwehave r, <t <, and

Jrays(e-e)di=1(1,), by (i)
but r]‘f(r} St -ty dt =
[ £y 8-ty dos [ 10 6C-10) de = £ (1),

or f(:u);{’ff{rw(r—:u)dr=f(rn).
Thus
1£(0) -1,y de =0
by Letr, »>¢ thenwehave ¢, <, <, and

[/ 8-ty di=F() By (),
but ‘]'f(r) S(t=t)dt =

1) 8=ty i+ [ 100 8G1) di = S 1),
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of rlj_,‘"(i.’) & (-t} dt + {t,)= f(1,), since ¢, € (t,, )}

thus

T F(e) 8-ty di=0

iiiy a)Let#, =¢ then & (¢, ~t,y=6(0),
therefore 6 (1) — =,

that is ¢, is a point of discontinuity of &(1).

Thus the value of the integral is given by Ft) ; S {t) 1
therefore ]'j'(;) S(i-t,) dtf = 0+ J‘;{fu) =%f(fu).

b) Similarly if £, = ¢, then [ £() S(t—tp) s =%f{ru] 0.

2- Sampling property:

LB —t)m () (£ 1)

Proof:

Since

l] FOYS( =tyrdt= f(t,) 1, <1, <4 (by shifting property) (2-1)

[ £t 60t = 10) di=1 (1) [8(-tydi= 1) 1= fly,  @22)

i h
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from (2-1Yand (2-2) f(4) S(r -1} m f{4)d{t —£,) O.

Note that: The two functions £, {F(¢)) and £, (S{r)) are said to be
equivalent, if they are integrated over the same interval (r, 1, ) with

respect to a continuous function g(7) then

I g1} fi{6(1))di = ]g(r)fzia(r)) dr .

3- Scaling Property:

;3{a1+b)=L5[='+£)
4]

| ]

Proof:
1) When a >0 let r = at + b then we have

1 o

jfma(awb)afr- j f(—)a{f}ﬂ’w*f{—]

f aiy -

aty +b<O<ar, +5 (2-3}
p b [, —b b
Now; = {f(1)d(i+=J)di=~f(—). (), < — <ty (2-4)

From (2-3) and (2-4} we find

a'(ar+b}z-1~5(r+£}
a a
2} When a< 0 let r = —|a| ¢+ b then we have

1 ajlye e

[rosa na=m | rdpe e () ()
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an;:l}fU)Jh-E}m=:jJT£}.
|a) ; a a

|al

From (2-5) and (2-6) we find

J(ar-i-b}-l}Tla(r;-i-} a.
, 1 , t>0
4- [8(z)dr=
T 0 ,t<0
=u{1)

2-4 Derivatives of delta function:
]f{:}é'(r—ru}dr=—_f'[r,)=', to<t, <L,

Proof:

Integration by parts gives:

[ /()& —t)di= F() G =2g) 2= [ 111N 6 (s — 1)

=0- f'{5)=-f{4) 0.

2-5 Propertics of the derivatives of delta function:

1) f(;}fj' {I_ru:’-f“ujéi(f_ru}_f;“u)ﬁ{f_'rn]*
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Proof:

L]

[y t=tydi==f11).

Now;

r]f(fu)a*{f—fu}df =fl|:j‘&] ‘]5'{;_30}({{

=f[ru}ﬂ=0$ ) < iy <l

and

L]

[ £ 8-t yar=7"(1,).

t

From (2-7), (2-8) and (2-9) we have

(2-7)

(2-3)

(2-9)

f(f} 5'("_!'11)=f[fl}}5r({_ru)'_fr{fn)‘§(r _In) a.

2y St +h)= i F(t+ E]| {proaf is similar to that of scaling property).
i

|«

3) %[f(r)um]#(r)5(:)+f'(r)~(r),

d el
1) ;l,—r[f(r)ﬁ(r}]—g [F(o8(n].

]

5} ]'f{u) G (1 =1yt =(=1)" SNt . 4 <ty <1y, provided FE e, exist.



2-6 Derivation and definition [9, 110, 14]:

The Z-transform is the discrete sequence counterpart of the Laplace
transform.
In this section we derive the Z-transform from the bilateral Laplace
transform of a discrete seguence. In order to do so; we consider the

discrete sequence f(n); from which we define its continuous counterpart

£y such that

Fiy= S f(n) 6t —m)

Now; take the bilateral Laplace transform of f(¢), then we have

F= [ rwetds | [ iflfn}r:‘f(f—n]:le'” i

e

=i fin} _[e“’ S(r—n)de= i Fimyer (2-10)

I Rw=m

therefore

i fmye" = i fn)(e)y =2 [‘E’] .

rm o=

thatis F(s)= Z[e’ ] where Z[e’ ] denotes the Z-transform of f(n).

Now; replacing ¢' by z we get

Z[:]= ij'{n} L (2-11)

LELT ]

where ¢ is a complex variable.
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Also; consider the following line integral which is similar to the inverse

Laplace transform

é_-i rsjt F{j‘}ﬁ'” ds:..z—_f ‘[ [ i f{k}e'i*} e ds

F=ix =i temx

- gl

o e
=— 2 [ftnec s,

fave gofz

where o = Re(s),
B F-ix k
since I e-t--l:- ds = {'3‘ ,1 L ,
oI 2 ., f =k
then ;—‘ I'F{s)gu ds = f{n), (2-12)

let r=e' then dz=e'ds Or z7'dzads
thus (2-12) becomes, f(n}=Z“[z]=%an[z]z""dz. {2-13)

As defined in (2-11), Z [z] is known as the bilateral Z-transform of the
discrete sequence f(#)and denoted by Z[f(x}] or Z[z] and (2-13) is
the corresponding inverse transformation formula, and denoted by
ZF(z)] or Z7{z]. On the other-hand the unilateral Z-transform is

defined as

z1:1=% f(n) 2 (2-14)

A=Q
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2-7 The region of convergence (R. O. C) [9, 10, 14}:

Since the Z-transform is an infinite power series in ™', It exists
only for those values of the variable ¢ for which the series convergestoa

finite sum.

The region of convergence of Z[z] is the set of all the values of = for

which Z [ =] attains a finite computable value.

Now; we want to determine the values of = for which Z [z] exists.
Tn order to do so we represent z in polar coordinates, that is, z =re”,

rzi.

Then Z[:]= i Fn)(re?y” = i fnyr " e® (2-15-a}

(2-13-a) can be writien as
Z{:]: i (f{)yu{—-n=13+ f(a) ()" e

Ax-—2x

]

= -Z Fimyrm e+ 3 flmyr e (2-13-b)
n=-= n=t
Let f+(n)=[f("] P2V ey uim
Q <0
0 ,nz2l
and f—fﬂ)'={f(”) n< =/ (n)u(-n-1)

then if we let » = —m In the first sum then {2-15-b) becomes:

Z[:]= i Fi-m)rm e ¢ i fon)yr? e

mal



]Z[z]|£2|fd[—n)|r" +th+[n}|r" ] (2-16}
LED] =l
In order for Z [z] to exist, each of two sums in (2-16) must be fiite.

Suppose there exists constants M, N, R_, R, such that
| fi(=m)| <M RT for n<0,

and, |f.(2)|<NE; for n20.

then (2-16) becomes, |Z[z]|< M i RI"r" +X¥ i R

Amil

r

for the convergence of the first sum we must have, <l,orr<R_.

-

r

and for the convergence of the second sum we mast have, <1, or

r>R_,

-

hence the region of convgence of Z[z] must be, R <r<R, or

R <|z] <R

Remarks (2-2)
a)If f(n)=0 for n<0 then Z[z] is a seres of negative powers of z
only, and the region of convergence of /(n) is the area outside a
circle centered at the origin of the complex plane with a radius R, and

the function Z[z] has poles inside the contour C (se¢ figure 2-1).

[Xi



/ﬁgure (2-2)

bYIf f(n)=0 for n20 then Z[:]is a series of positive powers of z
only, and the region of convergence of f(n) 15 the area inside a circle
centered at the origin of the complex plane with a radius R, and the

function Z[ ] has poles outside the contour C (see figure 2-2).

complex plane

Figure (2-3)
¢)If R < R, then Z[z] does not exist.
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Example (2-2):
Determine the Z-transform and its region of convergence for the

following sequences.

