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Abstract

In this thesis we analyze Hiibler's axiomatic discrete geornetry, one of
the few of tis kind—perhaps the only onc. The system is characterized in
terms of torsion free Z-modules satisfying some so-called generator
properties. The new acclimatization obtained is arguably easier to understand
than the original one, and the work casts new light on different properties of
Hiibler's geometrics. His system turns out to be too restricted for our
purposcs, but the results indicate some ways in which to continue this thread

of work.



Introduction

Hiibler's gcometry, 1I{bler has developed an axiom system with the
intention to capturc the esscnce of discrete geometry as utilized in image
processing and computer graphs, “Hibier axiomatic discrete geometry can be
characterized in terms of modules over the rings of integers * [26]

This thesis is mainly about Hibler axiomatic discrete geometry. The
main intended application of this subject is image analysis and manipulation,
computational geometry, and related fields.

“Currently the most commonly used approaches 1o these areas are
continucus instead of discreic, continuous approaches are plagued by the
inherent finiteness of computing hardware * [25]. In view of this we can
argue that the proper framework for many algorithms is not continuous, but
discrete | furthermore |, * 1t is preferable if such a framework is axiomatically
defined , so that the essential properties of the system arc clearly stated and

many models can share the same theory “[25].

In chapter zero we introduce an introduction to different kinds of
geomelry, chapter one background material of the tater chapter's, chapter two
we study 1l{bler's work on discrete geometry, chapler three we explores
some closure operator’s defined on modules over integral domain and , the
associated matroids and geometry, and chapter four contains the affine

geomelry , generators and isomorphisms .



The aim of this work is to show that matroid methods can be applied 1o
many discrete geometrics, “namely those based on modules over integral
domain, the trick is to emulate the structure' of a vector space within the

module there by allowing matroid methods to be used as if the medule were o

vector space”[17].



CHAPTER ZERO

INTRODUCTION TO DIFFERENT
KINDS DF GEOMETRY



CIHAPTER ZERO  "INTRODUCTION TO DIFFERENT KINDS OF GEOMETR Y™

Chapter zero
"Introduction to different Rinds of geometry”

Geometry existed long before the time of Fuclid. In this chapter we
introduce an introduction to difterent kinds of geometry.
The references of the following materials ave [1],[9],]11], [24],[29],[32].

0-1: Euclidean gecometry:

Euclid (300 BC) established five axioms for gecometry, and then showed
that every result in his text could be proven from those axioms.
Euclidean axioms can be stated as follows:

[.Ior every point P and for every point Q not cqual to P there exist a unique
line ! that passes through P and Q .

[I. For every segment of line AB and for every segment of ling CD there
exists a unique point E such that I is between A and E and segment CD is
congruent te segment BE.

Iil.I'or every point O and every point A not equal 1o O there exists a circle
with center O and radius OA.

IV. All right angles are congruent to each other.

Before stating Euclid's fiflh axiom, it is necessary to state a [ormal
definition.
Definition (0-1-1) (Paralicl)

Two lines ! and /" are parallel il they do not intersect, i.e. if no point lics

on both of them . We denote this by {|)/”

We are now ready o state Fuclid's fifth axiom, sometimes referred to as
the paralliel axiom
V. Tor every [ine { and for any point P that does not lie on 7 there exists a

unique line /" through T that is parallcl to /.
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G-2: Incidence geometry:
In an altempt to fill in some of the gaps in Euclid's postulates, we
consider these three postulates pertaining to only incidence
Axioms of the incidence geometry:
I- Tor every point P and for every point Q not equal to P there exists a unique
line / that passes through (is incident with) P and Q.
2- For every linc / there exists at least two distinct point incidents with /.
3- There exist three distinct poinls with the property that no line is incident
with all three of them,
The incidence uxioms are the first of the set of axjoms introduced by

David Hilber, a renowned mathematician of the early 1900s.

0-3: Neutral geometry:
Neutral gecometry, sometimes called absolute geometry.
0-3-1 The Incidence Axioms
Foints, lines and planes are undefined terms.
1- All lines and planes are sets of points.
2- Given any two points, there is exactly one line containing them,

3- Given any three noncollinear points, there is exactly one planc containing

them.
4- If two points lie in a plane E, then the line containing the two points lies
inE.

5- Ifiwo planes intersect, their interscetion is a line,

6- Every line contains at least two poinis and there arc at least three
noncollinear points. Every plane conlains at least three noncollinear points

and there are at least four noncoplanar peints,
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1-3-2 The Betweenness Axioms
The notion of betweenness, as in “the point B is between the points A
and C”, is taken to be an undefined term. If a point B is between the points

Aand C, we write A— B — C.

It is assumed that betweenness satisties the following five axioms:
I-1fA-B~C, thenC—B - A.(If B is between A and C, then B is
between C and A.)
2- Given three collinear points A,B and C, then exactly one of the following is
true: A—B—C,B~A-C,or A—C - B. (Given any three

collinear points, exactly one point is between the other two.)

Definition 0-3-1(four collinear pointy)
Let AB,C, and D be four collinear points. We write A—-B— C —D
provided cuach of the following relations hold: A-B —-C, A-B -D,
A-C-D,andB-C-D.

3- Any four points of a line can be named in order A,B.C, and D, in such
awsythit A—B-C-D.
4- If A and B are any two points, then there is a point D such that
A — DB =D and there is a point C such thut A —= C — B.
5-If A— 1B —C, then A,B, and C are collincar.
We are now ready 1o imtroduce the definition of line segment, ray and
angle.
Definition (-3- 2 (line segment)
If A and B are two points, the line segment between A and B is the set
points between A and B together with A and 13.
This line scgment is usually denoted AB.

Note that: AB={C: A—-C-B} UiA}uU [B}.
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Definition 0-3-3 (ray)}
Let ALB be two points, The ray from A through B, denoted _f;B, is the set
of all points C on 48 such that C — A — B docs not hold. The point A is called

the end point of the ray. If the point A is in a ray ABthen is closed ray, and 1f

-

the poinl A is not in a ray AB then is open ray .
Definition 0-3-4 {(angle)

An angle is the union of two rays which have the same endpoint but do

—

not lie on the same line. If the angle is the union of the rays 48 and AC, the

angle is denoted by 2 BAC. The rays AB and A-E:' are called the sides of the

angle und the point A is called the vertex of the angle.

Here are a couple of sample theorems which can be established using the
above axioms and definitions.
Theorem 0-3-1
If A and B are two points, then AB = BA
Theorem-3-2
— —-> - -
let ABbe aray. IfCisapointon AB,C# A, then AB = AC
-3-3 The plane separation axiom
Definition-3-3 convex
A set K is said to be eonvex provided that the line segment AB is
contained in K whenever the points A and B arc in K.
I- (Plane separation axiom) Given a line and a plane containing it, the
sct of all points of the plane that do not lie on the line is the union of
two disjoint sets H; and H, such that each of the sets 1s convex and

i P belongs to one of the scts and  belongs to the other, then the

segment PO intersects the line. Each of these sets is called a half plane.
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0-3-4 Angie Mcusurement Axioms

We let m{ £ ABC) denote the measure of the angle £ ABC. [t is assumed
that the meusure of an angle is a real number.
1- Given an angle £ A, m assigns one and only one real number to £ A,

2- For every angle £ A, m(£ A) is between 0 and 180,

3- (Angle Construction Axiom) Let 48 be a ray on the edge of a half plane

-3

Fl. For every number a between O and 180 there is exactly one ray ACin
Fl such that m( 2 BAC) = «.

4- {Angle Addition Postulate). 111D is in the interior of £ ABC, then
m( £ ABC) = m{ £ ABD) +m( £ DBC).

Definition (-3-5( oppuosite pair)

If B —A— C, then the rays ABand AC form an opposite pair.
Definition -3-6(lincar pair)

let AT:’j‘ and AACbE opposite rays and D a point not on the
line CB.Then £BADand «DAC form a linear pair.
Definition 0-3-7(supplementary and complementary angles)
If m{ £ ABC) + m(£DEF) = 180, then £ABC und £DEF are called
supplementary angles 1f m{ £ ABC) + m{ » DEF)=90, then £ ABC and 2 DEF

arc called complementary angles.

5- (Supplement Axiom) If two angles form a linear pair, then they are

Supplementary.

[n a metric geometry, two angles are defined to be congruent if they have
the same measure,
Definition 0-3-8 (right angle}
[f the angles of a linear pair are congruent, then each of them

15 called a right angle.
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Definition 0-3-9 (perpendicufar)
Two rays arc called perpendiculur if their union is a right angle. An angle
is acute if'its measure is less than 90° and obiuse if their measure is greater than

90",

0-4: Non- Euclidean geometry
In the previeus section, we considered a geometry without the parallel
postulate. Now we will consider a geometry under the negation of the parallel

axiom "the five axiom of Euclid”,

Under scrutiny and controversy for 2000 years.

Some tried 1o prove the parallel axiom from (section 0-i: [-TV) thus no
need to assume it- failed .

Saccheri (1667-1733} assumed the negation of the parallel axiom and
obtained stranpge results .

