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Introduction

INTRODUCTION

The term group was used by Galois around 1830 1o describe seis of onc-to-onc
function on finite sets that could be grouped to form a closed sel. As is the case
with most fundamental concepts in mathematics, the modern definition of a
group that fotlows is the result of a long evolutionary process.

In word, a group is a set together with an associative operation such that there is
an identity, cvery element has an inverse, and any pair of elements can be
combined without going outside the set.

In this project, we derive several important arithmetic relationships between a
group and certain of its subgroups. Recall that the converse of Lagrange’s
theorem is false on the other hand, Svlow theorems pive a necessary condition
for the existence of subgroup. Numerical examples discussed in this project
makes the Sylow theorems is an imporiant result in finite group theory. Other
important concepts are the direct and semi-direct product of groups which show
how Lo piece together groups to make larger groups. Our project is to start with
one large group and decompose it inte a product of smaller groups. These
methods are useful to give us a simple way to construct all finitc groups.

We also present a convenient way 1o define a group wilh certain prescnbed
properties. We simply begin with a set of elements that generate the group and 2
set of equations called relations that specify the condition that these generators

are to satisfy. This way determines the group up to 1somorphism.
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CHAPTER 1

PRELIMINARIES

In this chapter, a basic algebraic structure called group is introduced and
some important definitions, lemmas, theorems and examples are given.

The references of the following material are [2],[3].[4], [SH?L[l 1}zl

Definition 1.1:

A group is 2 nonempty sct G on which there is defined a binary operation

(a, b) — ab satisfying the following properties.
e Closure: Ifa and & belong to G, then ab is also in G;
o Associativity: (able = afbe) foralt a,b,cel;
s Identity: There is an clement € € ¢; such that ee=ea=a forall ae .
o Inverse: If aeGthen there is an clement ' eG such that
aa”l =ala=e.
A group G is called abelian i the binary operation is commutative,

ie.ab=ba forall @,beC.

Lemma 1.1:
if G is a group then:

1. Its identity is unique.

2. Every a € G has a unique inverse aleC.

3. If aeG,then (a'l)_l =q.
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4 ForabeG, (ab)" =bal .

By the associative law, products of any finite number of elements of a
group ¢ in a certain order are meaningful. Thus one may define the powers
of an clement « of G as follows:

For any positive integer #,

b ¥} - "
a"=aa...a,a =t,a =la |.

Definition 1.2:

The group G is called finite iT |G| 1s 2 positive integer; otherwise G is called

infinite.

Definition 1.3:

The order of an element a of a group G is the least positive integer » such
that a" = e. where e is the identity element in G and it is denoted by ofa) or

.

Theorem 1.1:

If every non-identity element ot a group (7 has order 2, then G is abelian.
Proof:

lLet a,beG suchthat aze=b where o’ =¢= b,

(ab)2 —¢ and a’b =ee=e.
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P

(ab)ab)=a’b’.
abab= aabb.

[a"a}‘m(bb" )= (a"a}:b(bb" ]

sha=ab YV abeG.

Definition .4
Let (G,.2) and (G,,*} be two groups, then a function £ (G, o)~ (Gy,%) is

called a group homomorphism if flxoy)= e fly) ¥ xyeq,.

Definition 1.5:

Two groups (G,.¢} and (G,*) are isomorphic if there exist a function

£ :(G,2) = (Gy,*) such that:

}. f is one -to —one, and onto.

2. flrep)=f()x 70} 9 x5 €G
This is dencted by G, =G, .

Definition 1.6:
Let G be a group and H asubset of G, then #f is called a subgroup of G

i H isa group.

Definition 1.7:
If G is a group, then {e} and G are improper (or trivial) subgroups of G.

All other subgroups are proper (or non-trivial) subgroups.
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Proposition 1.1:

Let G be a group and 7/ & nonempty subsct of . Then the following

statements are equivalent:

i. H<G,
ii. abe H and a™ e If foranv a,beH;
iii. ab™' € I (ora™‘'be ) for any a,befl.

. H* ¢ H (if G is finite).

The intersectian of a collection of subgroups of a proup G is also a
subgroup of G, but the union of several subgroups is not necessarily a

subgroup.

Definition 1.8:

Let G be a group and M < G. The intersection of all subgroups of G

containing M is called the subgroup generated by M . denoted by (M), ic.

(My= (i, 1, £GM S I

!

Remark 1.1:

In cheeking that the inverse of an element of (A) also belongs to (A), we
use the facl that

-l _ -l -
z ({I]...ﬂ") =qa, .4 .