1., n
a) f(ﬂ}={{§) nz0 , b) g(ﬂ)=i—{"§
0 n<0 0

solution:

a) Let z[z]=2Z[f(m)] = E[{{n]]

2.1 ., 1 1
Z![z]—gﬂ(?z‘) —l _l_’ 52 <1
2z
then Zl[z]=2_l |z }5
2

z(:]=- % (5=~ >

Am—a]

m _22

- S -
thus Z,[z]=->" () =-2.(22)" = ——. |22} <1,

e

So, 2,[z]=— »

z—.—-

P

1
z| <=
2
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Remark (2-3)

Il can be noted from example (2-1), the imporiance of region of
convergence in Z-iransform, As it is possible for two sequences to be
different but both have the same transform.

Therefore, the region of conversion plays an important role in

determining the sequence for a given Z-transform,

Example (2-3):
Find the Z-transform of f(n)=coswn,nz0

Solution:
iwna T
Z[f(n)]zZ[coswn]zZ[E—-'-E—-l
2 1
1 . | . 1 z 1 Z
:—Z eyl - —lan —— _
2 [e ]+22[€ ] Ez—e'”+2 z—e

Z{Z—cos o w
= 2{ ) ,'|z|::|e‘
2 —2reos o+l

= 1

2-8 Properties of Z-transform [3, 9, 10, 14]:
The propertics of the Z-transform are similar to those of Laplace

transform. We state below some of these the properties,

1- Liaearify:

Theorem (2-1):
I zlz]=2[Am] ad Z[z]=2z[f0n],

then Zlafi(my+bfiml=az[z]1+b2,[z], forall constants @ and b.

=4L"
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Proof:

Easy to prove.

2- Shifting theorem on n:
Theorem (2-2):

Let 2, [z]be the Z-unilatieral transform of f(a) and n 20,

then z[f(nﬂ,:,)]:z"{z [F(m] - "“Z'f(n)z'"]

=My

and Z[f{n-—nu)]zz"‘“l:Z[f[n]]ﬁ- if(n}z"‘] n, N

Am=ay

Proof:

Z{f(ntn)]=S flnan)z™

=i

Let n+n,=mthen n=m-n, and,

3 flntn)z™ = 3 f(m)zm =z Y S (m)

x=al] -y o,

[S:f(m) WA } z"*[z[f(n:]—’iﬂn}z--]

med mul A=p

Similarly, Z[f{n—nn}]=z"'[2[f[n}]+ i)"[n)z'"] a.

Rm=nR,

- Corollary (2-1):
If z[z] is a Z-bilaeral tansform of f{x), then

Z[f(n-n))=z" Z[f(ny] and Z[f(n+n)]=2™ Z[ f{m)]

g1



Proof:

Z(stn-n) )= S fln-n) 7= Y, flmy s =z Z[ £im).

Hox -

Similarly, Z[f{n+nﬂ)]=z"" Z[f(ri)] a

3- Complex Translation:
Theorem (2-3):
If z|z] is the Z-unilateral transform of f(n) for n 290,

then Z[e'“f{n}]= Z{e®z}, and Z[e"f[n}]= Zle™’z] aec k.

Proof:

e pim)= 3 femy e = 3 Fn) (e =2 (65
n=0 A=

Similariy, Z[a"f(n]]: i f{n)e™ "= i fime zy"=Z[e"z] 0.

4-Differentiation:
Theorem (2-4):
it z[:]=z{f(m]. n20,

then z[n*f(n)]=(—:£_-)* z[F(m), k=1,2,..

Proof:
We shal! prove the theorem by inductien.

For k =1 we have
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%Z[_{(n}]zéi_f{n} " =i—n fimyz""

EETH LET

N T2 G EAEEE A L D))}

Therefore  Z[r f(m}]= -z% z{ r(m).

We assume it is true for the integer & =m ,
that is Z|n" f(n]]=[-z-:;)” z[f(m)] is true, we need to prove that

statement must be true for k=m +1

Z[n™ fmy]=2[n n"‘f{n}]=(—z%) z[r f(m]

—ji. _.vji.“ g ji mrt
= (-2 ) (=73 Z[f (m)]= (-2 —) zlfim] o.

Example (Z-Ji):
If  f(n)=n*u(n) thenfind z[f(m].

Solution;
Z[f(n)] =Z\_nzu{m}'-1=l‘[-zif—)2 Z[u{n]] = [_zi}l (_i_}
dz dz z -1

_ _i z =z(z+1]
ey T ey

3- Real convelution:
Definition {2-2):
The discrete convolution of 7(#) with g{(n} is defined by

fmytglm= Y fkygn-k)

fm—o
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Theorem (2-5):
If y(n);f(n}*g(n} _then Z[y(m]= z[f(n)],z{g(n)].

Proof:

lyim]= 3 (Mg = 3

Aw=g T

[i f{k}g(ﬂ—k)}“

- k-

ba—m x=m

=}:f{m[2g(n—mz'*‘]
et n-k=m, thenn=k+m and

Zb(””ﬂi f(ﬂ[ > g(m) z"‘"‘]= [*_i_ﬂf(n}z“] { > g[rﬂ]z"]

EEL - moa—a L

=z[ sim). z[etm]

6- Frequency convolution:
Theorem (2-6):
£ z[fm)=zle]and Z[g(m]=21z],

—i 42&&1 22[20.'-'] da

_-2;:1' e d

then z{f(n).g(n)]

e

where « is 2 complex number and Cisa closed contour in the region of

CONVETgence.

Proof;

ZLf(n) g{n)]= i f(nyglnyz™*

84



or

Z cjz lala™ da] gln)z™

LEF =4

o

Zila] Z, [za-l]
o

da

= ch[a}—Za g(n) = .::a=§_—;c{

i} P

7- Conjugate Sequence:

Theorem (2-7):

l\:l'|||—-
| |

It z{f(x)]=7{z] then z[}(—u)]:f[

Proof:

2[feml= S 7Emer = SR e 2_ f{m){ " = 7

nm—m mo=m

by letting m = —n.

Example (2-5):

i

g nz=0 - -
Hl= ? ¥ tl f- dz - +
If  f(n) {D , n-r:D} ten find Z [7(-n )]

Solution:

Since Z[f{n)] = i (E_i)" 2" = z—ze_"' ’ 1ZI > 1

asl

Then; by theorem (2-7) wc have

_ 17 Yz 1/z _ z' s
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e-—hr

n=l
g ,n>0

L]

where _}7(—}1} = {

Corollary 2-2:

a) 1f the sequence f(») isrcal, then ?[é] = Z[l].
z =z
b) If Z[z] convergences in thering » <|z| < n,
then f[l_} converges in the ring L lz] < L
Z 5 Lo
8- Initizl valoe theorem:
Theorem {2-8):
If  z[z]=2[f(n)], and the lim Z{z] exists,
then lim Zfz}= £(0).
Proof:
By definition of the Z-transform
Z[z]=z[fm]=3 Fin) 27 = £(0) + (L . F(2)27F + (2-17)

LEL!

If we let z — w in (2-17), then we obtain

jim Z[=]= £(0)+ F(1) . 0+ £(2).04 .. = [(0) .
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9- Transform of the difference equations:
Theorem {2-9):

If  Alfe-D]=70)-Fr-1,
then Z[a f(n-1)=(-2z")Z[z], where z{z]=z[f(m].

Proof;

By theorem (2-2) we have

2[5 (n) - fin-D]=2[z]-2" z[z]=01-2") 2[2],
therefore  Z[a f(n-1]=(1-2"Z{z] o.
Example (2-6):

1..
Let f{n)={{5)' nz0 . then find the Z-transform of
0 ., n<0

Af(n-1)
Solution:

1y
A f(n —1)= f(2) - f(n -1} Where f{n-l]:{(i} onzt

0 , n<l
By theorem (2-9) we have

z{a fn-nY=0-2"Z[f ()]

87



thus z{a F(n-D]=(1-2") =220 2] >+

10- Final ¥alue Theorem:

Theorem (2-10):

If lim f{n) exists, then 11_1::1 f(n)=]=irrl1(z—1)Z[z]

[ Bl

where Z[f(my]=2[z}.