Gauss believed that negation the axiom would not lead to a contradiction.
Gauss, Bolyai, and Lobachevsky independently developed a noncontradictory
geomelry in which the parallel postulate is falsc Beltrami {(1900-1935) and
Klein (1849-1925) produced models within Euclidean Geometry of the
geometry of Bolyai and Lobachevsky — now called llyperbolie Geometry
Satisfied (sce sec 0-1) axioms (I-1V) except V implied thal proof of V was
impossible \Euclid’s [ifth axiom can fail if we have “1oo many parallel lines
through a point”. There exists a line / and a point P not on 7 ;such that at least
two distinct lines parallel to /, pass through P - the Ilyperbolic Axiom .
Geometry built on I-TV and Hyperbolic axiom called HYPERBOLAC
GEOMETRY,

Alse “not enough parallel lines through a point”. There exists a line { and
a point P not on /, such that there are no lines parallel to / which pass through P

- the Elliptic Axiom ,Leads to ELLIPTIC GEOMETRY

10
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Non-Euclidean Geometry includes both Hyperbolic and Elliptic Geometry,
Any theorem of Euclid not using V led to Absolute Geometry (see 0-3) both
holding in luclidean ,and Hyperbolic Geometry .Theorems based on (1, 11} and
V became known as Affine Geometry

Leonardo da Vinei (1452-1519); Problems faced by artists of projected
objects onto a canvas where lengths are distorted relative to the objects around
them. How can structure still be recognized?. Some geometric properties
invariant under central projection — Projective Geometry.
Descartes (1596-1650) allowed geometries to make use of Algebra and
Calculus making calculations simpler — e.g. theory of conics — Analytic
Geometry.
Analytic geometry

Analytic geometry is concerned with the representation of internal
propertics of geometric objects by algebraic equations of points. For the present

purposes we identify points as vectors

which are bound to the specilied reference point Py (see (1)), Furthermore

the distance of the point p from the origin is now given as |P| = |X| ,where it
follows that P, = (Py + X)* = X% or Py*+ PpX + X Py = 0, which in turn implies
that P> = 0 ,and PpX = —=XPy, for any vector X, In other words, P is a null
vector, which is orthogonil to any vector in E(N}. In elfect, the inclusion of Py
expands the dimension of space to N + 1.

However, the intemal propertics of any geometric figure depend, not on
specific points, but their difference. Since the difference P; — P, is a free vector
X; — X;, we can be formulaie analytic geometry in terms of free vector variable
X, and we need not concern us with the distinction between a point PP and the

vector P oused to label it

11
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Riemunn developed efliptic geometry and considered higher-
dimensional Euclidean and spherical spaces leading to study of surfaces of any
dimension — Riemannian Manifolds — Differential geometry

Uscd by Wintuin in his general theory of relativity .

The topolegy capture essential under Ricmann geometry |see |9]]

0-5: Projective peometry
In standard Euclidean geometry such as we have discussed so far, there
(s & rather inelegant situation. Two points always determine a line. However
two lincs in a 2-plane may determine a point if the lines intersect, but may not
determine a point if the lines are parallel.
‘This somewhat cumbersome situation is resolved in projective geometry,

This 1s done by asserting that "parallel lines meet at infinity."

Axioms of Projective Geometry
1. There exists at teast one line.
2. On each line there are at least three points.
3. Not all points lie on the same line.
4. Two distinct points lie on one and only one line.
5. Two distinet lincs meet in one and only one point.
6. There is a onc-to-one correspondence between the real numbers and all
peints but one point on a line.
Theorem(-5-1 : (Fundamental Theorem of Projective Geometry):

There cxists one and only one projective transformation mapping three

distinet points on a line onto three distinct points on another line in a given

order. The lines need not be distinet

12
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i

0-6: The future work

The future work is a new geometry that is using in a technology i,
computer screen and digital camera and image processing.... Lte, called
discrete geometry or digital geometry, Hiibler has developed an axiom system
with the intention to capture the essence of discrete geometry as utilized in
image processing and computer graphs .This thesis is mainly about Hiibler
axiomatic discrete gecometry, The main intended application of this subject is

image analysis and manipulation, computational geometry, and related fields. .,
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Chapter one
Background material’

This chapter contains background material of the later chapter's.
Note that the treatment of matroids, anlimatroids, and oriented matroids is

somewhat nonstandard, as infinite ground sel are allowed.

1-1: Notation and terminovlogy:
The references of the following material are [25] ,[26], [27].
A few words on notation and terminology.
¢ If A is equal to B, then we sometimes make this explicit by writing A:=B .
» We let Acr, B be true iff A is a finiic subsct of 3.
* AcBiscquivalentto ( Ac Band A+ B}, i.c. A is proper subset of B3.
s The cardinality of the set A is denoted by |A],

e The power set of A is denoted by @A) , and we let
(Pﬁn{A):= { B | BCn, A } -

* When the thesis allows so the singleton set {x} is ofien written simply as x.
» Set difference is always written using \, never (-) , this because — is used
for a different purposc .

¢ Il A-»D is a function then whenever there is ne risk of confusion , [also

denoted the function ': P(A)— P(B) defined by ['(Py={f(p) | peP}, PeP(A)

= A subset PC S is maximal with respect to 8 and seme property iff the set
P has the property and there is not any set ACS with PcA ;such that A has
same property of P,

e A subset Pc S is minimal with respect to S and some property iff the set P

has the property and there is not any set ACS with AcP, such that A has

same property of P .

15
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* The set of natural numbers ( non- negative integers } is denoted by K

* The set of all integer numbers is denoted by Z

» The set of rational numbers is denoted by @.

» The set of real numbers is denoted by ] .

» The notation X7, where X is one of the above mentioned sets , stands for

all positive elements of X,

1-2: Set theory and lattices

In this section we define any notations in a set theory and lattice .
The references of the following materials are [3LI5L17),[13],128],[31]
Definition (1-2-1) (Partial- order refation)

If R is a relation on a set M= ¢ satisfy
I- reflexive (if for all xeM , xRx)
2- transitive (if x,y,2€ A {xRy and yRz then xRz)
3- anti-symmetric {for all x,y €A, (xRy)} A (yRx) then x=y

Then it's called partial —order relation.

Definition (1-2-2} (Comparable)
Any two elements x and y in a partial order are said to be comparable if
X=y O y=X.
Definition (1-2-3) (Total arder)
If every clement in a partial ordered set A are comparable then the partial

ordered in A is called a toral in A

16
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Definition (1-2-4) (Poset)

A noncmply sct with a partial order on it, is called poser.

Definition (1-2-5) (Lincarly ordered)
A poset {(P,<) is called = linearly ordered set or a chain if for all x,yeP

either x<y or y<x .

Definition (1-2-6) (Well-ordered)
Let (A,<) be lincarly ordered . the (A,<) is well —ordered iff uny

nonemptly subsel ol A contains a last element.

Definition (1-2-7) (Equivalence relation ~ }
If R is a rclation on @ sct M= ¢ satisfy:
1- reflexive {if for all xeM , xRx)
2- symmetric (for all x,y €A, (xRy) then (yRx)
3- transitive (if x,y,z€ A |xRy and yRz then xRz)
Then it's called Kguivalence relation
Definition (1-2-8) (Eqivalence class)
A equivuléncc class Ex of x with respect to the relation ~ is the st of all
elements ¥ of M x~y and Ex= {yeM: x~vy}.
Definition (1-2-9) (foin)
We write avb (read as "a join b") in pleas sup{a,b}.
Definition (1-2-10) (Mcet)
We write aab (read as "a meet b") in pleas inf{a,b}
Definition (1-2-11) (Birkhaff)
A lattice is a poset P any two of elements have a g.1.b "meet”, denote by

anb and u Lu.b "join" denoted by avb.

17
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1-3 : Matroid And Geometries:

The references of the following material are {2] ,[4], [20], [25], [20]
[27].

From the viewpeint of this thesis matroids capture the essence of
independence as found in e.g.( linear algebra (lincar independence )) and
affine peometry { affine independence}.

This general treatment includes concepts such that as bascs dimension,
etc . Note, however , that the subject of matroids is much larger than this
thesis might indicate .

Usually matroids have a finite ground set , but for treating independence

this is an unnecessary assumption .

The following definitions are relatively standard .
Definition (1-3-1} (Closurc operator)

A closure operator is a pair { M, ¢l) , where M is a set ( the ground sct )

and cl: P{M)— P (M) is a function { closure operator ) satisfying: for all

ABcM,

. Ag cl{A) {increasing} .

2. 1T AC B then cl{A) c cl{B) { monotone ),
3. cl(cl{AY) =cl{A) ( idempotent }.

Definition (1-3-2) ( finitary)
A set A c M is called a finitary if xecl(A), then x ecl(B) for some

Bgﬁn A.
Definition (1-3-3)(Exchange property)
‘The exchange property is characterized by the following property: if

vecl(Auxcl(A) for some x,y €M, then xecl(Aly) .

i8
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Definition (1-3-4){Mutroid}
A matroid is a closure space satisfying the exchange property and

finitary .

Definition (1-3-5) (Simple)
[T a closure space satisfying cl(i2) =& and cl(x) =x for all xe M then it

is called a simple,

Definition (I-3-6}(Geonwetry)

A peometry is a simple matroid .

Definition (1-3-7)( Flut)

The closed subset of matroid 1s called subspace or flat

Definition (1-3-8){ Prajective faw)
et A and B=d be two subsets of the ground sct M, then the

projective law satislying : ci{AUB)= U { cl(x,y) | xe cl(A), yecl(B) }

Definition (1-3-9)(Projective matroid)

A matroid satisfying the projective law 15 called a projective matroid

Definition (1-3-18)(Independent sei)
Independent set s a matroid M together with set 1P (M) is
satisfying :
1- 1265 .
2-1f B Ael then B €],
3-If A B el and |A| <j[3)<ow then there is some x € BVA such that Avux el

4- If AcM and Bel for every Bop, A then Ael.

19
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Definition (1-3-11)(Buaxix)
A basis of A is B, if B i5 independent set and ¢l(B) = A ,for some A,B <M.