Definition 1.9:

Forany N<G andany geG let g\ = lgn :ne N]and Ng = ﬂﬁg: ne N}
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called respectively a leff coset and a right coset of N 1In G . Any element of 2

coset is called a representative for the coset.

Remark 1.2:

if H is a subgroup of an abelian group G and acG . then aff = Ha.
Observe that eH = H = He and that a=ageeaH and a=eac Ha.

In general
aH # Ha.

Theorem 1.2:

Let H be asubgroup of a group G and a,b€G. Then

| ab{=bH ifandonlyif baeH.
2. Ha=Hb ifandonlyif ab™' e fl.

Definition 1.10:

1f If isasubgroup of a group G, then G is cqual to the union of all mght
(or left) cosets of I nG.
Le, G = a | Ja 1. La, H , where ap, .ty eG.

Theorem 1.3:
If H<G, then Ha=aH = H, ¥ aeH.
Note that :

Ha=#H iff aeH.

Definition 1.11:

Two sets A and B are disjoint if ANB=¢.
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Definition 1.12:
If H <G then the number of left {right) cosets of H in G isfinite.

The number of disjoint left (right} cosets of H in G is called the index of /
in G, denoted by [G: H).

The foliowing theorem is a basic property of subgroups of a finite group.

Theorem L4 : (Lagrange's theorem)

If G is a finite group and M is a subgroup of G . then the order of H
divides the order of G QGV[HD and the number of left cosets of A in G

e 1B
quals .

1]

Theorem L.5:

[f G is a finite group and x€G , then the order of x divides the order of

G . In particular A% = forall xin G.

Definition 1.13:

A subgroup N of a group G 18 said 1o be a normal subgroup of G if

- e N ¥V nelN and x€G, this denoted by N<aG.

Remark 1.3

Every subgroup of an abelian group is a normal. And any group G
has at least two normal subgroups, that is G and {e}, called the trivial

normal subgroups.
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Lemma 1.2:
Let N £G, then N is a normal subgroup of ¢ iff

1. .I:"\-fx-l=1"lr; Y xel .

Definition 1.14:
Let n be a fixed positive integer .Define a relation~on £ by a~& iff

We shall denote the

aEb(mﬂd n) Clearly ~ is an equivalence relation.

equivalence class of a by {a] this is called the congruence class of residue

class of o modulo » and consists of all inlegers which congruent to a

modulo n, i.e [a]= {b EZ| a=b{mod n) }.
= {a,a +rnatln,.. }
The set of equivalence classes under this equivalence relation will be

denoted by Z, and called the set of integers modulo # .

MNote that :

Zp={0i01}2} . [ -1

Definition 1.15;
Let G be a group and 7/ « G, then the quotient group is defined by

G/ H ={aH :aEG}, atl lefl cosets of ff in & with a binary operation

defined on G/ # as follows:
aHbH =abH N aff,bH eG/H .

Theorem 1.6:

A quotient group of an abelian group is abelian .
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Definition 1.16:

Let G,.G.....G, be groups, then the Cartesian product
X Gi=G xGyx..xG,.
Can be made into a group under the following operation:
{2, x50 %, | SBE V)= (XX Y XY,
Where (. %y0 00X, ) (7220 ¥0) € X10G, and XnG, is called the

external direct product of Gy, Gy,..., G,

Remark 1.4:
1. ]}\’LG:'\ = X:-IIGII'

2. X,G, is abelian if G is abelian for each i=1,2,...,.

Definition 1.17:
Let G beagroupand H,. K £G. Define
HK:{hk:heH,keK}.

Theorem 1.7:

Let G be a group, and Jet A and K be two subgroups of G. Then
71| K
k| = AL

IH K

Definition 1.18:

Let H.K 4G, then G is called the internal direct product of H and K
written G=H ® K ,if G=HK and H[\K = {e}.
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Theorem 1.8:

Let H and K be normal subgroups of the finite group G with |G| =|H||K].

Ifeither G = HK or I/[\K ={e}.then G=H QK.

Theorem 1.9:
Let G be a group with normal subgroups H and K such that G=H & K.

Then G=f x K.

Definition 1.19:
A group & is said to be a semidirect product of the subgroups N and K

written N xt K if
o N isnormalin G ;
. Nﬂ}( = [e} sand
« NK=(.

Note that:

K is not necessarily a normal subgroup of G.

Definition 1.20:

Let o be a prime number. An element a of a group & is called a p-element if

its order of«) is a power of p.

Lemma 1.3:
Let G be afinitc groupand H <G, then :
1. if [G: H]=2, then H «G.
2. if [G: H]=p and p is the smallest prime dividing |G|, then H 4G.
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3. if|G|=2r, ¥ =o0dd, then G has a normal subgroup of index 2.