Proof:

2[f e - f(m)] = fim 3 [+ = fb)]

i ad

3[Z[Z]-f(ﬂ)]-2[21=]i_?1§[f(k+1J—f(k112"

Now, take the }imit as z — ! on both sides
lim {(z = 1) Z[=] - 2 £ (0} = lim {.‘i..“lg[f(hn—fmlz"}
i (2 = 1) 2[2] = £(0) = lim 3. [£(k+1) = /(8))

but  tim 3. [ f(k+1) = /()]

=lim [£() - £+ £(2) = f) 4t f(a+ 1) = fm) ]
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=lim [£(n+ D) - £(O)]=lm [£(m]- (O},

that is, [im[(z ~1) Z(z}]- £(0) = lim f(n} - £(0)
hence, fim (z - 1) Z[:]':Ei.r."l f(n) O.
Remark (2-4):

It must be stressed that this theorem only applies if §im f(n)

exists. It is possible that lim (z - 1) z{z]exists, but lim f(n} does notL

Forcxamplﬂ,ifz[s]= - zzsin(ﬁz}]+1 y
" =2zcos (e

J
zsin{@w) B
~2zcos(w)+1

then lim(z-1)Z[z]=lim(z-1)—
!l =1 T

But the inverse Z-transform f(n)=sin(@n) and Jim f(n) does not

e£x15t,

11- Upsampling property:
Theorem (2-11):
Let f(n) and g(n) be two sequences with Z-transform F [2 ]

and G[z ] respectively and

.
D) 1 f(ny =1 8(5)» miseven o then Flz]=6|s" .

{ . otharaise
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b) In general if

f{ﬂ)= g{-::;:ll l‘-fﬂi'.-s ﬂmuﬂfpfﬁ' Gfm , thﬂn F[z ]=G[zn]

G , otherwise

ten Flz]= 3 fm "= 3 f@R % = 3 (k) ()

km—i m-at

ol ]

b} In general, we let k="
m

Flz]= 3 f(mz" =3 flmk)z = 3 g(k)(z")"

FEER ia=m | R

=G[z"] n.

Example (2-7):

Find the Z-transform of f(n)=cos E_)E where nis even, and n2 0.

Solution:

From example (2-2} we have

z2(z-cosa) =1

Z [cos wn]=—

im
2 -2zcosw+1l’ |z[}|e

on|_ 2 (' —cos @)
By theorem (2-11) we find, Z[cusT] i ael

0



Example (2-8):

L .
If sny=4$"" 729 then find the Z-transform of 3 f (k).
0 , n<D k=D

Solution:

Since Z £ (k) can be written a8
Pl

: = 1, k=0
:me[k)-hzqu(k)f(n—k], where u(k}={ﬂ‘ L <0

then if(k} —u(n)* f(a).

k=l

Thus, Z{i f[k}] =zlum=fmy]=zx(m]. 27 (]

z z 22

= . l= ,[31::-1
iy (2'13(3—5)

Remark (2-5):
If Fimy=0 for n<0,

then z{iﬁm} z[u(n)*f(n)}=z[:¢(n} l.z[r(m]

Example (2-9):

(n+m){n+m=-U+...+{n=-1) 2

Find Z-transform of f(a)=

m!

Where n20 and meN
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Solutlon:

Ll =
Since, Z [r.l'”'" ]= Z‘ g"t" ™" o= a” Z a" " =a”

nmi} nwl =—da

then Z[a™" |=(a"2) (z~u)" .

Differentiate m-times both sides of Z @™ 2T ez ) (z—a) 'with
n={

respect to a, that is,

then; we use Liebniz rule for differentiation on the right hand side of the

above equation to get:

" Pz

;,[(a"’zn:—ar‘ Z( )(—a 2 (S

H jrm1

n m d =1
=( ) @ == (z-a) }+( )(—ﬂ 2){-—-—("—ﬂ) >+

]'. l‘m ‘rm
() }(——a ) (o (2= b "Vt (z-a)
—_-a”:———(: _n;[}mu +mim a"'1:} ::-_ulj?”'[ + m“;!_l](m(m—lj am? z}——{ini;}zm}_!l

m{m—-1){m=2)} — (m—3)!
¥ 3!{ (m{m-)(m=-2)a z_-)(:”iT+ ,,,,,,

(m(m =) (1= (m = 1)) 2

= [a"+(T]n"'(:—ﬂ}+(’;}a"’{z-a)?+

(z—a)"



m'lz

=———{a+(z-a))" =

( - ﬂ,)n'rvl

[z—a]‘““

+{m]ﬂ._1(z—ﬂ)]+ ...... +{z—l}':\

mw]

N 1
Thus, ;[H+m][n+m—l}. ........... (n+l]ﬂ"z“={zm_‘j)ml 1
of,
(re+m)(n+tm=1)..(n+l}a" 7
=7 _
2(rt}ez| - e
Table {A-5) Basic Z-transform: X
Sequence Transform R.O.C
uln) : Tzf[ lz|::r1
K4
a' u(n) — |~|'>ﬁ
(n) cos (@) |2 cos0 j2]>1
) 1-z"2cos e+ 27 z
t(n) sin (@ n) 1-z"' sine 1
H n 1""242{105@4‘-3'1
1
Iu{-n -1) — |z|{1
i
metu(=n ) e 2] <l
. e 1z| > e
[a® cos{wnr}] u(n) T lacoswialz? 2
z™ asinw
[a"sin{wn}] u(n) - lzl}ﬂ

1~z 2acoswea’z”
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2-9 The inverse Z-transform [9, 10, 14]:
We saw in section (2-1) how a discrete sequence f (2} can be
represented by its Z-transform Z []. Conversely, we can find the

discrete sequence f () by the following methods.

Method 1:

1

Since Z{z]=2z[f(m]= i £(n) 2™ multiply both sides by z*~

=)
and integrate along the closed contour C in a counter clockwise direction

of the complex plan, that is

jzlz)ees TINICERar I DWIC) [cjz""' dz]

¢ =l Fa

2ai, k=mn

By Cushy theorem we have :j'z""‘" dz = { . L

So that, CIZ[z] ' dz =2xi f (k).

1

i

From which it follows that, f (k) = §z{z)z*"dz (2-18)

The contour integral in (2-18) can be evaluated by the method of

residues, it can be shown that

£en) ={ sum of residves of Z [ z ]zt at 13[} R, fornz0 (2-19)

~(sum) of residues of Z[z)z"" ar lz| <R for n <
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where the residue of the function Z{z ] z”" at the simple pole z, is equal

to {z-2,) Z[z ] z"! L _, and the residue of the function Z|[z ]z"" al

& - th order pole z,is equal 10

1 !
(k=1)rd !

[z -z z[z]]

L

Example (2-10):

5z 1
Ziz|= - th (n).
If  z[z] TTh0 D) 3{1z|{2, en find f(n)
Solution:
Since the (R. O. C.) is outside the circle {-| = -3, the sequence f(n) 15
equal to zero for » < 0, and the function z[z]= 52,_ has a pole
(2-z){3z-1)
2 =% inside the contour C (see Fig. (2-4)).
then by (2-19) we have
Fomye Re(s) 2 VPN YRS L 4
- (2-z)(3z-1)| _¢ 3 (2 -z)(3z-1)| i
N g
-5V (2-20)

Similarly, since the (R. O. C) is inside of the circle |z} = 2 of radius 2 the

5z
(2-23(3z-1)

sequence 'is equal to zero for » >0 and the function Z[z]=

has a pole Z =2, outside the contour C (see Fig. (2-4)).
then by (2-19) we have
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5z 2% !

5zz"

— l =-(z-2) .
(2-23(3=-1)L, (2-zy(3z-1)1,,,

F(n) =~ Re(s)

=2 (2-21)

1 n
From (2-2[]} and (2-21) we have f(n)= {(E] , nz0
9"

, #<bh

Figure (2-4)

Remark (2-6):

The region of convergence must be given for a given Z-transform.

Example (2-11}):
The same expression in example (2-6) but a different region of

convergence | z| > 2.

Solution:

Since the (R. O. C) is outside the circle |z| = 2, the sequence NOEL

. 5z
d Zizl= - has t in sid
for n< 0, and the function Z{z} TR0 as two poles in side

the contour C (see Fig. {2-3)).
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z=2 and z=% for n=0.

then by (2-19) we have

5z 2"
+
el

!
fim= G-I GG -

5z ="

z—12
+ }{2—2}{31—1]|:_1

£(n) =(§>” -7

and f(ny=0 for n<0

Lyw oy '
Thus f(n)=l(};) =27, nel
0

n=0

Figure (2-3)

Example (2-12):

: o 1L 7 g i
Find Z [z]DfZ[«]—(E*l][z_z)l,if 11{i4

Solution:

Let z'[z)=/(n).