Note:

Every closed sct has a basis, and all basis of closed set are equipotent .

Definition (1-3-12)(Rank function)

A matroid is ua set M together with a rank function r; Py (M)— M,

satisfying {for all A,B cq.M).
1-r{A) £]A].

2-TF AcB then , r(A) £ 1v(B3).

3- lAuB)T ri{ANB) S r(A) + r(B) .

Nete that:
- The cardinality ol any basis of A is the rank of A.
- EAF=END, Evi=el(l2UF)
= T(EAT) 4+ rf(EvE) £ r(E) + (), for any subspaces EF .

Definition (1-3-13}(Equivalence refation ~)
The equivalent relation ~ 15 defined by x~y iff cl(Ewx) =cl(Ewy),
x,yeM\E, EcM ,

Definition (1-3-14)(Quotient set)

L.et E be a subspace of M . Take the quotient set M/E consisting ol the

equivalence classes of the equivalence relation ~.

20
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Definition (1-3-15)(Canonical prejection}
The canonical projective is defined by the map m:M\E — M/E

i.e. A map from M\E to the quotient set M/E.

Note ;

Define the closure operator on the quotient set

chwe: PMIE)— P(M/E) by Clyge(A)= T (el {AYUENE).

Definition (1-3-16)(Corank)
The corank of a subspace EcM is r(£) = r(M \E).

Remariks:-
-The corank satisfies r(E)+r(E)=r{M).
- The matroid M itsclf has corank 0,
- HEY (Y SHEAF)+HEVF)

- KE)+r(EAFYSF(Ev F)+r(f7) for any subspaces I,F.

Definition (1-3-17}(hyperplane)

A hyperplane is defined as a subspace with corank 1 .

Definition (1-3-18)(Degree)
A geometry is of degree n if it satisfies for any subspaces E,F, n el ,

IF(EAF)2n then r(FAFH(EVE) = r(E) 1(F).

Definition (1-3-19)(Modular}

A matreid of degree 0 is called modular.
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Definition (1-3-20)(projective geometry)
A projective geometry is a sct G of point together with an operator
»GxG— P{G), satisfying for all a,b,c,dp €G
1- a.a={a}
2-aebea

3-ifaeb.p, pec.d, and ac then {(a.c)(b.d)2d.

Definition (1-3-21)(Line)

In a geometry of degree 1, the subspace of rank 2 is called a line

Definition (1-3-22)(Plane)

In a geometry ol degree 1, the subspace of rank 3 is called a plane

Definition (I-3-23)(Paraiici)
Two lines {;,{; are parallel {{,||{,) iff either ,=/; or {;~,=F and

r{f ;Vf 3)23 .

Definition (1-3-24)(Affine peomnetry)
An Affine geometry is 2 geometry M of degree 1 for which, for every

line /M and point peM// there is a unique line {'. parallel to 7, with pe/’,

1-4 :Antimatroid:
The refercnces of the following material are [2],{4],[19] }20), [25],
[26],[27].
Antimatroids are related to matroids. Convexity is treated abstractly in two

different ways.
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As the following definitions show :
Definition (1-4-1)(anti-exchange property )

For some X,y €M and ScM the anti-exchange property is
characterized by the following axiom: if X,y €M, x=y , SgM, and
yecl(Sux)icl(S), then xecl(Suwy).

Definition (1-4-2)(Convex sei)

A set A in the plane is called convex set if, {or any peints x and y in A

, the entire segment of line xy lies in A.
Remuark:

For any intersection of convex scts 1S convex.
Definition (1-4-3j(Convex huil)

We say that minimal convex enclosing set is called convex hull of A
and is denoted by H{A), that is

H(A)>M{B:AcB and B is convex set }
Definition (1-4-4)(Antimatroid}
An antimatroid 1s a closure space satisfying the anti-exchange

property and finitary

Figure: 1.4.1 : Tllustration of the anti-exchange property for a planar convex
hull operation . The notation used in the same as in delinition (1.4.1}. The
point y is not in the convex hull of S | but it 1s the convex hull of Sx . On

the other hand |, x is not in the convex hull of Swy .
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The standard example of an antimtroid is a vector spaces with the
standard convex closure . Figure(1.4.1), motivates the definition of the anti-
exchange property in this contexl .

Let us finish this section with some simple results about anitmatroid |

indicating in what way anti-exchange property is related to convexity .

Definition (1-4-3}(Extreme point)
The point e€S is an extreme point of S i S be a subset of the

antimatroid M and ezcl{S\e).

Definition (1-4-6){Extreme set}
The set of all extreme points of § is called the extreme set and denoted

by E(S) and E(Sy={5'cS| cl(8=cl(S)}.

Remark

- Independence is defined in the same way ag for matroid . and , if Sisa
subset of the antimatroid M then 8 is independent iff SCE(S).

- We cannot expect the important theorems about basis valid for matroids to

be true in this thesis , since they are bascd on the exchange property .

1-5 :Rings and Modules:
The references of the following material are 4] ,[5], [7], [10], [25].
This section lists some standard definitions, and a few results ,
regarding modules and rings ,it is assumed that the reader knows the basis
about group theory , vector space , etc, For more information the reader is

referred to any books of abstract algebra.
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The following definitions are on rings ,modules, etc.
Definition (1-5-1)(Ring)
A ring is a non empty set R with two binary operations called addition +
and multiplication . , such that :
1. {R,¥) is an abelian group i.e { commutative group).
2. (R,.) is semigroup , i.¢. closed and associative .
3. () is distributive over +
a.(b+c)=a.b-rac

and (btc).a=b.atea forall ab,e eR.

Remarks:
1) a.b is written usually as ab.
2} Aring R is called a ring with unity 1f 3 eeR such that ¥ aeR then
a.e=c.a=a.
3) Aring R 1s called a commuiative ring if it's a commutative under (.)

i.e. a.b=b.a VvV abeR.

Example{1-5-1):
[.et Z be the set of all integers, Z is a commutative ring with unity

under the addition and muliiplication of integers,

Definition (1-5-2}(Zero divisor £.D)
Let R be aring and aeR such that a=0, a is called a zero divisor if 3

beR such that b=0 and ab=0 or ba=0.
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Example(1-5-2);
Let £ be the integers modulo 6, that is Z¢={0,1,2,3,4,5}, Z, is a ring
under the additive and multiplication of integers and, 2.3=0 but 2=0 and 320

also 4.3=0 but 40, then {2 ,3 4} are zero divisors in Z,,

Definition (1-3-3)(Integral domain I.D)
An integral doemain is a nontrivial commutative ring with no zero

divisors,

Example{1-3-3):
The ring of intcgers £ under the additive and multiplication of integers

1s an integral domain,

Definition (1-5-4)(ldeal)
Let I be a subset of the commutative ring R , Then I is called an ideal of
R if:
1- [is an additive subgroup of R.

2- Forall ael and beR then abel.

Note that:
If 1#R then 1 is called a proper ideal in R.

Example{1-5-4):

nZ is an ideal of a ring of intcgers Z , n M

Definition (I-5-5)(Principal ideal)
An ideal ] in aring R is a principal if there is an clement reR such
that [= Rr={ rr' | reR }.

i.¢. an ideal |is generated by one element r and denoted by <r>.
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Example{l-5-5):
Anideal 2Z in a ring £ , is an ideal generated by one element 2.

<2>={2.a|aecd )| =2&

Definition (1-5-0)(Principal ideal domuain PID)
A principal ideal domain is an integral domain in which every ideal is

principal , that is generated by a single element .

Example(1-5-6):
The ring of integers & is an integral domain and for all ideals of Z is a

principal ideal { generated by a single element) .

The foowing theorem shows that all ideals over Z are principals:
Theorem(1-5-1):
Every ideal of £ is a principal ideal.
Prool
Let I be an ideal of Z,
IfI={0} , then I= <0> which is a principal ideal ,
Suppose that 1#{0} , then there exist xel such that x =0,

Let n be the smallest positive integer in [

by the division ulgorithm in integers x=qn+t; 0€r < n, qr =Z.

Sor=x-qn, and xel,nel = qnel  thenrel,butr<n,
i1 is impossible |, then =0
thus x= gn

.~ I={an lge&}= nd= <n> is principal ideal o
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Definition (1-3-7)(Module)
Let R be a commutative ring , M is an R-module il ;

1- M is an additive abelian group

2- There 15 a map: RxM-—M,
Such that , for all r,seR and m,n eM
1. {r+8)m= rm+sm
i. (rs)m=r{sm)
iii.  r{mtn)=rm+rn

iv. em=m il R has unity e.

Definition (1-5-8}(Submeodule)
Let M be an R-module and NcM , N is called an R-submodule

of M, if N is a subgroup of M and rxeN for all reR and xeN.

Definition (1-53-9)(Module homomaorphisny
Let R be aring and M,N be two R-modules, s map [M—N is called an

R-module homomorphism if for any x,yeM and reR we get:

DAy )=ti(x) Hiy).

iy  f(rx)y=rl(x) (scalar multiplication)

Note:
A subset of module 18 a submodule 11T 1t's closed under scalr

multiplication and sum .