4, if His a Sylow p-subgroup and n, =1, then {7 <G.

Lemma 1.4:
Any group of order 2p, where p is a prime number has a normal subgroup

of order p.

Definition 1.21:

Let G be a group and a be an element of G. Then the centralizer or
normalizer of a in G, denoted by C(a] , is the set of all elements of G which
commute with a,
le. Cla)={beG: ba=ab).

Note that:
s The center of G is abelian.
o G isabelion ilf cent G=G .

o coent GG,

Theorem 1.10:

If G is a finite p-group with more than one clement, then cent G# {e},

Definition 1.22:

Let G be agroup and let » be a prime.

o A group of order p” for some a 21 is called a p-group. Subgroups of

G which is a p-group are called p-subgroups.

10
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o If G is a group of order p“m ,where pis a prime not dividing m,
then a subgroup of order p? is called a Sylow p-subgroup of G

« The set of Sylow p-subgroups of G will be denoted by S_}’!’P(G) and
the number of Sylow p-subgroups of G will be denoted by #,,(G)

(or just n, when G is clear from the context).

Theorem 1.11: {svlow’s theorems)

Let G be a group of order p®mr, where p is a prime not dividing .
1. Svlow p-subgroup of G exist, i.e., S/, (G)=¢.
2. If P is Sylow p-subgroup of G and @ is any p-subgroup of G,

then there exists g e G such that < gPg™ Jie., O is contained
in some conjugate of P. In particular, any two Sylow p-
subgroups of G are conjugate in G
3. The number of Sylow p-subgroups of G is of the form 1+ 4p ,
ie. n, =1l{modp).

Further, n, is the index in G of the normelizer NG(P] for any Sylow p-

subgroup P, hence n, divides m.

11
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CITAPTER T'WO

FINITE GROUPS

Before discussing cyclic groups further we prove that the various properties
of finite cyclic groups.
The references of the following material be [LL[61[8] {9} [10L[11].

Section 2.1 some Important Finite Groups

2.1.1 Cvelic Groups

Definition 2.1.1:

If ae C , then the subgroup {a}={a" :neZ} is called the cyclic subgroup
of C generated by a, If {a) = C, then we say that C is a cyclic group and that @

is a generaror of C.

Remark 2.1.1:

A finite eyelic group €, ot order # is presented by
C,={a}={ma"=¢e}

The clement of C, are of the {rom C"={e,u,uz,“..a”'l},
And a(a" ): L
(n,r}

Note that : There may exist more than one generator of a cyelic group.

Lemma 2.1.1:

1. if @ is a generator of a cyclic group G then a”' is also a generator of G.
2. the arder of a cyclic group is equal to the order of any generator of the

group.
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Lemma 2.1.2:

Any two cyclic groups of the same order are isomorphic.

Lemma 2.1.3:

Let G be a cyclic group, generated by a. Then & is abelian.

Theorem 2.1.1:

Every subgroup of a cyclic group is cyclic.
Proof:

Suppese that G = {G) = {g': k e Z} is a cyclic group and let H be 2
subgroup of G. If H = {e }, then H is cyvelic, so we assume that /f = {e/, and let
g' eH with g* # ¢. Then, since H is a subgroup, g'It = (g" )‘1 e H . Therefore.
since k or — & is positive, / contains a positive power of g, not equal 10 e. 50

let m be the smatlest positive integer such that g™ € H. Then, certainly all
powers of g™ are also in A, 50 we have (g‘“) < H. We claim that this inclusion

is equality.
To see this, let g be any element of H (recall that all elements of G, and hence
H. are powers of g since G is cyclic). By the division algorithm, we may write &

= gm + r where & < r <. But

ght= g¥r = g¥g'= (g’“]? g" sothat g’ =(g"')_‘q gt eH.

Sinec s is the smallest positive imteger with geH and 0 £ r < m il

follows that we must have r = (. Then gt= [g’"]’ E(g"’) . Hence we have
shown that 7 < (g"") and henee H = (g"’). ‘That is £ is cyelic with gencralor

g™ where m is the smallest positive integer for which g7 e H .
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Theorem 2.1.2:

Every quatient group of a eyclic group 18 cvelic.

Theorem 2.1L.3:
If ged(m,n) =1, then C,xC,2Ch

Lemma 2.1.4:

If numbers m, for i=1,2,..,n are such that the ged of any twe of them is

equal to 1, then X7, C, is cyclic and isomorphic (0 Cop . m

Rem: ark 2.1.2:

The preceding lemma chows that if G is @ finite group of order n which is

writen as a product of powers of dislinct prime numbers. s in

n={p (g )" (0,)"

then €, is isomorphic Lo

Coor *Clor %X Cipr

L.emma 2.1.5:
A finite abelian group G of order n is isomorphic to a dircet producl

Cpp, % Cop, %00 % C,, wherc my, divides m, and mym,y ..o, =H.