<2



Since the (R. O. C) is the outside the circle |z| =1, (see Fig. (2-6)), then
by (2-19) we have

zl zu—l

=]
(z - 2y’ sl

Sfin}y=

Also; the (R. O. C) is inside the circle |z| =1, (see Fig. (2-6)), then by
(2-19) we have

d ! .
= —— = - 2'“
fAn) dz{z—l)‘:_z n
{ , nz0 Fy
Thus, f{n}_{-nf"‘ Con<0

¢ -
5

Complex plana

SR

Y
Figure (2-6}

Method II' (Power Series Expansion):

If the Z-transform is given as a power series in the form

Z[z]= if{n] "

-

st f(-D2+ FO)F )7
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Then any value in the sequence f(n)can be found by identifying the

coefficients of the appropriate power of z™.
Example (2-13):
Find z*'[z] of z{z]=27(1 -%z"}{l +z7y(1-z2").

Solution:

We multiplied out the factors in Z [] to get

Z[z]=zl—%z—l+%z"

then zi—lz-1+iz"
2 2

=t f(=Y2+ f(=Dz+ SO+ (D2 + (7 + e

Therefore
(1, n=-=12
:—1-, n=-1
2
f{n)=4-1, n=0
l . r=1
pa
0, otherwise

L

Example (2-14):
if z[z]=m(l+az"), |z|>]|a|, thenfind f(a).

Solution:

Using the power series expansion for
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In(t + az") with |z]>|a| thatis ln{&fav-‘)-z

- _1 .l+'|.aﬂ z-.-r
2]:]- 3 ,

=l H

campariné with Z[z] = i fimyz™

A= =T
n

-l E_
therefore, f(m) =417 —-- nzl
0 , ns0

Example (2-15):

1
If z[z]= e

z| >|al

Solution:

1)“

ty

Since the (R. Q. C.) is outside the circle |z|=]af, then the

sequence is equal to zero for n < 0.

Now; by long division for — o we have
l+az! watz? + ..
1-az™ |1
l-az"
az™
az'-a’z”
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1 -
thuys ——=14+az’ +a’ z7° + ...

1-az™
therefore f(n)=a"u [n]

Example (2-16):

1

If z[z]=-17“—_l, |z| <|af, thenfind /().

Solution:
Because the (R. O. C.) is inside the circle |z] =]q|, then the sequence is
equal to zero for n2 0.

Now; by long division we have

therefore, Z[z]=-a'z-a?z%. ...
and f(m)=-a"u[-n-1].

Method III (Partial fractions):

For rational functions we can obtain partial fractions expansion,
and we can identify the Z-transform of each term. Assume that Z [z] is
expressed as a ratio of polynomials in z™', that is, if

i b,z

Z[z ] L R

a, z

-
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then we may factor D b,z™* and 3 a, 2, thatis;

=0 tal

b II7.. (L—c,z7)
T, I, (1-d,z7)

Z[z]

where the ¢, and 4, are the zeros and poles of z{:] respectively.

Case 1:

If m<n and the poles are all first order, then Z[z] can be

expressed as, Z[z]=i A
km|

o in this case the coefficients 4, are
- =i, Z

givenby 4, = (1-d, 27} Z[z]|

Z-d;. )

Case 2:

a) If m 2 n and the poles are all first order then an expansion of the form

Z[z]=§3r2"+i A -

r=i k] l_d‘k z

_¢can be used, and the B, be obtained by long division and 4, can be

obtained using the same equation as for m < n.

~ Example (2-17):

-i -1
If z[z]= H;h +1z RS
1+2z"+-27
2 2

then find f(r).
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Solution:

z[z]= (1+z7"y _ {z +1)

(1-%:"){1—2:") (z-%)(z—l)

Since m =n =2 then Z[z] can be expressed in a sum of partial fraction as

follows:

Z[z]=8, + +

The value 3, can be found by long division of the numerator (z +1)'by
the denomuinater {z - %) {z - 1), that1s B, =2.

Also, the coefficients 4, and 4, can be found using the fact that

A =(1-dz")1Z[z ]L_l_‘t .

2 -1 —2
So, AI=1+ z jz ~_9,
l_z 7' -2
T |
and A2=E+zzl+‘ =8 , SO Z[E]=2—' 91 + E_I_
t-—z" ot 12
2 rml 2

Using the fact the (R. O. C) is |z]>1 the terms can be inverted one at @

time by inspection to give

S{n)=28(n) -9(%}' u{r)+ 8u(n).
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b) If m 2 » and the function Z |z ] has multiple- order poles

Z[:]:J"f' +i Ay +i Cr

ral . l - d&: mwl (] —ﬂTIEFI }m

where s is the highest power of multiple poles.

Examgple (2-18):

-12:3+13:2+2:+1

(2 -2:-3)(z2=-22+1)

If z[: ]— =] =3

then find fin).

Solution:
Since m=n=4 then Z[z] can be expressed in a sum of partial

fraction as follows:

7
Z[z]=3-r 3 + 4 - 2 - : -
+ 1) (z=3) (z-1) (z-1Y)

using the fact the (R 0. C.) is |z > 3 the terms can be mverted one at

a time by inspection to give

Fn =360 - L1 wim 2@y ) - 2u(n) = (1=
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Method [V (using the convolution theorem(2-3)):

Example (2-19):

Find the inverse Z-transform of Z[z]= G = i for [z]>1.

Solution:
Let Z"[:]-——f(n},

el -
- ™
-

Now; Z[z]=—=——=
‘ -] (z- 1)} (=)

2[31221[2]'21[2]*

I .
I

l’l
1

:]=

ry

where, Z,[z]z__—:—l and Z,{
Using the fact Zf'[:]=f,{n}=u(n}, and Z;'[z]= fr{(my=uln-13,

and by theorem (2-3) we have

gufm)u(n—l—m)

= =T

Sin}p=fi(n)* fafn) =

or
f{n)=...+u(—1)u(n)+u|’ﬂ)ufn—1j+uf1)u(n—2)+...

+u{n—l]u{n—l—-(n-l)}+u(nju(n--l-n}+...

since u(n)=0 for n<0,

then, /(n) = u(0) u{n ~ D +u()u(n-2)+.. su{n—Du{n-1=-(n-1))
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fimy=1+1+. . +l=n.l=n.

Thus f(n)=n.

2-10 Applications of the Z-transform {9, 10, 14]:
1- State- variable and Z-transform:

Consider the equations

qi{n+t)=—ayqi(n)-azqy(n)+Xin)

g.(n+1)= ¢/ (n)

and

_}’{ﬂ} =X(n)-aq{n)- azqz(”} +hg{n)+ bzqz(”]'

where a,, a,. b, and b, are constants.
We wrile (2-22) and (2-23) in matrix form as
)2 iz e
g,(n+1) 1 0 g, {n) O

while (2-24) is expressed as

yimy=[b —a, b, —a,] [j:ii::;]+[l] Xin)

If we define the state vectors as
q,(n) }
( nl= ¥
7 {‘?z (#)
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thent we can rewrite (2-23) and (2-26) as

gin+1) = Aq(n)+ B X(n} (2-27)

y(n)= Cg{n}+ BX(n), (2-28).

where the matrix A, vectors B and C, and Scalar D are given by

Cz[bl'ﬂl bz““z]r D=[1]

Equations (2-27) and (2-28) are the general form a state- wvariable

equations corresponding to a discrete sequence system.