Theorem({1-3-2):
Let :M—N be a map between two R-modules |, then {is R-module

homomorphism iff f{rx+sy)=rf{x)+s(y) ({incar transformation) o
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Definition (1-5-10)(Isomorphism)
Two R-modules are isomorphic if there exist a bijective R-module

homomarphisim

Definition (1-5-11)(Torsion free)
An R-module M is torsion free if for any reR\{0} and meM\{0} the

product satisfies rm#0,

The following three statements are casily seen to be equivalent :
» The R-module M is torsion free
» rm=rn implies m=n for any reR\{0} and m,n eM

o rm=sm implies r=s for any r,s€R and me ME{D}.-
Definition (1-5-12)(Generates)
Let M be an R-module . A subset GEM venerates M if

"
M={¥ rig;.|nEN,rI.EH,g;.EG :
=1

Definition (1-5-13)(Finitely Generated)

If M is generated by 2 finite subset , then M is Finitely gencrated,

Definition (1-5-14)(linearly independent)

A subset ScM is linearly independent if

n
3 IS =0,Si ES’rf eR = r =Q,Vil<i<n
=l

Definition (1-5-12)(Basis of M)

A linearly independent set that generates M s a basis of M.
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Definition (1-5-13)(frec)

1 M hus a basis then it is called free

1-6: Graph theory ;
In this section we define any notations in graph theory are used in this
thesis .

The references of the following materials are [14],[21],]30].

What’s Graph Theory?
Graph theory has nothing to do with graph paper or x- and y-axes. Graph
theory is an arca of mathematics that deals with entities (called nodes) and

the connections (called links) between the nodes.

Definition (1-5-13)(directed graph)

If we consider V as a finite nonemply set and E as a subsct of the
Cartesian product of V x V, then the pair (V, E) is called a Directed Graph or
Digraph on V.

Definition (1-5-13)( vertices)
A digraph (directed graph) is a diagram cansisting of points, called

vertices, jomed by dirccted lines, called arcs

Definition (1-5-13)(graph)

A graph G is a pair G = (V,E) of sets V, of vertices (or nodes) and E of
edges such that an edge ¢ €E is associated with an unordered pair of vertices.
If there is 2 unique edge e associaled with the vertices v and w,

we write e = (v,w) = vw = (w, v} = wy
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Definition (1-5-13)(undirected)
1f we need Lo really emphasize this point we might say ordinary graph or

undirected graph.

Definition (1-5-13){connected)

A connected graph is one in which there is a continuous path through all
the branches (any of which may be traversed more than once) which touches
all the nodes.

Definition (1-5-14)(Simple graph)

In many applications, one deals with graphs that have neither loops nor

multiple copies of the same edge (these are known as parallcl edges). Such

graphs are called simple graphs.
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CoaprrsEr Two " HOELER'S DISCRETE GROMETRY "

Chapter Two
"Ifibler's discrete geometry”

In this chapter we study Hiibler’s work on discrete geometry is brieily
summarized. Since it is hard to get hold of Hiibler’s report.

The following martial is taken from [2],[8] ,[151,[19] ,{24],[25).[26,[27].

2-1 : Introduction:

Hiibler’s report has threc main parts, and three approaches to discrete
geometry. The first one, totally ignored here, is sbout so-called digital
geomelries, and scems to be less abstract than the others. The following two
parts, which are summarized here, are about translative neighborhood graphs

and axiomatic discrete geometry.

2-2: Discrete gcometry on translative neighborhood graphs

First Hiibler's presentation of neighborhood graphs is summarized.
These structures are not used in other parts of this thesis, and hence this
section can be skipped without much loss. However, neighborhood graphs
provide a background setting for Hiibler’s axiomatic geometries, and

furthermore some results in other parts of this thesis are generalizations of

results in this section.
2-2-1: Translative Neighborhood Graphs

Definition (2-2-1-1) (Neighborhood Graphs)

A neighborhood graph is a simple, undirected, connected graph with a
noncmpty node {point) set and an edge set with the property that each point
has a finite number of neighbors. (Two points are each others neighbors if

they are connected by an edge.).
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Definition (2-2-1-2) (Distance)
The distance between two points is the length of the shortest path

between them.

Definition (2-2-1-3) (Displacement)

A dispiacement D is a bijcction on the point set of a neighborhood
graph that preserves neighborhood and has a constant displacement distance
(1.c. the distance between p and D{p) equals the distance between g and D{g)
for any points p and q).

Note: The identity displacement is denoted by id,

Definition (2-2-1-4) (Translative)
Let D be the set of all displacements on a neighborhood graph. The
graph is said to be wransiative if
1. @is closed under composition o of displacements,
2. 018 commutative,

3. For each of a point’s neighbors there always cxists a displacement that

maps the point to the neighbor,

+ . ) R—limey
4. For cvery displacement D except id, D"(p) :=(Do....... o D)py=p

for any pointpandany ne 2"

Definition (2-2-1-5) {Translation)
The displacements of a translative neighborhood graph are called

iranslations,




T

Remarks:

* Let us use the term t-graph instead of translative neighborhood graph
(these graphs are often denoted by G).
* let Pg be the point set and T the displacement (translation) set of G
* The set Tg is easily seen to be an abelian group under the group
operation o. This is not a sufficient condition for a neighborhood
graph being a t-graph, though. For t-graphs the power notation )" can
be extended to atbitrary n € Z in the standard way (i.c. Tg can be viewed as a

Z -module).

Definition (2-2-1-6) (Elementary)

A translation with displacement distance | is said to be an elementary.

Remarks:

» T-graphs have the property that all points have the same number of

neighbors (the neighborhood degree of the graph) .

* For each pair of points p, q there is exactly one translation that maps p 1o

q . Hence the number of elementary translations is finite.

Definition (2-2-1-7) (Dimension)
The dimension of a t-graph is the (well-defined) cardinality of its

smallest basis

Definition (2-2-1-8) (Simple)

A translation § is simple if S #T" [or all translations T and all neM\{1)
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2-2-2: Lincs, Parallelity and convexity

Definition (2-2-2-1) (generator of i)

Given a point p and a simple translation S, the associated line / is the
smallest sct that contains p and is closed under 8" for all n € Z. The
translation S is said to be a generator of .

Note:

The only generators of /are S and §™', and I={S$"(q)| ne Z } for all q el

Furthermore, to each pair of distinct points there is exactly one line that

contains both points.

Definition (2-2-2-2) (parallel)
Two lines Zand /' are said to be parallel (/||i*) if they have the same
generators.
Note:
Two parallel lines either have all or ne points in common and two lines
arc parallel iff there is a translation that maps one of the lines bijectively onto
the other. Furthermore, for each line ! and point p there is exactly one ling /'

with /| ' and p € /" (compare with the Euclidean parallel axiom).

Definition (2-2-2-3) (Betweens relation)

A Betweens relation B is now introduced: B(p, q, r) holds for three points
p. q. and r on a line / if there arc positive integers ny, ny with n; <n; and a
generator S of / such that q:Snl (mand r= 52 (p). It is easy to check that
B(p, g, r} is equivalent to B(r, q, p) and that B{p, q, r) and B(q, , 5) topether
imply B(p, q, s) and B(p, r, s).
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Definition (2-2-2-4) (convex)
A point set P is said to be convex if it is closed under B, i.e. if p,qeP

and B(p, r, q} for a point r, then re P.

Definition (2-2-2-5) (convexity)
Convexity is also defined just as for neighborhood graphs (a point set is

convex i1f it is closed under B).

Note:
This convexity definition is in some scnse weak, though, for there are
convex point sets of t-graphs where the induced subgraph associated with

such a set is not connected.

2-2-3:Isomorphisms:
Definition (2-2-3-1) (isomorphisms)
Two t-graphs G, and G, are said to be isomorphic if there exists a

bijection ¢ from P& 10 @G! which is B (betweens) invariant. (i.e.B(p,q, 1)

iff B{o{p), ¢(q), (r)).) .The statement that two t-praphs are isomorphic is

equivalent to each of the following four statements:

I. There is a bijection ¢ between points, mapping lines to lines, which is
parallelity invariant ()] I iff (] @ri)).

2, There are a bijection @ between translations and a bijection ¢ between
points for which T(p) = q iff D1 )p(p)) =p(q) for all points p and q and
all translations T.

3. There is a bijection ¢ between points which is convexity invariant (P is
convex 1 @(P) is convex).

4. The two t-graphs have the same dimension.
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2-3: Axiomatic Discrete Geometry:
Let us now turn to Hiibler's axiomatisation of discrete peometry.

Basic Axioms and Definitions

The axiom system csscnces the existence of a point set Pand a nonempty
line set £, cp(P)

The first axiom: is that for any pair p, q of distinct points there is exactly one

line ! for which the peints lie on the line (p,q € /). Let / {p,q) denote that

unique line.

. o /.-f'
) /
T
. e .
L.

The second axiom: says that for any line / there exist two different points

p,q € { and one point rg £

The third axiom: states that there is an equivalence relation ||, parallelity, on
L for which, for any line 7 and point p therc exists exactly one line I with

peland!| .

The corresponding cquivalence classes are called directions.
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Definition(2-3-1) (Translations)

Translations are bijections T on @ satisfying either T = id or has (he
following properties (referred 1o simply as the [irst, second, and third
translation properties).

. T()|[/ for all / € L (lines are mapped bijectively onto parallel
lines),

2, T(pyzpforallpe @

3. {1(p, T(p)) | p & P} is an equivalence class of ||.

Definition(2-3-2) (Simple Translations)
Definition of a simple translation is just as above (8 is simple if S# T" for
all translations T and all neN\{1}), and a result is that a translation is simple

iff'it generates a line.

The fourth axiom: now states that for any two points p, q there exists a

translation T with T(p) = q.

4
1)

r Tip) =y
Remarks :
» This translation can be shown 10 be unique.
» Another result is that two lines / and /' are parallel iff there exists a

transfation T such that T($} = 7".