General Dihedral Group

Definition 2.1.2:

The general dihedral group D, is presented by 1wo generators as follows:
D, ={aba" _pl=e  ba=a™'ty . n=134,. 1D} =2n.

D, is a non abelian group for nz3.
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Remark 2.1.3:

D, can be written as 4 semidirect product of C,

D,=lay» (B =C, 0 &
D =C A G

=(.ﬂ) h}’ C2 =<b) L.

Theorem 2.1.4:
D,,=D,xC, fornis odd.

Proof:
G=D,,={ab:a" =b'=eba= a™'8). Take Hi=(a” Y.

e, ba 2 _ah= [ETb

o
[ =]
-
Ih
e
s ]
1l

Let K =(a”>.

- K G, sinee ba"h ' =a" €K and afa"al=a"ekK.

~HOK = fe}.
~H|K|=2nx 2= 4n=|Dy,.
Dy, =D, xCy.

General Quaternion Group

For n>3, 0,={ab | al=e br=at, ba=a’'b},
(0, is a non-abeltan group for all n.

MNote that :
0,2 D,. 0,20 and O,z D

15
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Svmmetric Groups S,

Definition 2.1.3:

A permutation of a set A4 is a one-to-one and onto function /.4 — 4.

Nate that :

The set of all permutation of 4 is denoted by 5. §, is a group with

respect (o the composition of functions,

Deftnttion 2.1.4:

Let A={1,2,..., m}. The group S, of all permutations of the set {1. 2,....n}

is called the symmeiric group.
Nate that :
a) IS,

b) 8, is non-abelian for n23.

=nl

¢) Elements of S, are written in the form :

4]
J, where ;... 00, €L 2....n} and §Li.dh,.. 0, are

T
_— —
[ b2
- Lt

{

distinct.

Definition 2.1.5:

Let S be aset, and let @,.¢5.....a, be distinet clements of 5. A permutation
of § that sends «, to a,,, lor i=12,...n=~1, and sends @, to a is called a
eyele of order 1. or n-cycle and is denoted by (ay.ay...0a, } - where

a, u

(o

— 2 H=| n
(ﬂl,ﬂz,...,ﬂn)—( ]1

@, y ... 4, a4

e

MNote that:
S;= D, and 5, 2 D).

16
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Theorem 2.1.5: (Cayley theorem)

Any group is isomorphic to & group of permutation,

ie. Any group is isomorphic 1o a subgroup of a symmetric group.

Alternating Group 4,

Definition 2.1.6:

The permutation is called even if it's the product of an even number of

transposition. Otherwise is called odd.

Remark 2.1.4:

The preduct of 1wo even permutations is an even permutation; also the

inverse of an even permutation is even.

Definition 2.1.7:

For each integer s satisfying » > 1, lhe alternating group A, is the

subgroup of the symmetric group $_ consisting of all even permutation of the

set {1, 2,...,n}.

o iseveny.

ie. A,={ce€S,
Note that :
1. j4,]|=nt

L

A, aS,.

3. A, is non-abelian for nz 4.

Lo

A= Cy, Aj2 0, and A, 2 Dy
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Section 2.2 Some Finite Groups of Special Orders

Groups of order p
Theorem 2.2.1:

Any group of order p, where p is a prime number, is cyclic and 150morphic
to .
Proof:
Let G he a finite group of order p.ie.  |G]=p.
Let g € & such that a #e.
2+ |\ |6}
AR
©la=1or |e=p .
But o] =1 since aze.
~la=p.
Therefore G ={a)
- G s acyclic group.
And we know that any two cyclic groups of the same order are 1somorphic.
Sobs O

Groups of order_ p*

Theorem 2.2.2:

Any group of erder p°, where p is a prime number, is abelian.
Proof:

Let G be a group with [Gj= p*.
Since cent G # {e} (by theorem 1.10), then |cemG| 2t and [centG\[C].
o eemGl= p or |eemG]= I

If |centG|=p so centGaG | then |G/certG| = p, whence GfeentG s cyclic.

18
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Let G/centG be generated by the cosel a cent G .
Then a typical element of G/centG has the form a"cemtG Tor some inleger #2.

lLet x,yeG = x=a'c, y=a"c', where mn€Z and ¢, ¢’ cent G.

myha i

awy=a‘catc=a"ec'=a" o= amc'a’c=yx.
xy=yx ¥ ox,yeC
Therefore G is commutative which implies that G = cent G and so

cent G has order p? , a contradiction.
This leaves only the possible thai 1cean1=p2 which implies that G is

coOmmuiative.