Now; taking the Z-transform both sides of (2-27)

:Z{g(m)]=4Z[a(m] + Bz[,f{n}], (2-29)

where we have defined the Z-transform of state- variable as the vector

containing the Z-transform of each state variables, that s

Z [z]

Zlgtm]=| "

z,{z]

where the ith-entry in Z[q(n)] is the Z-uansform of the ith-state

variable, Z,[z] = Z[4, (n)] , and we may rewrite (2-29) as
(z1-4) Z[q(m)] = BZ[X (m]
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where 1 is the {2x2) identity matrix
Now: take the Z-transform of (2-28), obtaining
2ly(m]=czlam]l+pz{x(m]

Substitute the expression for Z([g(n)] in this Z-transform  Z {y(m)]
yielding

z[y (] =|Ctel - 4 B+ D} Z|x(m)]. (2-30)

Hence the systems fransfer function H(z)= ;%({"—]}]] is then given by
n

H(z)=C(z[~A)" B+D (2-31)

Example (2-20):
Determine the transfer function for a lLinear system with state-

variable matrices:

Solutien:

We begin with

-1 Y
zI-A-'[‘: 1] , and this implies that
z’—-
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Hence (2-31), yields

1 z-1 1[0 6
A= B ﬂ]{—l z][2]+nzzz-z+l'

2~ Linear difference equations and Z-transform:

The Z-transform bears arelationship te difference equations an
alogous to the relationship of the Laplace tranasform 10 differential
equations.

A linear differential equation with initial conditions can be converted by
Laplace transform into an algebraic equation.

The solution is then found in the Laplace domain and is inverse Lapalce
transformed to find continuous function domain solution.

A linear difference equation with initial conditions can be converted by
Z-transform into an equation.

Then it is solved, and the solution in the discrete sequence domain is
found by an inverse Z-transform.

Now; we recall that some basic facis about the Z-transform.

a) The Z-transform is linear,

b) z[1] =.;Tl

C) Z[a"]: zia

d) If f(n) =g (n+1) then the Z-transform of g{») is related to that of
f(n), much as the‘LaplaCE transform of y*(¢) is related to that of
y(1). _

z[gtn+ 1} =z z[g(m)]-z2(0)
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e) The rules (a) and (b) can be used to compute the transform of the

sequence n.

Z[n] = [—:_:—”2—, tz| > 1

since:

—:1-=z[1] = Z[(n+1)-n], or Z[{n+1)—n]=~i

T
™

or Z[n+l]—2[nl=*—z_~{ ar zZ[n]-Z[n]=;-:?i

hat Z[n]= ———.
Sothat, Z[n] -

f) An argument similar to (e) shows that

oz

) {z—a)}

Z[na"] for |Z|>|a|

Proof:
By (d) we have,

Z[{r:v{-l] a”']= zZ[na"]

Now; Z[(nH}a"" I = Z[na"" 1 g™ ] = Z[n a! ] + Z[a"" I

z

or zZ[na"]=aZ[na"]+aZ[d’] or (I—R?Z[na"]= a

-

az

sothat, Z [n " ] = [ 5
P
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Now; we apply these formulas 10 solve a second order difference

equation.

Example (2-21):
Solve the difference equation

_}'{n+2)-3y(n+1]-4y{n)=12, with y(0)=1and y{1}=2

Solution:
We compute the Z-transform of both sides of the difference equation

.
r

(ZZlym]-7"-2:)- :(3z[y(m]-z)-42[¥(m]= l_l'__l

12 z

=1

(22 =3z-4)Z(y{n}]=2" -2+

P -z 12 z
A nyy= + .
[yl: )} 1 _3z-4 (z-1(2F=-3z-4)

Now; we can use partial fractions to evaluate the right hand side, we

observe that all of our Z-transform formulas (a) through (f) give fractions

with a z in the numerator,

So that, y{(n)=16(-1)" +14 (4} -2
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Chapter Three

Unification and Extension

3-1 Unification and extension of Laplace transform and Z-transform {1, 2. 3}:
In this chapter we introduce the Laplace transform for an arbitrary  1-
variable. Two particular choices of the variable t, namely the continuous
variable and the discrete variable which yield the concepis of the classical
Laplace transform and of the classical Z-transform, other choices of 1-
variable vield new concepts of our Laplace transform, which can be applied ta
find solution of higher order linear dynamic equation with constant coefficients.
We present several useful properties of our Laplace transform of many
elementary functions, among the results is the convolution of t-variable. which

is introduced in this chapter as well.

Definition (3-1):
Let 7(1):T - C be a function, where T is closed subset of the reals 2.

Such that T = ¢ and 0 e T. We define the forward operator o by
git)y: T =T, o{t)=ml {ue?': u > .r},
and the backward operator pby p(1): T =T . p(i)=sup {ueT u<T}.

It is convenient to define some useful operators #.n:7T — [0,»} as

ply=c{y-¢ and pt) =1 - pl}).

Definition (3-2):
The delta derivative of /(s) denated by £3(r) with f*(1):T—>Cis2

number, it exists if for all £ > 0 there is a neighbohood #(7) such that

| f(a()) = flu) = £20) (o) -u)| s e] o) —u]

forall we N'(1).



Definition (3-3):
The nable derivative of f{r) denoted by f¥ (r) with f*(s):T—> C;

is a number, it exists 1f all >0 there is a neighbohood N{(¢) such thai

|£¢o() - £ ) = ) (o) ~u) | < e]pte) - u] for all we N (D).

Remarks (3-1):
1. If 7=R then f(r) and f¥{r)becomes the usual derivative, that

is f3(ey= f¥() = (¢} (see appendix II).

2. If T =2 then f*(») and f(»)becomes the usual difference, that
is fAm)=fln+b) - f(n) and fT{n)=f{n)-f(n-1). (see
appendix 1I).

3. If F(r) is delta differentiable at t, then
£ = £Q)+ ule) £2(0), where J7{r) = f{c{)).

4. I f(r) isnable dit:*ferentiable at t, then
£PY= f{e)+nie) f7(), where ()= f(p(2)).

Now;

We have some important formulas about the delia and nable derivatives.

(see appendix II}).
Lo (f+g) (@) =r20+g) and (f+g) ()= (1) + g (1)

2. (Y e(en® = fruy gy + 47 g°(r) and
(L) ()Y = fT0r) g{e} + 17 (1) g (1.

PO P AOTIGEFOF O
L2 ] g(1) g°(1)

)] L Swen) - f0 70
| g(0) | g() g°(1)

113




Definition {3-4):
A function f(s)ydefined on 7 is called regulated if its right-sided limit

exist and finite at points r e T with o(s)=: and, if its left- sided limit exist and

finite at points re T, with p(1) = ¢,

Definition (3-3):

A function f(r)defined on T is called regressive

if 1+u(t)f(r)=0 forallteT, and if1+n() flry=0TforallreT.

Definition {3-6) (Delta integral):
Let f(t}:T - € beafunctionand a,6 T

If there exists a function F(r): T — C suchthat F*(ry=f(¢) forall reT.
then F(r) is said to be a delta ant derivative of £(¢) and in this case the integral

called delta integral, and is given by

[ /() At = F(b) - F(a) fora,beT.

43

Definition (3-7) (Nable integral):

Let f{¢): T - ¢ beafunction,and a, b eT
if there exists a function F(t}: T — C suchthat F7(r)= f(r) forall reT, then
F¢¢) is said 1o be nable ant derivative of £(#), and in this case the integral
called nable integral, and is given by

b

If(f} Vr=F(b)- F{a) fora,berl.

el
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Theorem (3-1) (see appendix IT):

If 7(r) and F*(¢) are continuous, then
I 3 T
{jm,:) m} = flo() )+ [Fiu,r)ar.

Also, if 7() and f¥(r) are continuous, then

! v )
[If!’f.f}' "?f] = floft). t}+ vafl.r)"?"r.

L)

Theorem (3-2):
a} The initial value problem defined by ) = Py p(B), yl) =1, has

unique solution if £, € T and P{z) is regulated and regressive function.

The unique solution is denoted by K, (7,4) or Kp(1) = K (r.0).

b) The initial value problem defined by p (1} == ) p(¢), y{n)=1,
has unique solution if 1, & 7 and P(t) is regulated and regressive function.

The unique solution is denoted by R, {1 .4) or R, (1} = R, (1,0).

Some useful formulas can be obtained for K, (1):

1. KS(ey= (14 e P{t)) K, (r){see appendix 11 Theorem 1 (b)) (3-1)

2. Kp{t) . K, (1) = Kpg (1) (3-2)
x (D A
a. k(1) = Kpg,(1f) (3-3})



where p@g=p+g+u{tipg and pOg= S (i, {(3-4)
1+ ()

Remark (3-2):

We defined @ s as 00 s = 0-s _ _S
1+ zit) s 1+ u(t)s

Now 1fte & then w()=0 and Os=-3

-y

and ifreZ then pity=1 and ©Os=
1+ &

Definition {3-8):

The solution y(¢}of the initial value problem.