+ Furthermore, just as with neighborhood graphs, the set T of all

translations on @ is an abelian group under the group operation
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composition (o). Hence 7 can be made into 2 Z -moduie in the standard
way.

e Hiibler goes ou to discuss epclic translations, i.¢. translations T for
which, for somen e Z°, T" =1d.

o | eAAT,I=TCH.

Definition(2-3-3) (Betweens)
A betweens relation B is yet again defined; for three different points p, q,

and r on a line, B(p, q, r) holds fp<g<rorr<g<p.,

A further assumption is the existence of two opposite total orders <,

=z defined on the points of each line.

The fifth axiom : For each point p on a line / there arc two other, different

poinis g, r € [ withq<p <r.

The sixth axiom: introduces discreteness: For any two points p and gona

fine 7, the set of all points r € ! satisfying p<r<q is finite .

there is at most a finite number of points r such that B(p, r., q).

o

Gy

This means e.g. that every line is a countably infinie set of points.
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The seventh axiom: Let 7,45, 7; be different, parallel lines ,and £,/ lines that
have points p, p/ respectively , in common with all the lines I i=1.2.3 then

pj{pj{pj thdS iff‘f}r_; {p"?{prj ar p'j :‘-“P'g:"pjj_

This axiom is the onc that rules out cyclic translations,

Remarks:

* For each line / there exists a translation G (a generator) such that
{={G'(p)|n € €} for any point p € /, For such a triple (/, G, p) the rclation
B(G'(p),G'(p),G*(p)) holds iff i <j <k ork <j<i (i, ], k € Z). Furthermore
.each line has exactly two gencrators {G and G™'), and two lines are parallel ifT

they have the same gencrators.

Definition(2-3-4) (line between two lines)

Let i, &, and /; be different, paralle! lines. The line 4 is said to fie
benween Iy and I (B(1), I3, 13)} if there are a translation T and i, j € Z* such
that T'(/;) =L and 'B(ly) = ;.

Definition(2-3-5) (A planar set)
A planar set is a point set S, such that
(1) whose points do not all belong to one tine, and
(i1) for any four, different pointsp; € S,i e { 1,2, 3, 4 1, one has for the lines
hhie{1,2,3 pwithfy=1(py, py), I || {; with py € &, and &5 | £, with P Ef;,
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that if the lines are different, then one of the lines lics between the other two

lings.

Definition(2-3-6) (A planar grid)

Let Ty and T be translations with different directions, and p an arbitrary
point. The set PG(p, Ty, Ts) := [{‘.-",'o?}‘ Wi jeZ } is the planar grid spanned
by p, Ty, and T,.

Definition(2-3-7) (A planc)
A plane i3 a planar set P for which P Ux is not planar for any xe (P\P.

For cach planar set S there is exactly one plane P with § c P
Furthermore / {p, q) € P holds for any two different points pand g in a

plane P, and Py » Py = { (p, q) holds for two different planes P, and P, whose

interscction contains at least two different points p and q.

In his report Hitbler's demonstrates a model of the first seven axioms
which, in some sense, is not discrete , but nevertheless (motivates why Fiibler

introduced an eighth axiom.

Hiibler demenstrates a model of the first seven axioms which is
embedded in the reai plane; a point sct is given and all other concepts are
given by the restriction of the corresponding real concept to the point set.
Hibler claims that this model hus the property that for each point p in the rcal
plane there are points of the model that are arbitrarily close to p (using the

standard Euclidean metric).
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The eighth axiom: The sct ol all lines between two different, paratlel lines is

finite.
I A
: [ A
8) i 7 i
P A
P AN
I it
i od
{.x-
Remarks:

_ Axiom 6 is made redundant by Axiom 8.

_ These two axioms are included to make the geometry discrete.
_ Planes also have generators.
Definition(2-3-8) (Hiibler's geometry)

A Hiibler's geometry is a collection of a point set @ a line set £, a
parallelity relation ||, and a set of total orders < for cach line / € £, such that
all the eight axioms are satisfied. Such a geometry is uniquely defined by @

and the set T of all translations on @

The eighth axiom holds for all planar grids, and given the eighth axiom
each plane is a planar grid. Hence all planes are isomorphic to cach other.
Furthermore the axiom ensures that all bounded subsets of a plane are finite.

Since “discrete image geometry™ is not a very descriptive term, at least
when it comes to distinguishing betwecen different approaches to discrete

peometry, we will use the term Hiibler geometry instead.
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L

2-4: Oriented matroids

The references of the following material are [12] ,[16], [ 7], [18],[25]
J[26].

Oriented matroids add extra structure to the ordinary matroids treated in
the last section. From Richter-Gebert and Ziegler[17] we get the following
description: “Roughly speaking, an oriented matroid is a matroid where in

addition every basis is equipped with an orientation.”

Definition(2-4-1) (cocircuit.)
Let M be a matroid where the complement M \H of each hyperplane H is

partitioned into two possibly empty sets // ~and £/ 1| the negative and

positive side of H. The ordered pair { =, H ¥} is a cocircuit.

If necessary we can change the orientation of the cocircuit, i.e. the

oppesite (H 1,71~ ) is also a cocireuit, There are no other cocircuits.

Definition(2-4-2) (oriented matroid.)

The matreid M together with its cocircuits is an oriented matreid if the
following requirement is satisfied:
* Let Hand K be two hyperplanes intersccting in a subspace of corank 2
and X a point in M\ (FWUK).

If1t is possible ¢ choose the orientations of the cocircuits associated with
Hand K such that x € /17 A £~ then the hyperplane L = xv(HAK) satisfies

L"cH UK and L™ g /{7 WK™, given a suilabic choice of its orientation.

All the terminology used for ordinary matroids carries over to the

oriented case . Some intuition behing the definition is given in Figure (2-4-1).

44



CHAPTER TWO " HORLER'S DISCRETE GEOMETRY "

As with ordinary matroids there are many cquivalent definitions
oriented matroids, and some of these do not give rise to equivalent
definitions when relaxed to the infinite ease. The choice to use the
definition above is motivated by the connection between convexity and

half-spaces, which we tum to now.

Fig(2-4-1)

Fig.(2-4-1). The requirement which the hyperplanes and cocircuits of an

oriented matroid have to satisfy. See Definition (2-4-2),

Given a hyperplane H, the sets K~ and /7 are called apen hulf-spaces.
The union of an open half-space and the corresponding hyperplane is a closed

half-space. Let Ho(M)} denote all closed half-spaces in M. We can define a
convex closure aperator|.}): B(M)— P (M) by :

[S]:{ﬁ{HEHC(M)IS;H},S“ﬁnHe 0

SN S ¢ 8, 8. finite),..otherwise
Here we use the convention that ~@= M. The reason for having different
cases depending on the cardinality of S is that this definition makes [.]

finitary,

43



CHAPTER THREE

MATRDOIDS FROM MODULES




CHAPTER THREE "MATROW FROM MODULLS "

Chapter three
"Matroid from modules"

This chapter cxplores some closure operator's defined on modules over

integral domain and , the associated matroids and geometry .

Modules over integral domain arc embedded in uan associated vector
space . The matroids constructed from modules in this chapter turn out to be
very similar to the matroids constructed {rom the corresponding, vector spaces

The references of the following matertal are |2],]5],[7)] 1251, [26], |27).

3-1: Submodaule closure:

The effect of a closure operator is determined by its closed sets (since
every set is mapped to the smallest closed set containing it; this set has to be
unique). As mentioned above, for a vector space you get a matroid by
choosing the vector subspaces as closed sets. This approach does not in
general work for modules. The submodules do not always yield a matroid, as
we will now prove.

Let us first show that the submodules of a module cannot in general make

up the subspaces of a matroid.

Lemma 3-1-1
Let M be an R-module, where R is a ring, and let <> p(M)= p(M) take
any subset to the smallest submodule containing it. Then <>, is a

well-defined closure operator with the explicit characterization

{S}S={Za,.si |a, € R,s, ES,HEN}
i=

(The empty sum ia_.s; is interpreted as 0.}

1=l
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Proof:

To show that <>, is well-defined we have to show that every subsct is
contained in a unigue submodule.
Denote the right hand side of the equation by A,
Any submedule containing S has to contain A since all submaodules are closed
under scalar multiplication and sum and they all contain 0. (The last remark is
necessary since we allow n=0.)
Furthermore A, by exhibiting the properties just listed, is a submodule and
hence the operator is well-defined and <S>, = A. By construction the operator

satisfies the closure operator axioms. »

Let us now consider the Z -module over Z. Define n Z :={nm|meZ },

and for any a,beZ , let <a,b>={am+ bn| m ,neZ} is ideal of Z.

Observe that 2 & (10.3) = Z (since | €{103) ,2 {10} = 10Z, and

i

3¢ {102y ={10m+2n|m,ne Z}=2{5m+n|m, ne Z}=22Z.. Hence the

exchange property docs not hold, and <> is not a matroidal closure operator.

3-2: D-Submodule closure:
Given the previous section we know that we cannot (in general) use
submodules as subspaces of a matroid. However, by restricting ourselves to

d-submodules and modules over integral domains we get a matroid.

Definition(3-2-1)(D-submodule)
A d-submodule of an R-module M is a submodule S with the

property that if rm €5 foranyr e R\0and m € M, thenm € S,
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We say that a d-submodule is closed under existing divisors, i.e. under
those divisors which happen to exist. Thus it is casy to sec, intuitively, why

this approach works, d-submodules emulale vector subspaces .