Note that :

if|G]= p*.then G=Cor G2Cpx (0

Groups of order p’

Lemma 2.2.1:

Any abelian group of order p°. where p is a prime number is isomorphic

mCP., sz xCp anpx C'FxCP.

Lemma 2.2.2:

Any non-abelian group of order p*. where p is an odd primc aumber is
isomorphic 1o the group with a presentation either.
i. {abc|af=bf _cP =e . ab=cac”, ba=ab, be=cb}, ot
i. {a,b l af =e, bf =e, pa=a?' b},

Note that @

The previous lemma is not applicable for any non-abelian group of

order 2°=8, where p=2. this case will be discussed in the following chapter,

15
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Groups of order  pyg

Theorem 2.2.3:

Let p and g be prime numbers, where p < g and ¢ #1({mod p). Then any
group of order pg is cyclic.
Proof:
Let G be a group of order pg. ie. |G|=pg.
Then G contains Sylow subgroups N, and N, of orders p and g
respectively.
Iet n, be the number of N, then n,|pg and », =1{mod p}
Clearly p 4 n,, and thercfore cither n,=1 or n,=¢g. Bul ¢ £1(mod p}. Then
n,=1 which implies that N, < G.
A similar argument shows that N, 4 G, since p < g and therefore
p# 1{mod g).
Now N[N, <N, and N, [V, =N,

|NpﬂNrru p and |NpﬂNqi g (by Lagrange’s theorem )

Therefore lNPﬂN‘Il# and Npﬂﬁ"q= fel —{1)

]Np N

C o l" ¢
A A

Also since any group whose order 1 prime number must be cyelic, then the

= lei

N,|= pa=IG| —(2)

groups N, and N_ arc cvelic,

oo N,=C, and N, zC, — (3}
From {1), (2) & (3) we get

Gz=C,x C, = c,, oy theorem 2.1.6)

L G0,

20
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Note that :
If plg=1,where p <g, then the previous theorem i not

applicable. Group of this type will be discussed in the following chapter.

Groups of order 2p
Theorem 2,2.4:

Any group of order 2p, where p is a prime number, is isomorphic 1o
either C,, or D,.
Proof:
Let G be a group of with|G|=2p.
If p is an cven prime, then |G| =2(2) =2%=4,
L GECxCzD, or G=C;.
If p is a prime number greater than 2, then the group G contains elements x
and ¥ whose orders are 2 and p respectively (by First Sylow theorem})
-3 N<G where N ={)} which isa Sylow p-subgroupof G.
Let n, be the number of Sylow p-subgroup of G suchthat np|2p and
= I(mod p).
Lon, =1 2, p and 2p are not congruent to 1 modulo p).
s NaG .
Now consider the elementxyx™' € G.
Cxox'eN (UNaG).
Therefore xyx™'=)* for some integer &.

Moreover p £ & (0 xpx”!is not identity element of G).
£ X}

() =y =t a7 e T

But x’=x""= e, since x is an element of order 2.

21
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LpP=y = yi=e

But p| &% -1, since y is an element of order p.

Moreover k7 —1= (k —1)k+1), then either p| (k -1), in which case xyx™' =y,
or glse p[ (k +1}, in which case J::yx'l=-];'l |

In the case when xyx~'= y we see that xy = yx which implies that G is
abelian but |x)]=2p , then G is cyclic and isomorphism to C',.

In the case when xpx™'= p~' we see that xy = 3~ x therefore the group G is

isomorphic to the dihedral group D, of order 2p.

Ft
1~
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CHAPTER THRELK

APPLICATIONS OF SYLOW THEOREMS AND MORE

In this chapter we will try to classify all groups of order 8, 12, 16, 18, 20, 21,
24, 27, 28, and 30 up to 1somorphism.

Groups of order §:

We know from lemma (2.1.5) that every abelian group of order 8 is
isomorphic to Gy, Cyx C; or Cyx Gy x (.

Suppose that G be a non-abelian group of order 8.
If G had an clement of order § , then & would be cyclic, and hence abelian
which contradicts our assumption that G 1s not abelian,

Therefore G has no element of order 8, so every clement except the identity
is of order either 2 or 4.
IT each clement of G except the identity had order 2, then from theorem (1.1}
¢ would be abelian which contradicts our assumption that G is not abelian,
- (7 must contain at least one element of order 4.
Let ae G with |a|=4, and let ¥ =(a) be a subgroup of G of order 4.
-+ N a @G and there arc precisely 2 cosets, given by Nand 6N, for any element
beN.
LG=N|JbN.
.+ N <G, then BN € G/N and |G/N{=2.
L pN]=2 = BreN.
~.we have four possibilitics for b

1. bt=e¢ 2. b'=a 3 b =d 4, b =g’

if6i=a or b2 =a°, then b would be of arder § which a contradicts.



nbi=e or b =g,

N aG,then bab'e N.

wJpab™|=2 or 4.