G+ Y BT () =0, (*Y(o(),t) = 0, 0sisn-2,

ral
i

(Y (a(t), 1) = 1, for each fixed s e T, is called Cauchy function.
where P (¢) is continuous tunction.

Example {3-1):

Show that y(f)= J‘Icu{r,cr(r)) g(r) ar Is a solution of the initial value

problem

Yy -ay(e)y = glty,  y(0)=0

ilé



Solution:

By theerem (3-1) and the properties of the Cauchy function we have

i

Y= [k (e, o(2)) g(s) br+k,(o(1), a(4)) g(1)

- J'a k, (1,0 (r)g(r) At + g(¢),

thus

PO -ay(t) = a [ k(. o(e) g ar - a [k, (1, 0() glr) AT

+ gt} =g{1)

Example (3-2):

Show that y{s)= jﬁ,(:,cr[r))g(r] Ar , is a solution of the initial value

problem
Yy =gy, () {()=0 0<i<n
foreach fixed seT.

Solution;

Clearly y(s}=0, also, by theorem {3-1) we have

YO = [ (o) gle) A +h, (o). 0 (1)) g(1)

= [ & (r,0() g(r) AT,

Note that »*(s)=0 and

117



() ()= [(h2) (1. o(r)) g(r) AT + h(a(),0(1)) g(r)

= j (W3 (r, (7)) g (r) Ar, (by the same theaorem (3-1))

¥

Note that (y*) (5)=0, ~

then we obtain, (¥*)Y ()= r'[(.T:f}'l[r co(r))gl{syar, for 0<isa,

and {y")'(s)=0 0<ign,

Finally;

G0 = (Y™ (e, a(r}) g () AT+ h (o (1), o (1)) gy =g )

after this introduction we can shown the particularity unification’ and

extension of the Laplace transform and Z-transform.

Definition {3-9):
a) We dencote the right Laplace transform of a regulated function

Fiy:T = C by L { f(£)}, defined by
I} = | S0 Ke,(0(0)) At = F(s) for  seD{f(0}.

where D{f()} consists of all se C for which the improper integral

existsand 1+ u()s=0 forall reT,
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b) We denote the lefi Laplace transform of a regulated functicn

F():T=C by L (1)}, defined by

0

FArn) = [ £ R, (p(0)) Vi = Hs) for seD{f(]

-

where D {7(r)) consists of all seC for which the improper integral

existsand 1+ p{r)s=0 forall teT.

c¢) We denote the bilateral Laplace transform of a regulated function

£(1):T>C by L { f(n)} defined by
Lismt=rirnt +r{rn.

The definition (2-9) explain the extension property of our Laplace

transform and the Z-transform.

Remark (3-3}:
1. If T = R then

L]

a) o(t)y=t, u(t)=0,0s5=—-5 k,(1}=e" and u]f{r] At = _[f[;)d:.

B) o) =1, n{1)=0,85=35, R, (1)=e" and li[f(:) Vi = ']‘f{.r]d:.

2. 1f 7 = Z then

a) ofr)=1+1, y(r)=l,E}s=1—:-_S—.Kﬂ{r)=(l+cr]’ and
5

[£¢) 8t =3 1.

=0
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b) p{r)=¢t-1, p{t)=1,Bs5=5, R (1) ={(1 +a)" and

Jriove=3 sm.

-

Hence, clearly if T = R, our Laplace transform is the classical Laplace

transform while if 7= Z then:

x

. _ 3 IR Y I Sin)
a}f-{f(f)}—;of(n){l —) ,Zn__'(seum

Z[f(m)] _ Z[s+1]

s+1 s+1

o) {0} = 3 fmey = 3 SO0

S ()
Ifwe let m=—n then we have

$ fEmya+sy _zZl-mi _ Zli+s)
S a8 (1+s)"  (1+sy"

These remarks explain the unification property of our Laplace transform

and the Z-transform,

3-2 Right Laplace transform (Theory and Applications}) [3]:
After having studied the preceding section (2-7), we understand the

linearity of right Laplace transform
rla fy+pgn)=a {0} + AL {80}

it is now obvious, to derive further results on the right Laplace
{ransfonns.

The following auxiliary results are needed.
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Lemma (3-1):
Ko, (1)

If seCand 1+ x(t)s = 0, then K3,(0) = ————
L+ u(r}s

Proof:

By the praperty (3-1) we have

KS (1) = [1+#(0s5)] Ko, (1)

{1_ p{t)s }K@,(rh Ko, (1)
T+ u(t)s 1+ u{t)s

Example (3-3):
Find the right Laplace transform of 7 (¢} =1.

Solution:
Let s=0
. _ L] _ L . _ - ke; (I]
{1} = !k&, (o (1)) AL = !ﬁ:e,{r}m = .J__l T At

by remark (3-2) we have

4 m

L {1}:‘Tl j ©5 ke, () f:({;‘?l mjk;,{:) At = ?k@,(z)

]

=___1(g_1) -1
3 5

Provided lim k., (r) = 0 for all se D {1} (e.g., if there exists ¢ =Re(s)<0

with 1 + z#{t) c >0 and @5 (¢)sc forall reT ).
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Theorem {3-3):

If f(e): T —> Cissuchthat f2(r) is regulated, then

rirmt=sr{rmn) - £

forall s e D {f(r)} such that lim { /(1) ke, ()] =0

Proof:

c )= [ 200 ke, (o) &1

'] {[f(:] k@,{r}]‘ - f{r)k;,]m

L]

—£(0) - [ £ (1} (@) kg, (1} Af

ko, (1)
L+ pie)s

At

i

—f0+s [1(D)

_£0) 45 [£() ke (0 (0) A1 =5 L {f 0} - F(@)D.

Theorem (3-4):
If f():T—C issuchthat () is regulated then
r{r=@m) = & {f(0}-s10) - 740

forall se D (f(r)) with lim {f(6) ko, (1)} =0 and lim {7200 ke, (1)} = ©
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Theorem (3-5):
If 7f(ry:7 - C isregulated and

Fii) = j;‘{r) arfor teT
&

Then I {F[r}}=% L {finn}=0 for all  se D - {0} Such that

lim {/(¢) ke, (1)1} = 0

Proof:

Let F3(t) = f(r), then by theorem (3-4) we have

Crn) = sU{Fn) - FO). F(0)=0

thatis £ { ()} =+ L {F (D))

o {Fw}= - {ro}
Hence

L‘{]'f(:] m}= %L’ {fin} a.

Example (3-4):
Find the right Laplace transform K, (¢)

Solution:

Assuming s # o

+ - | _ ey e
L {k, ()} = Ji:g(f] ko, (G(1)) AL = Jkn‘:f]‘ ST A
- r kaﬁls(f] _ l = o -5
) 6[1*'#{!)5 b= a -5 5[14.;”:”3 Koo (1) AL



by formula (3-4) we have

1" 1,
k = —_—— k fu
— J{a@s) vor(1) 81 = —— [ k2o (1) At

[#4

Thus

L {I:a(:]} = ﬁ provided ,]L”j koo, (t} =0

Definition (3-10):
The hyperbolic function is defined by

k{t) = k(1)

ka['r) + k-n{'r]
2 2

cosh, () =

and sink (1) =

Definition (3-11):
The trigonometric is defined by

k:'n(rj + "E'.—r'ﬂ(r) k[a(r} - k—m(l)

cos {1} = 5

and sin {t) =

Note that: the above functions satisfy cos® (1) + sinl (r} = cosh; (¢) —sin B () =1

iff u(e)=20

Example {(3-5): )
Find the right Laplace transform of f(¢) = cosh, (t)

Solution:
1 1

L.{cﬂshnl:r)}:.i'"a .’F+l'I: 5

Definition (3-12):

The generalized function is defined by
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1, k=0

Bo(t,5) = forall 5,17,

Jﬁ‘_l{r,s] Ar, A=l,2, ..

and; if we let 4% (¢,s) denote, the derivatives of A,_,(z,s) with respect to ¢

then for each fixed se7T.
and A%, (1,5} = k, (t,5) for k=1{0,1,2,3,...}

Note that &, (£,0) = &, (1)

Example (3-6):

Show that £* {#, (¢)} = '_;&1_1

Proof (by induction):

l. If £=0 then Z* {B, (1)} = l, (by Example (3-3)).
5

2. We assume it is true for the integer k = ».

1

nel

§

Thatis £ {h (1)} =

3. We need to prove that statement is true for £ =» + 1.

rnnt=r {]-hﬂ(r] m} = %L* {h ()}

(o) = =

5 ¥

U [

Hence from 1, 2 and 3 we find that

L} = =7,

provided s =0 and lim A, (¢) kg, (¢) = 0.