Theorem(3-2-1)

Let M be an R-module, where R is an integral domain, and let
<>g:p(M)2 p(M) take any subset io the smallest d-submodule containing it.
Then <=4 is a well-defined matroidal closure operator with the explicit

characterization

(S)d = {m eMjbm= ia,.s,,sr €S, a.be kb iﬂ,HEN}
=1

Proof:

Compare with the proof of Lemma 3-1-1,
Denote the right hand side of the equation by A,
Any d-submodule containing S has to contain A since all d-submodules are
closed under scalar multiplication, sum, and existing divisors, and they all
contain 0, (The last remark is necessary since we allow n = (.)

Recall that A is a submodule iff it is nonempty and closed under scalar
multipiication and sum. 1f it is also closed under existing divisors then il is a
d-submodule.

Nonempty. Because the empty sum is 0 and b0 = 0 for any b &R we have

that A is nonempty.

Closed under x. Assume that m & A. Then bm = ia,.s-,.,h + 0.3y

multiplying this expression with r € R, using the commutativity of the

integral domain multiplication and the different properties of x, we get

5(rm) = i {ra,)s,. thus rmeA.

ful
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Closed under sum. Let mm' € A, Then sm= Sas, and b= v bbte O

Juf 1]

By the commutativity of the integral domain and the properties of X we have

(Bb)m = Zﬂ:{b'al. )s,,(BE ' = i{ba; )s;,and thus bb'(mr+ nr') = i{b'u, Yo, + i(ha;)s,'.

=] =l twl 1w

- Because R is an integral domain and 5,6'# 0 we have bb' # 0, and thus
m+m' e A.

Closed under existing divisors, Assume that me A, r RO, me M,

Then b{rm) =iajs,,b # 0.8y a property of xwe have that b(rm) = (br)m, and

because b, r# 0 we have that br # 0. Thus m € A.

Hence A is a d-submodule, and thus it is the smallest d-submodule containing
5,50 <S> = A,

This means that <> is well-defined, and thus by construction
all the closure operator axioms hold.

For the exchange property we use the explicit characterization of <>y
Take any ye (Su:c)d. . Then by = Za,s, +axforsomca, b, 2; e R, b#0,
Fell
si € 8, and ne M.
Furthermore a # 0, because otherwise ¥ € <524 Thus we have

ax = Z (-a;)s; +by where a# G, and hence xe (Su y)

i=t

.
This means that the fourth axiom is satisfied.

e . . . . '
['o show that <>, is finitary, assume that x <5%g. Then bx= ¥ a;s;
i=|

as usual, and we have that x € <8, where §' := {siliel,1<i<nlisa

finite subset of 8., (1
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We note immediately that the matroid obtained from <.>y is not simple,
since < &>4= { 0}. Furthermorc all subspaces contain 0, which ensures that
they cannot be interpreted as affine lincs, planes, ete. Because of this we

introduce a-submedules in the next section,

3-3: A-Submodule closure;
To get something reminiscent of an affine geometry we define a-
submedules. (The term stems from affine submodule, but since the resulting

geometry is not in general affine the full name is not used.

Definition(3-3-1)(A-submodule)

An g-submodule A of a module M is a subset of the form A=D+m

where D ¢ M is a d-submodule and me M is any clement,

We define Addition of an clement to a set is to be D + m := {d+mld e}

and Subtractiontobe D-m:={d-mjd e D).

Lemma 3-3-1.

Let D be a d-submodule with m eD). Then D + m = D.
Proof.

Wehaveke Do k-meDokeD+m. W

Lemma 3-3-2
Let A be an a-submedule. Then for any m € A theset A -m is

a d-submedule, and al! d-submodules obtained {rom A in this way are equal.
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.

Proof.

By the definition of a-submodule we know that A = D + n for some
d-subimodule D and elementn e M.
Since 1) = A-n we have m-n D, thus, since D is a submodule, also
n-m = -(m-n}e D.
Hence D=D+n-mor A-m=D, so Amisa d-submodule, and all the

obtainable d-submodules are cqual to D. ]

Corollary 3-3-1

A is an a-submodule with a €A iff A —aisa d-submodule.

Theorem(3-3-1)

[.et M be an R-module, where R is an intepral domain, and let
<>a:p(M)=p(M) take any nonempty subset to the smallest a-submodule
containing it and ¢ 10 . Then <>, is a well-defined matroidal closure
operator with the explicit characterization

{S), = {m eM|bm= ﬁ a;s;,s;€8,a,beRb= E a;#0,ne Z+}

i=l i=1
Furthermore, for any s e<§>, , <8>=<8-g> s,
Proof.
Comparc with the proofs of Lemma 3-1-1 and ‘Theorem 3-2-1. Denote the
right hand side of the equation by A, When S = & we have that <SF=J=A,
S0 assume that § £,

Take any s €A, Notice that (leaving oul all the side conditions)
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=1

A- s—{m s|bm= L als;}
#
= {m |&(m+5)=Y ”f“"f}
=]
H
={m|'bm= 3 a.s. —b.ﬁ'}
o
n
= {m| bm=7% a;(3; +5}},
i=l
where the last step follows sinceb = Z a; , Except for the conditions n > 0,

i=1

and b= Z a; the last expression is cqual to <§-s>;.
i=l

The first condition does not play any role since 0e A-s.

The second condition can alse be dispensed with: Assume that we have

- n
&(S~-s}y, ie bm= :%I a;(s; —s).

Then we also have (assuming that b's = Z a 3 L a #0)
i=l i=

Bbo{m+0) = b'ia;(s; —-5)+ b’[b - ia‘ )(3 — 5}

= b’i (s, —5)+ [b - i e, ][i afs, — .1;}}

iwl =] 1m]

and since Hh= b'La +(b- la}Za 0 wehavem e A -5
=1

In other words, A-s = <§-5>,. Thus A is an a-submodule.
Now lake any a-submodule A' containing S.
Since A’ - 8 is a d-submedule we know that <8-s>,cA'-s
Hence A is the smallest u-submodule containing $, and<.>, is well-defined.

We also get that <§>,=<S-s>,+s,

NE



CHAPTER THREE "MATROID FROM MODULES "

It remains to show that <> is a matroidal closure operaler. Refer 10
Definition 1-2-1.

All the axioms are easily scen to hold when A =3, so assume that
A #4J, and pick an element a € A. Now it is easy to sce that all the matroid
axioms are satisfied by using <A>=<A-a>sta, and the fact that <>, satisfics

all axioms. ]

Corollary 3-3-2
Forany s & M,<8>,-s=<S-s>_
Proof,

Just inspect the explicit representation of <.>,. D

Corollary 3-3-3

The matroid defined in Theorem 3-3-1 is a geometry iff the underlying
meodule is torsion free,
Proof.

Since <{>.= {3 we have to check when we have <m>= {m) for arbitrary

meM, Since <m>;={neM|bn=bm, b0} the corollary follows immediately.[]

3-4: Rank:

From now on let all modules be modules over integral domains.

Let us distinguish between different kinds of independence and rank. We
say that B is d- (a-)independent if i is independent using <.>; (<.>,) as the
closure operator. Furthermore the rank attained using d- (a-}closure is called
d- (a-)rank. This terminology is extended in the obvious way to other
concepts, sometimes also using the prefix s- which is associated to the

submodule closure of Section 3-1.
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Note that if we use the term a-geometry we implicitly assume that the

underlying module is torsion free; otherwise we do not have o geometry.

Proposition 3-4-1,

Let D be a d-submodule of the R-module M and B < D with p e B.
Then if B is d-independent, then 3 U 0 js a-independent, and if'B is a-
independent then (B-p) \ 0 is d-independent. Furthermore <B>=<B0>, ,and
if <B>, = D, then <(B- ph 0>, =1,
proof

First assume that B is d-independent. Take anyq e 13 0.
Assume [or a contradiction that q & ABUONg>,. ITq #0, then we have

qE{(Buﬂ)hqb-,:{{B\q)uDb,=<{(lihq)u(})-u>d+0.

since 0 e<(BLO)\g>, and 0 does not play any role in d-closure. This is a
contradiction since B is d-independent, so assume that q = 0 inslead. Then
i - . .
B0=% aibf for some coclficients b, o; € R, some bi €3, and one n22 (since
i=]

n
*5:20,-?’”3)-

i=|
We can assume that all the coefiicients are NORZero, so we have

H
albl = 3 (—a;)b; , and B is not d-independent, which yetagain
i=2

is & contradiction. Hence B L 0 is a-independent.

Now assume that B is a-independent. Take any q €(B - p}\ 0. Assume

M
that qe<{B-p\{0,q }>4. Then bg = ¥ a:'(bi —p)forsome b # 0,
i=|

8€ R,n e N ,and bie B\ { p,q+p }. By adding bp to both sides we get

1
Bg+py=73 a; (E;I. —p)+bp , and since the coefficients add up we have
i=!
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Qpe<B\{q+p}>, (note that g £ 0, i.c. p# q+p).
This is a contradiction ,so (B- p)\ 0 is d-independent.

We immediately have that <Bu (0>= (B U 0) 0>+ 0=<B>,
since (e<Bui>,

Now assume that <B>= D, which is a d-submodule as well as an
a-submodule. We have (omitting the set generator conditions be R\, a; e,
ne §).

{(B-pNO) ;4 p

={mEM|bm= iafbf,bfe(ﬂ‘-.p}—p}+p
i=]
={mEM|b(m—p}= ﬁaf(bf—p},bfeﬁ‘hp}
i=l
n "
={mEM]bm= Zlai.bi+[b- y aijp,bf € B\p}
= i=1

H _ n+l
=imeM|bm= I_Elaibi +ta ph= f};I anh. e B\ p
=(r’:‘-‘)a.
Since p €<B>,and <B>, is a d-submedule Lemma 3-3-1 gives that

<B>=<B>,-p. and we are done. 0

Lemma 3-4-1.