If (bab"]z =¢, 50 a° =e, a contradiction to the cheice of a.
If (bﬂb't).q —e, then a* =e

o pab™|=4.

So | either dab™ =a or bab™ =o’.

If bab™' =, then ba=ab and so G would be abelian which contradicts our

assumption.
Lbabt = so ba=a’b.

We have show that & contains elements a.b such that ¢* =e . ba=a"b, and
Bl=cor b*=a’.
If a*=e, b*=e, and ba=ca'p , then G is isomorphic 1o the dihedral group
D,.
If o' =¢.6° =a®, and ba=a’h, then G is isomorphic to the quaternion group

0.

Groups of order 12:

Let & bea group of order 12. e [G| =12=2%3
. {7 has Sylow 2-subgroup of order 4 say H , and Sylow 3-subgroup of order 3
say K .
Let s be the number of Sylow 2-subgroup, and s be the number of
Sylow 3-subgroup.
v n=l{mod2), n3 and  m=1(mod 3}, »m4.

n=l or npn=3 and m=1 or m=4,
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Therefore we have four possibilities:
1. n=1 and m=1l.
2. n=1 and wm=4.
3. n=3 and m=1l.
4, n=3 and m=4.
Now we verify each possible case of them:
1. n=1 and m=1.
LHaG and K 4G,
, |
Moreover, |HK| = |Hﬂ Kl
LGz HxK.
We have two possibilities of H':
H=C, ov H=Cyx (.

LG xCxCCxCy or G=C,xCy=C.

2. n=1 and m=4.

i. H=(a:a4=e> and K=<b:b]——-e>.

.+ H 9 G, and we have H{ K =1e} and [HK|=|G].

L G=HIK andhave G=H « K

LGz=CH .

el = bab €H.

‘bab'llzél = bab'=aqora.

If hab~'= a, then ba =ab and so G 15 abelian.

hab ' =d’ — ha=a’h.

We have to show that the group G uader this assumption is cyclic.

(abY =abab=ad’bb=b".
(ab)3 =a, ., (ab)u =e.

VKL = 43=12-(G)
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. G is ¢yelic and hence abelian.,
L G20y G0,
Therefore there is no non-abelian group of order 12 with #=1 and m=4
and H = (.
i, et H= {e,x,y,:} be a group of order 4 which 1s not cyclic, thus
H=(Cy,%xC, and K=(c:c3 =e>.
CO=HNK =G=z2(C,=xC)xC,y.
wHaG thenche ' el ¥ hel.
Assume G is non-abelian group.,
-+ ehe™! # & for at least one element ke /7.

Suppese that oxe™ # x. We may assume that cxc =y,

Put x=a, v=5,and z=ab. Then cac” =b.

<. ca=bec, which implies o =¢ 'be.

Now we consider cbe™ € H

If che™' =a,then che'=cTbe = b=c"2be’.

Thenas ¢* =¢”, (crl)‘] =0.

o b=cbc™', and hence =4 this is a contradiction.

If che™'=b, then b=c 'be=a = b= a which s a contradiction.
If ¢he~'=e, then b =c™'c¢=¢ which is a contradiction,

s cbcT'=ab = ch=abr.

Consequently ¢ 1s defined by:

‘e, ab=ba, ca=hec, ch=abc.

at=pr=e, ¢
Therefore the elements of & are:
e,c.cz,rr,b,m’:,ac,bc,abc,acz,bczjabc:, and has 3 elements of order 2 and B

elements of order 3.

20
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—— S - e T e o e ——

Gz A,
3. n=3 and m=1l.
1. H=(a:u4=e>andK=(c:cl=e).
cG=KuH = CGa0H0,.
K aG so aca €K,

=1
s aca~'=e,c or ¢t

If aca”'=e. then ¢=e¢ which is a contradiction.
If aea '=c, then ac = ca which means that G is abelian.
-1 o

-1_ 2 2
If gea™ ' =c = agc=c°a.

Consequently & is defined by:

a2l =ec’ =e.m:'=c'2a,ac1 =cq.