Example (3-7}:
Find the right Laplace transform of f{r} = », (¢)

where (1) = {ﬂ' fea forall teT

1, t>a

Solution:

=

e, (0} = [u,(0) kg, (0(1)) A1 = [ ke, (o (1)) A

o

_ kastﬂ}
- £

, provided lim K,, (1) = 0.

Examples (3-8):

. Solve the intial value problems

)+ ¥ = (0, p(0) = pR0) =¥ (0)=0  (3-5)

Solution:
Take the right Laplace transform of both sides of (3-5) then we have
i

S Uiy} + sl iy} = 1 and hence
s —
£y} = =
(7 +35) (5-1)
using partial fractions;
rr._1
we have L"{y[:)}:f_l TR SR S
5 s-1 5P+

So that

pity = =1+ %é’r,[r} + % cos, (1) ~ %sin,{r}
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Theorem (3-6) (Convolution property):

Let f(1): T - C be a generalized exponential, hyperbolic,
trigonometric, or polynomial function and let g{1): T = C be regulated

function then;
ri{rmrgny=ri{sn} rigwhoo{f gl

Prool:
Case 1:
If fiy=k(t,0(1))

then the convolution of &, (r, o (r)) and g(r) is
L(e,o())* gy = [k, (1 o)) g(r) sr=p(1)  (3-0)

Now, since the integral (3-6) is the unique solution of the initial value

problem

y{t)-ay(ty=g), y(0}=0
for regressive @ e C and regulated function g(¢): T > C then we have
rignt=r @ -ayint=s L {y®}-al {y)}

or  I'{g®)}=(s-a) L {y()}

B

re M l *
or Uiy} =——-U{g(®)]
5 -



that 15

Lk o) gint= k@, o} LDign)} 0.

Case 2:
If g(ey=sink, (¢r,c{1))

Then we define the convolution of sinh, (1. o (£)) and g{(/) by

sinh, (1,0 (1)) *g(1) = [sinh, (1. ot g(e) b1

1

i
L*{jssnharr.g(rugfr;m ] =
G

- l 'j[i',(r.a(r)]—zk_.,(r,cr(r}] gm] M}=
4

p { [ alro(2) gmm} _y{ [ dealts o)) g{r]m} _
0

2 . 2

Li o) rlam)- ik ol {s0} =

L‘{‘ufwtn—"&a“*“m} L {eg(n)} =

2

Csing, (0 e} Digny) o

Similarly:
If f(ty=cosh (r,0(t)), flty=cos, (t.0(z)) or f{t)=sin, (1, o(1))
then 2 {f(r) " gy } = L {0y} T {s()}

Case?::.
If f(e)=h(t.o())
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Then we define the convelution of & (¢, o(+)) and g(r) to be

i

ot a(0) *g{ty=[h (1 o(r)) g{r) ar = {1} {3-7)

since the integral (3-7) is the unique solution of the initial value problem
Gy (=g, (MY (1) =0, 0gign, reT
then we have

L+{§[f]}: .U{'[:_'L'&)“I{f)}= g {},“}}

or

{un}=——L1 ()}

that 1s

clite,a@)*gnt= cin e} Clgnt oo

3-3 The generalized inverse of Laplace transform
After having studied the preceding sections (1-8), (2-9), (3-1) and

(3-2), the generalized inverse of Laplace transform denoted by L;'{F(s)}

can be defined by following integrals.

1- For +>0

L}f {F{s)} = fle)y= ; di_EF{s) K (1)ds (3-8)
2- Forr«0

q%ﬁmﬂ}=fur=i;:j}rﬂ Rou ()45 (5-9)
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Remarks (3-4):
1- If T =R then the integrals (3-8) and (3-9) become

o+

fl) = — jF{s}e" ds

2- If 7=2 then the integral (3-8) becomes
1 Y
Sy =5— :jr(s] (1+5)" ds

and the integral {3-9) becomes

i de

f{n) =%CJ‘F{3}(I L5y ds

Note that: The generalized inverse of Laplace transform is uscd to take the

function #{s)from a complex variable domain into T-domain, therefore

the integrals (3-8) and {3-9) can be evaluated by the method of residues.

Example (3-9): ]

L then find L] {F(5)}

If Fis)= —
Solution:
y RN
CIF@} == | —
=Res-m =lim({s—-a }K{) K, (r}
5-u t-sa 5 -

Example (3-10):

If F(s)= Re(s) >0, thenfind L} {F(9)}

) ]
s-a’

Solution:

CHF®) = 710 = —

20

K, (1) ds
e

o=l
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o-l=
T+ F~rad f
R R G U 9150 IOPRR U B 0
Imi . 2iy—ai 2ri o, 2f s

thus, f(1) == (K, 0) ~ Ko ()] = sin, ()
=T

Example (3-11):

If F(5)=_17, Re(s)> 0, then find L7 {F(5)}.

Illf

Y

Solution:

& afm

1 n=0 then f(r}s_}—l.r—j I %Ki(r]ds

- e

= Res Eﬁl = K (1) =1=hy(r). (see appendix 1}
§  l=o

Alse;

If n=1 then f{r}:ResLIEq =1im{i[szi‘g—r)J}

il .
vl - &

= lim ¢ k(1)=1= LR (1) ar=h{1)

o

We obtain forany » 2 2

] el 22)
o w=0 ! :

= lim L " K (1) = j‘hﬂ_,(:} At =h (1)

s=0 ! H

1
thus, L;I {_m-_:} = hn[f}
5




{1

(2]

(3!
4]

(-]

i6]

17

(8]

(9]

References

D. R. Anderson, Pan American mathematical Journal. Vel. 12, No.
1, (2002), PP. 17-27.

D. R. Anderson and J. Hoffacker, Dynamic systems and
Applications, Vol. 12, No. 1-2, (2003), PP. 9-22.

P. Athanasion, Signal analysis (1977), by Mc Graw-HilL

J. W. Brown and R. V. Churchill, Complex variables and
applications (1996) Mc¢ Graw-Hill.

M. Botlner and A. Peterson, Methods and applications of analysis
vol. 9, No. L, PP, 155-162, March (2002).

R. V. Churchill, Operational Mathematics (1972), by Mc
Graw-Hill.

H, Goldenberg, Siam Review, Vol. 4, No. 2 (Apr, 1962), PP. 04.
104,

H. Guggenheimer, the College Mathematics Journal, Vol. 23, No.
3, (May, 1992), PP. 196-202.

8. Haykin and B. V. Veen, Signals and systems (1999}, John Wily.

{10} G. L. Liu and J. S, Linear systems analysis (1975) by Mc Graw-

Hill.

[11] B. Rai and D. P. Choudhury and H-T. Freedman, A course in

ordinary differential equations, (2002), Alpha science international
1td.

132



[12] D. E. Richmond, the American Mathematical Monthly Vol. 52,
No. 9 (Nov., 1945), PP. 481-487.

[13] P. Ritegr and N. J. Rose, Differential equation with applications
(1968) by Mc Graw- Hill.

[14] M. J. Roberts, Signals and systems (2004) by Me Graw-Hill.

[15] L. A. Pipes and L. R. Harvill, Applied Mathematics for engineers
and physics (1970) by Mr Graw-Hill,

[16] J. L. Schiff, the Laplace transform theory and applications (1999)
Springer- Verlag, New York.

[17] D. V. Widder, the American mathematical Monthly, Vol. 52, No. 8
(Oct., 1945), PP. 419-425,

[18] D. G. Zill, Airst course in differential equations with modeting
applications, (1997), Pabli shing company.

133



APPENDIX ]

Definition 1:

A function f(¢)has disconlinu.ity at point a if
f(a®)=lim f{zr}= f(a7)=lim f()

Definition 2:

A function f(¢) is piece- wise continuous on the interval [a.6]if
(i)  Bothlimits lim f (s} and liT_f{r) exist

(ii) (1) is continuous on (a,b) except possibly at a finite numbers

Qs By yeeen @, 101 (@, 5]

Definition 3:
A function f() has exponential order @ if there exists contants M > C

and o such that

]f(r)] < Me®'

Dirichlet conditions
1. f(¢) is periodic function with period T.