If B is an a-basis for a d-submodule [, then B-p is also an
a-basis for D, for uny pe<B>
(If peB, then this is an immediate coroilary of the preceding proposition.)
Proof.

Since<B>, is a d-submodule we have, according to Lemma 3-3-1, that
<B>, = <B>,-p = <B-p>, where the last step follows by Coroliary 3-3-2. The

independence of B-p follows by the equipotence of all bascs. 0
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__

3-5:Degree:
I.ct us now determine the degree of d- and a-matroids. First note that a
large class of a-matroids are not projective, and hence not of degree 0. (All

matroids of rank 2 or less are of degrec 0.)

Proposition 3-5-1.

Let M be an R-module of a-rank at least 3. Then the associated a-matroid
doces not satisfy the projective law.
Proof

Let B be an a-basis of M. Due to Lemma 3-4-1 we can assume that
0 € B, Choose two other elements in B and form 3’ = {0,x,¥} which is an
a-basis for a rank 3 subspace. We know that x + y €<0,x,y>,and we will

showthat x+ ye ukn, Viglue{lx},.ve(y), }, thus showing that the

projective law docs not hold.
First notice that (0,x}, = {%ﬁ |la,be Rb= U} and (y}, = {ﬂ |e e RY D}
¢

Assume for a contradiction that x+ y e (%—,c—y> for some a,b,c eR, b,c#0.
Cla

This implies thatd(x+ y) = e%x—Jrf% for some d,c,f € R with d =e+f# ¢

Rewritlen this reads bed(x + y) = ceax + bfcy or
{ace- bed)x = (bed -bel)y = beey

We know that b, ¢ # 0. Furthermore e = 0 implics that
x+ye{mEMldm=d%,c,d;&ﬂ}

={me M |cdm=edy,ed # 0} {30},
ie. xe(0) -p={0-p), =(-)) = (¥} =(0,3),. This contradicts the

independence of B', and hence we have bee# 0 which shows that ye<x,0>,,

This is another contradiction and we are done. O
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3-6: Representations:

This section lists some results about the representation of an element in a
basis.

The following theorem shows that the representation of an clement with

respect to & certain basis is uniquely defined up to a scalar factor.

Theorem 3-6-1 (The Representation Theorem).
Let B be an a-basis for the R-module M. Assume that pe M has the

representation
La by neZt ¢ a; € R\Q,c= Llal-,b’- Eﬂ,biibj{f i#j
in this basis. Then the only other representations of p in this basis are

n da;
dp= L ——b

i=] ¢

dat.
where d € R\ 0 and all —% are assumed to be well-delined,
c

Of course, iI'the module is not torsion free, then any particular representation
does not necessarily stand for a unigue module element

proof

1 H 1 H
Suppose that we have another representation [n',c’ {ﬂ } 'k { } ] of p
=

in B . First assume that n#n' or n=n' but { bif I<i<n } # {b|(<i<n'}. Then

there is one basis element, say by, for which
1 A
=2 i=}
where b; does not occur in the right hand side of the equation. Since

n 74
Y (=c'a;}+ X ca'= —{c'c—c'a1)+cc'=c'a] #0
= =1
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we pet that B is not independent, which is a contradiction. IHence n = o' and
{bi|tsizn}={b/|1<izn’}.
For simplicity let us reorder the basis elements such that b; =b;' for all i,

=1 =n. If c'afeay’ for some i then we get a contradiction as above, 50
.1‘

r ca.
ca=ca; forall i, 1sisn. Flence a; =, and by noticing that d = ¢’ we
¢
arce almost done, The only thing remaining is to point out that every choice of

da.
d# 0 such that —L s defined for all i gives a correct representation. (Since R
¢

15 an integral domain we have %5 =d} 0O

Corollary 3-6-1

The Representation Theorem also holds for d-representations (where

#t
¢= 3 a; does not necessarily hold).
i=]

Proof.

Apply Proposition 3-4-1. If B is a d-basis for M, then B0 is an a-basis
for M. A conscquence of this is that any d-representation in B of a point pe M
is also an a-representation in BuQ of p (using 0 10 make the coefficients add

up) and vice versa (removing 0). The corollary follows. D

Corollary 3-6-2
[[R is well-ordered then we pet a canonical representation of
P by choosing the smallest possible positive d, and if R is a ficld then we can

choose d = 1 {using the notation of the preceding theorem).
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3-7: Embedding:

Let M be a module over an integrat domain R. Define an equivalence
relation on M x(R\Q) by (m,7) ~ (m',r'} iff there is an s€ R\ such that
s(’m-rm’} = 0. The cquivalence classes are the elements of the modide of
Jractions F(M),

[.et M be a module over an integral domain R, and define the canonical

projection 7:M — I'(M) by z{m) =7
,

Denote the preimage of mwby w7, fe, ;r_l[f;] = {nr‘E M| z(m') _—.i’l}
.

We also need to define another function, 4 : F(M)— M, which maps 0

to 0 and an clement m'eF(M\ 0 to an arbitrary (but fixed) element in the
nonempty set {meM\0|r eR, m=rmm"},

Let us now show in what way the d-matroid struciure carries over to the
associated vector space. Note first that in a vector space the d-submodule
closure <>y, equals the vector subspace (lincar) closure. Furthermore
independence, bascs, ctc. match the corresponding d-matroid concepts

exactly.

Theorem 3-7-1
Let M be an R-module, and fet F(M) be the module of fractions
assoctated with M. Denote the d-submodule closure in F{M) by <>,

Then we have the following properties.
I. For any subset S <M the equality (S}, = 7~ ((H(S])d) holds.
2. Let D be u d-submodule of M with d-basis B. ‘Then F(R)n(I2)=[(D)isa

vector subspace with basis n(B), and the d-rank ol D cquals the dimension

ol F(D).
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3. Let S be a vector subspace of F{M} with basis B. Then n(8) is a d-
submodule of M with d-basis u(B), and the dimension of S equals the
d-rank of 7'(S).
Remember that the expressions involving 1 and o can be stmplified
whenever M is 1orsion free.
Proof:
i- We have

n
(S)d ={m & Mjbm:jglafsf,b,af € R\{),sf ES,ne N}
and

s=a7(m(s)y )=

meM|z(m)= ﬁ affr(si},a;. EI*’{R)EU,SI. eS,ne N}
i=l

R —

It is obvicus that ($)y € S . Now assume m & S e w(m) = l am(s;).
i=]

b

Assume that a; =L for all i, 1<i<n , We get
c.
)

(nc ]:r{m) 5_ b, [ M.e -}T(sf}
_,ri:

Hence, by the definition of F(M) , we gct that for some s€R\0 the equality

{fe-ge{pe

Holds in m . since & ]‘] ¢; # 0 il follows that me <S>,
=11

0

2- We already know that F(1)) is a vector subspace. Since we have

b, 29
}_,a 7 (b;) = Z_G-—-=-—1—= [%afbf]

{aieR,bieM)it is casy to check that n(B) generates F(D} = F(R)n(I)).
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By showing that b,b’ € B, b£ b’ implics n(b) # (b we get that [Bl=in(13)).
To see this, note that if n(b) = n{b") then s(b-b") = 0 for some seR\0. We get
thatbe<b', i.c. B is not independent, a contradiction.

We also need to check that n{B) is independent. Assume that
n(bye<n(B)\n(b)>4 for some beB. Then we have ben (<n(B\b)>) =<Bib>,,

another contradiction, and we are done.

3- We alrcady know that n7'(S) is a submodule. It is easy to check that
it is also closed under existing divisors, so it is a d-submodule. We have
that n(u(B)) is a basis of 8, so <n{(B)}>=S. Hence
<BP = (<n(u(B))>g =(S).
Furthermore we trivially have |B| = |u(B)].
It remains to show that p(B) is independent. Assume
be<u(B)\b>y ="' (<a(u(BM\b)>4 ,for some bep(B).
Since 1 (u(B)\b) = n{u(B))\ n(b) we pet

ni{b) e (.?rwr_] ]((?T[,U(B)]"‘- 7B}y )

Le. a(b)e<m(p(B)n(b)>q, and by the indcpendence of m{1(BY) we are done 0.

Corollary (3-7-1).
The d-rank and the modulc rank of a module (over an integral domain)

coingides.

Stnce a-matroids have subspaces which are jusl translations of d-

subspaces some of the results above can be usefully applied in an a-matroid

context. For instance, for any subset ScM and any se<8>, we have

{8), =(5-3), +s=2{(x(s-5)), }+s
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It 13 easy to verify that this can be rewritten as

(S) =27 (7(S)-2(s)) g + 2())= 2\ (x(5)),)
where <2, is a-submodule closure in F(M), Furthermore the lattice of
subspaces of any a-matroid M is isomorphic to that of the a-matroid over

F(M); in a geometry the atoms of the lattice are exactly the singletons.
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Chapter four
"Affine geometry, generators and isomorphism”

The references of the following material are {2],[6], (8], {15), [25],
[26], {27].

4-1:Affine geometry:

Given that all a-matroids are of degree 1, and that alt a-matroids over
modules that are torsion free are geometrics, is an a-geometry an affine
geometry? Not necessarily, as we will show.