The distinct ¢lements of G are:

2 2 2 3

3 1 1.2
eaa”,a’,cctac,ac,a’cac.ac

.a'¢’, and has 1 element of order 2,

2 elements of order 3, 6 elements of order 4 and 2 elements of order 6.
A = [a.c: a' =c® =e,ac=cla,ac’ = ca).
i, H=lex,y.2}=2Cx Gy, K=(|:‘ et = e).
cG=KAH = G=Cx(CyxCy).
- KaG,wehave hch'eK ¥ heG.

By assumption for at least one element /1 € H such that heh™' ze
Let xe H suchthat xex™ =¢?.
Againput x=a . y=b and z=ab.

SO0 = Czﬂ' .

We claim that § = {e.a,c,c{ac.m‘z } is a subgroup of G.

.5 is a group of order § and S is a non-abelian group.

7
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—_— s { | ——1 -~} B=ﬂ-:==ﬂ=--n===—n====

Also S bas 2 elements of order 3 and 3 element af order 2.
A 2 N
Now S<aG = bep el where bes.
wJbeb™|=3.
Therefore cither b¢d™ =¢ or ¢°.
We shall now choose an element he #f,he S Such thal ich™ =,
If beb™ =c then h=b.
If beb™" =¢? and we have aca™ = ¢? then
(abde(aby ' = a(beh™)a™! = acla™ =({aca”"V¥ =aca™ aca™ =¢¥? =¢.
h=ab.
. there exists an element £ S in & such that fich™ =c.
Consider M =(h) , |M]=2
Clearly S[\M ={e}, [S]M|=|G] andse Gz=SxM.
But S=D,. M=zC,.
L G=DyxCy =D,
L G=D,.
4. n=3 and m=4,
If m=4,then G has 4 Sylow 3-subgroups.
Hence & has 8 distinct ¢lements of order 3,

If n=3, then G has 3 Sylow 2-subgroups of order 4.

Hence (3 has at least 5 distinct elements of order 2,
But [G]=12.

tHence there is no group of type #=3 and m=4,

Groups ol order 16:

We know {rom lemma {2.1.5) that every abelian group of order 16

28
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is isomorphic to €, Cy x G, , CyxC, , Oy x Oy xCy0r &y x €y xCy % €.
Supposc that & be anon-abelian group of order 16.

If & had an element of order 16, then & would be cyelic, and hence abelian

which is contradicts our assumpuon that G is not abelian.

-G has no elements of order 16, So every element except the idenltity is of

order either 2, 4 or 8.

If each element of &G except identity had order 2, then from theorem (1.1)

& would be abelian which a coutradicts our assumption.

If G contain at least one element of order 8.

Let ae G with |a]=8.

Case {1)
Let N ={a) be a subgroup of G of order 8.

N aG and there are precisely 2 cosets, given by N and 4N, for any
element bg V.
:+ N <G then bN e GfN and |G/~]=2.
~pN|=1 or2 = blew
We have eight possibitities for 47
. ¥ =¢ 2. b'=a 3. b =a" 4.b=da’ 5. b'=a"
6.6°=a’ 7.6°=a" 8.5 =a’.
If b2 =a,a’.a’ or @', then b would be of order 16.
b =corbi=a’or bP=a’ or b? =g,
N aG,then bab'eN -
- Jbat!| =8.

So, cither bab™' =a,0%.a° or a’.

If bab™'=a = ba=ab and so G would be abelian.

29
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If bab~'=a® => ba=a’d.

if b =e.

a=aa’ =a’.....a'b=a’b. and the presentation (a,b:a“ =p’ =e,ab:bas) s
anon-abelian group of order 16. and the presentation (a.b a*=b" =e.ab= bas)
which is called the quasihedral (or semihedral) group which has 3 elements of

order 2, 6 elements of order 4 and 4 elements of order 8.

If b2 =at = b=a,b’ =g, b -a’, b —a* b’ =a b =a* b’ =aand P=a.
< G isabelian group which is a contradaction our assumption.

Iftb? =o' = b=a’ b= at B =at b =e

~LG= {c.a,az,aj,ad,a"’,aﬁ,a? }

fblea® mb=a bi=a.b =ab =a"b’ = b =a. b =aandb =e.

o p=d’and @' =b' = a=d’and g’ =a° this is a contradiction.

If bab™'=a® = ba= a’b.

If bl =e.

Sn= r.'T,-:’Il =t }...,a?b =a'b .

and we have presentation (a,b:a" = b7 =¢,ab=ha’) is anon-abelian group of

order 16 which has 8 clements of order 8, 4 clements of order 4 and 3 elements

of order 2 which is cailed the modular group.

Ifp =g’ b=abi=a" b =a.b et b =g’ b =at.b =a"and B* =a*.
. G is abelian group which is a contradiction our assumption.