2. f() and f'(r) are piece- wise continuous on the infral (@, a+7T).

a+T

3, f(¢) isabsolutely integerable on (« . a+T) thatis j]f(r][ dt < @,

fla) s flay

4. At any point of discontinuity a in (a,z+T), f{a}= >



Definition 4: .
We say that a complex function f(z) defined on a domain D is

differentiable at a point z,e D if the limit

df(z)
dz

f(z’} Sz}

2_2¢ )

= f'(z,) = lm

t=1

If f{z) is differentiable at all points of some neighborhood |z - z, | <7,

then f(z) is said to be analytic at =,

If f(z) is analytic at gach point of a domain D, then f{r) is anatytic in D.

Definition 5:
If fla)=u(x,)+ivix,y) is defined in domain D and the partial

derivatives.

Bu Ou BV OV .0 continuous and satisfy the cauchy- Riemann
2x dy'ax dy

equation that is

‘Then f(z) is analytic in D.

Definition 6:

a. A curve is closed if its end points coincide.
b. A closed curve is simple closed curve if it does not intersect it self.

c. A region is called simple connected region if any simple closed

curve in region can be shrunk to a point of the same region.



Cauchy’s integral formula:
If f(z) is analytic within and on a simple closed curve C and a is any

point interior to C then

f{a]:Lt{f(:‘: d:-

i

where C is traversed in the positive direction (counter clock wise}.

The nth derivative of f(z) at z = ais given by

" - Hl f(:) -
f (H]_Exij(z—a]"l 9

Taylor's series:
Let f(:) be analytic inside and on a circle having its center at z =« then
for all peints z in the circle we have the Taylor series representation of

F(c) given by

f{a)

fley=fla)+ fia)(z-a)+ — (z=a) +...
= [n
= f ;fa}{:-ﬂ]"

Definition 7:

A singular point of function f(=) is a value of z at which f(z) fails to be
analytic.

If F(z) is analytic everywhere in some region except at an interior point

- = a we call = = a and isolated singularity of f{z}.

Il



Definition 8:

é(x)
(z—a)"

region including z =« and if n is a positive integer then f(z) has an

. d{ay=0 where ¢(z) is analytic evervwhere in a

If fiz:)=

isolated singularity at z = @ which is called a pole of order n, if »=1 then

it is called a simple pole.

Leurent’s serics:

If f¢-) has a pole of order n at = = z, but is analytic at every other point
inside and on a circle with center at =, then (z - a)" f(z) is analytic at all
points inside and on C and has a Taylor series about z = z,, it is also called

Laurent series in this case.

So that Laurent series for f(z) is:

fa.u

f(:)=z ay .;"*-"ﬂ) +z (i-1)
n=9 n= r(--—aJ
where
a, : t{f{z)d" , (n=0,12,..)
TR (z-2,)"
and
- ! f(z)d= (n=1,2,...)

- N — ! 5
2mi s(z-z2p) -+
Laurent series (I-1) is often written

f2)=3 e (z-2)

mEu—

IV

. ———— —



where

Co=7 'i‘ﬂz)dz (r=0,%1,%2,...)
i

»
(z~24) "t

Residue theorem:
Let C be a positively oriented simple closed contour.

If a function f(z) is analytic inside and on C except fora finite number of

singular points z,, (k=1,2,...,n} inside C, then
cj'f(z]dz =2:rrii Res f(z}.
- k=l

where Res f(z) denote the residues of function f{z}.



APPENDIX T1

Theorem 1:
a) If f(s)1s continuous at tand o(t} =1,

HOEFAC)

I —H

then f*(¢) = lim
b) If f(¢) 18 continuous at f and o{¢) = ¢,

Fla ()~ )
alt}

then f*(¢) =

Proof:
a) By definition (3-2) we have

f{a(t})—f{u] _f.\(r] < E .‘Q'HEIV(T) (ﬂﬂlghbﬂhﬂﬂd}

o(t)—u
or
fﬂ(f] - lim f{ﬂ'(f}) = f{u)
et o(t) —u

Since a(¢) = ¢, then £ (1) = lim f{fi - S o. (l-1)
= - U

b) Similarly, £2(¢) = lim flote)y - [}

! ao(t)—4

Since a(t) =1t,then f*‘(:):ﬂgmgr;"r(” o. (i-2)
M

Remarks 1:

f("'l) -f{u} = f'(f]

[ - H

a) If T=Rthen f°{s)=I1im

VI



Remarks 2:
)If T=g,then f7(1)= f'(¥)

b}If T =2Z,then f¥(n) = f("]-{[“'” = f(n)=f(n=1)

Theorem 3:
If £(+), g{t) aredelta (4) differentiable at  then

a) [7()+g()] = () + g7

by [£(1) gn)] = fF{ny gt + FH (o)

4 4 _ 3
0 [f{r}j[ _ SR e - SO ovided g(6) glo () # 0

g{t) gty gla(t))

d) If f£2(¢) is continuous, then

[If(r,r} ﬁr] = f{a(t},!)+ jf"'{:,r) AT

x 1

Proof:
Case 1: If (¢} = ¢, then by {1I-2) we have

9 [0 + sOF - fle()) + glo()) - [F (1) + g(1)]

H#(1)
_fle() - fG) | glott)) - g(0)
#(2) ML)
= () +g7(1) o.

V1



Case 2: If o(ry=1¢,then by (l1-1) we have

s _ ey 2L+ 8 = () = ()]
a) [f()~g()] =lm —

=S+ gy o,

gty fr) — flu)gln)

P —u

by [f(r) g()]* =lim

=fng*)+gw) fin 0.

0 {f(f)] o LU0 g0 - S0 g )

g() u- I —u
_gW - fwen
(g())’
I ]
; A If(r,r}zlr—_[f{’u.r)z_‘lr
d) [jf(r,r)dr} = lim & s
5 u—»t f—u
=If“{r,r)m a.

Theorem 4:

If £(¢) and g(+) are nable (V) difterentiable at 7 then

) [ftos gl =+ et

b) [£(1) 2] =£5(r) g() + flete) g7 ()

FOT _L0re) ~ SO 0 ded o 0
) [g(f}] g(1) g(p(r)) provided g(1) lp(1)) =

d) 1f £¥(+) is continuous then {If{},r}vr] = f{p{ty, 1) + If"(:,r}?r



Proof:

Case 1: If p(1} = ¢, then by (11-4) we have

2 [0+ g = L0780 - [;rttff(e)wgtp(m]

= fT+gt(n o

by [/ g(n) F = 2408 = [;{Efir)}g(p{r})]

=f g+ flpttN g7ty O

|

|

|

¢) [M]" _ S /g) - e /glpte)) | ‘
|

gt) n(t)
WMOF{ORFIOFNO) .
(g(t) g(p(t))
I Ay
, s Jfn)Ve- Jf(p), 1) Ve
d) [ f{t,r ?r} = 4 I
J ) n(t)

=]f{r,r}vr-[]f{pm,rwr— [ £t ) Ve

PR

n{t)

=]’[f(:,r}—f(p{:),r)]vr jf{ﬂ(fJ,r)?r

gii}

n{t) L)

=]'f“(r,f)‘?r+f(p(r},z} a.



Case 2: If p(¢) =t, then by (II-3) we have
S+ gy - [fle) +g(x) ]

I —u

a) [f(1) +g)] = lim

=fY()+ g7 (1) o.

Flyeg(t) - f(u) glu)

{ -~ N

=T gl) + fryg {1y O

b) [s(s) g()] = lim

0 [M} o L)/ 8(0) = ()] g (x)

u-si =it

N{OFMOEFIOFAO)
(g(t))

' v r_{f{ftr) Vr—]‘f{u,r] Vr
d)[ff(r.r}vr:l = lim < ;

et 1 —u

=:jf"{r,r)?r O.

Remarks 3:
We can define k, (¢) 28 A, (1} (ko(2) = 1= A {£))

To see this we have k,(¢) is a solution of y*(z) = p(£)y ., »(0) =1
and if p(¢) =0 then, »*(t)=0, »{0)=1

Therefore &k, (1) =1=h,(¢t) «

Al
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