Take the Z-module over €. 'This modulc is torsion free and is hence an a-
geometry of degree 1. Consider the line = <{0,0),(2,1)>, and the point p ={1,0).
(All subsets of cardinality two arc independent, and hence bases, since this is a
geometry.) Both the lines /y = <(1,0},(1,1)>, and &= <(1,0),(-1,1)>, are
parallel to /, so this geometry is not afline. Sce Figure (4-1-1) for an indication

of the situation.

ngum(#-!-.;)

Figure (4-1-1): An example demonstrating why the Z-module over Z° is not

affine. The lines /; and /; are both parallel to /. and since they intersect the

geometry is not affine.
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The &module over Z° clearly has an affine feel to it The reason why it
is not affine is that two lines which are non-parallel in the associated vector
space can be disjoint, and hence paraliel; the problem lies in the discreteness
of the structure. The following preposition shows that it is casy to define a
notion of parallelity which al lcast satisfics some of the usual requireinents of
a parallelity relation. Of course this definition is influenced by the fact that
the same approach gives the proper parallelity relation in an a-geometry over

a vector space.

Proposition (4-1-1).

Let M be a torsion free R-module, Define a binary relation ||| on the lines
of M by |||/ iff there is some peM such that /+p =/". Then lil is an
equivalence relation, and for any point peM and line / = M there is

a unique linc /' such that pe {"and /| /"

Proof,

The relation is easily seen to be reflexive, symmetric, and transitive. Now
consider a point peM and a line /M. Assume ge/.
The set /'=/+(p-q) is then a line with 7]j) ', Assume that /" is another such
linc with /" ={+rund pe /", re M.
Notice that /-q is a d-submodule, and hence a subgroup.
(A d-submadule contains 0 and is closed under inverse and addition.) Thus
I'=(-q)+pand I"=(l-q)+{q+1)are nen-disjoint cosets of the same

subgroup, and hence equal. 0
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Note:

The proposition does not really require the module 1o be torsion free, if
we replace “line” with “a-runk 2 subspace.” This also applics to the lollowing
proposition, relating {land |}, if we weaken the definition of || to allow

matroids thai are not geometries.

Proposition (4-1-2)

Let /and /'be two lines of a torsion free R-module M. Then flll ' implics
{1
Proof,

Assume that /[[} 7', i.e. 4+ p= /' for some peM. If /= ['then
AIF, so assume 7 1. This implies, by Proposition{4-1-1), that i~ =@,
Assume /=<q,r>,, and let B ={g,r, g+ p }. Since g+ pe I’ we have
q + pe<q,r>, . Furthermore <q,q+p>,#/, and hence<q,q4+p>,n/ = {q} (iwo
points determine a line uniquely), whereby r €<q,q+p>,. Analogously
qQE<r, g+ p>,, s0 B is a-independent. We obviously have Ic<B3>, bul alsc
/' =<q,r>ytp=<qip,rtp>; C<q+p,q,r>=<B>, since br = a,{(q+p)tas(r+p)
implies br =ay(q + p) + ax(r + (q * p) -q). Hence iv [ =<l "> c<B>, .
The union of two disjoint lines cannot have a-rank 2, and hence the inclusion

is an equality. Thus r(/v /=3 and {|| I .

The question about what would make a suitable definition of a discrete
affine geometry remains open. However, we can at lcast motjvate why |||
seems to be a valid parallelity relation (although, in general, it is not).

Note that in an a-geometry over a vector space we have IIh=1I. Let us
weaken the definition of ||| 1o apply to modules that are not torsion free as

well. Then we get the following result,

a7



CHAPTER FOUR "AFFINE GEQMETRY , GENERATORS AN ISNOMORPHISM "

Proposition(4-1-3}
[.et M be an R-module, and let /;, ,&M be two subspaces a-rank 2, Then
Ol 22 W62 il m(fs), fe. M0 () || ~{iz), where Tt is the
canonical embedding into the associated vector space .
Proof
First note that n(f) is a line if / is an a-runk 2 subspace { Theorem 3-7-1).
Now assume that /)|||; . Then £ + p= 4 lor some peM, Lence
() + p) = n(h)+ n(p) = n(fz), and thus n{{)) |i} n{).
Assume instead that wt(/))|[| n(/;}. Then =(})) + x = 7({y) for some xeF(M).
Take any two points pel,, gely, and set y =n(q)- n(p).
We get that y-x is a vector parallel to {,, and hence
n(ly) =n(li}tx+(y-x) = n {{,+q-p).
For any two points r), r; €M we have that n{r|) = n(r;) implics s(r;-r;) =0
for some seR\0, and hence rje<r>,. It follows that /; =/,+ (g-p), since
all sets involved are a-rank 2 subspacces (in either M or F{M)). In other words

H|||{z and we are done., O

4-2: Generators and Isomorphism:

The generator properties defined below can perhaps serve as an
indication of whether a geometry is discrete or not. They are based on a
generalization of Hiibler's gencrators, see section {2-3). Let us say that a set §
s-generales a submodule M if M =<8§>,, where <.>;1s the closure operator
fromn Lemma (3-1-1). (The standard terminology in algebra is just to say that

8§ generates M, but the prelix s- reduces the risk of conlusion.}
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CHAPTER FOUR "AFFINE GEOMETRY . GENERATORS AND ISOMORPHISM"
.

N —

Definition(4-2-1}{Generators)

I.ct M be a d-matroid over an R-module with d-rank at least o, This
mairoid has the rank n generator property if all d-submodules of d-rank n are
s-generated by a set of points of cardinality n. The clements of this set are

called generators.,

Note that the rank n generator property implics that all a-submodules of
rank n + 1 are generated by a set of cardinality n (plus the usual
translation}.Hence, when n = 1 we use the term line generator property, or
more olten just the generator property. For n = 2 we use the term plane
generalor property.

Let us show that in some cases the properties for different n are not
independent. Tn [act, while we are dealing with the theory of finitely
generated, torsion free medules over principal ideal domains we might as
well give a result about isomorphism as well. Note that the term finitely
generated stands for finitely s-generated. Obviously any a-geometry of d-rank

n satislying the rank n generator property is finitely generated.

Theorem 4-2-1
All finitely generated a-geometries over a principal ideal domain R with
d-rank n are isomorphic to the R-module over R”, and they satisfy

the rank m generator property {or any m < n.

Proof.
All finitely generated, torsion free modules over R are frec, and all
finitely generated, free modules with rank n are isomorphic to the R-module

over R".
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CHAPTER FOUR "AFFINE GEOMETRY , GENERATORS AND IS0MORPHISM"

Furthermere all d-submodules of a finitely gencrated, free module arc
free and finitely generated with module bases of the same size as the d-rank
{by Corollary(3-7-1)), so we are done. 0

In the end of this section we will sce that the rank 1 generator property is

equivalent to the irreducible element property.

Definition(4-2-2){Irreducible clement)

Let M be an R-module. An clement meMVE@>, is irreducible if
bm = am' for some a,beR, a# 0, m'e M implics alb.

The moduic has the ireducible clement property if, given any element
meM, thercis an irreducible clement m'e M such that m = 'm' for some

re R.

Proposition (4-2-1.)

Let M be an R-module of d-rank at least |, Then the rank |
generator property is equivalent 1o the irreducible clement property.
Furthermore the irrcducible elements are cxactly thosc elements which are

generators for some d-rank 1 subspace.

Proof.

Iirst assume that M has the runk 1 generator property. Take any element
meM. We know that <m>4has 4 generator, say g&eM. (Unless
<m>g=<E>y, in which case we can choose a generator from any d-rank |
subspace.} It follows that m = ri for some reR. We will now show that g is
irreducible.
Assume that bg = am' for some a,be R, a# 0, m'e M. It follows that

m'e<g>y4. Hence m' = cg for some ¢eR, By the Representation
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Theorem(3-6-1) we get that ¢ -2 ,le alb
o

Now let M have the irreducible element property instcad. Take any
d-rank1 subspace<m>,;, me M),
Let geM be an irreducible element with m =rg, reR. Since g is irreducible
it follows that <m>y=<g>,=<p>, whereby g is a generator.
The procedure above also proves the second statement of the proposition,

and we are done. (]
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Conclusions and future work; Summary

A geometry is a mathematical tool to solve some problems in different
scicnees, from it's important practicing it uses in engincering.

A new geomctry that is using in a technology i.c. computer sereen and
digital camera and image processing.... Etc, called discrete geometry or
digital geometry, Hiibler has developed an axiom system with the intention to
capture the essence of discrete geometry as utilized in image processing and
computer graphs.

One of the standard cxamples of a matroid is a vector space with its
lincar, (vector) subspaces. Modules arc hardly ever mentioned. Chapters three
and four clearly shows that there is no reason to restrict the attention 1o vector
spaces, modules over integral domains work equally well. In fact, some may
say, they work too well. At least those that are torsion free; they are naturally
embedded in a unique vector space, and hence they can be treated within the
framework of vector space theory. (Of course vector spaces are more well-
known than modules, and hence more appropriate for introductory
examples.).

Modules over integral and ordered domains have been shown to be
useful [or characterizing Hibler's geometry, However, even with some
discretencss assumption added (perhaps some kind of generator property)
they do not provide a framework for discrete geometry genceral enough for
our purposes. Examples ol pecometries that are hard or impossible to treat
within this framework include many finite gcometries and the geomeiry of a
cylinder. Having said this therec may be more specialized situations where
modules can be used, and some of our results may be useful. As an cxample
there are several proved results in this thesis about Hiibler's system (which
has been used by Hiibler himself to prove a practical result regarding lines in

the digital plane {25]). Furthermore we have shown quite clearly that torsion
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frce modules over integral (ordered) domains work just as well as vector
spaces over (ordered) fields as models of infinite {oriented) matroids.
Despite the drawbacks with Hiibler's system matroids and oriented matroids
may still be of use in a general framework for discrete geometry, since these
sysiems have many models that are not based on modules. Since oriented
matroids include the concepts order and convexily they are probably more

uscful than ordinary matroids.
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