Fdlea' mb=a’b’=da' b =a®and b =e.

O (ﬂ,b:as —e.b’ =ﬂ4,ﬂb=b{15].

fpl=a®=b=a.b’ B =ab =at b’ =58 = at b =a’ and B =e.
ch=dand B =a' = [bl)z =(.:rz)3::>h2 —at D h=a Da=a

and «® = ¢ this is contradiction.
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If bab™'=a’ = ba=a'b.
If b* =e,
ca=aal= at...ab=ab.

And we have presentation (a.b ca® =% =e.ba =aTE:r) is anon-abelian group
of order 16 which has 9 elements of order 2. 2 elements of order 4 and 4
elements of order 8.

Gz Dy

If 52 =a?, then G is a group of order 8 {iGi =16.
O [a,b ‘a® =e,b =at ba= aTb).

If $* =a®

na=aa =a..ab=ab,

And we have presentation (a,b at=e,a’ =b ba= a?b) is anon-abelian
group of order 16 which has 4 clements of order 8, 10 elements of order 4 and 1

clement of vrder 2,

NGV

If 4 =4,

wh=a and b=a' = b=a.

a=a.a =a° thisis acontradiction.

Case (2):
If & is not cyclic, then N=Cyx C, or N=2C, xC,y x (.

I N=C,xCy=la.bia' =b% = e.ba=ab}.
-+ N «@G, then G/ is of order 2 and thus somorphic o €.
If ce@G and ce N, we must then have clelN.

-+ every clement of N has order 1, 2 or 4 then ‘c2| =1,2o0r4.

N 4G, then ene” e NV nelN.
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eac eN and che e N
l.-:‘ac'1|=2 or4 and [c‘bc“'{=2,

- ecac ' =a.a’ or a® and ¢cbc =b.

If |c2\=2. then |c|=4.
But "any group of order p*,where pis aprime number, is abelian”
‘czl-ﬁl, then ]c]=8 but any group pencrated by =bl=e¢, " =¢ wilh

cac” ' =a ,a* or & and cbe™! =5 must be of order less than 16.

Loo=e

If cac™'=a and cac™ =b then ca=be then G is abelian which a

contradicts our assumption that < is not abelian.

If cac™' =a® and cbe™' =6

rea=oic and ch=be

ca’ = (ca)a = (azc)a = az(ﬂzc)= c

And we have:

a=b'a=b(ba)=bab and a=c’a=clca}=cac.

~G= [a,b.c ca* =b? =¢? —e,cbea’b=e¢,bab=a.cac = a).
If cac™ = o’ and che™' =b.

sea=a'c and ch=be.

2

. -
La=au =a ....,aabc =ahc.

And we have G is a non-abelian group which has 11 elements of order 2 and
4 elements of order 4.

L G=DyxCy.

2. lot N2CyxCy x Cy ={ab.d:a® =b? = d* = e.ab=ba.ad = da,bd = db}.
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N aG ,then G/ N is of order 2 and thus isomorphic to C;.
- eeF and ¢ e N, we must then have cteN.

-+ every element of & has order 1 or 2 then |cz| =1 or 2.

-NaG,thenencteN ¥ neN.

!cac"l =2 and |cbc'l|= 2 and |cdc"| =2,

ecac” ' =aand cbe™ = b and cdc =4.

sea=ac and cb=6c and cd = de.

SG = {e,a,b,d,c,ab,ad,rrc,bd,bcjdc,abc,aba’,adc,bdc,abdc} is abelian group

which a contradict of our assumption.

If cach clement of G except the identity had order 4.
Let a6 G with |a] =4.
I. let N ={a)} be a subgroup of G of order 4.
-+ N 4G and there are preciscly 2 cosets given by & and &N, for any element
he N .
L G=NIbN .
- N aG, then bV € GfN and |G/ N|=4.
IbN[=l,2 or 4.
But 6N # N then || 2 1.
:.|bN|=2 or 4.
Ifp|=2 = dlen.
If[p¥|=4 =b'eN.
o IfbleN.
We have four possibilities for &°:
.6 =e 2.4 =a 3.0 =a’ 4. b =a’,

- N aG.then bab~ e N
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|bab"| =4,

So, cither bab™ =a or .

If bab™' = a, then ha=ab and so G would be abelian.
wbabl =t = ba=d’b.
It B*=¢ = G=p.aal.a’bababah)
. Gelabia =t =eba=0a'd).
Ifb2=a.
. G=f.a.a’.d’ b6’ b b ab}.
G.3'.=(a:a'.f:ir:a'4 =e,b =a,ba=a:’b).
i 5% =a’.
G =fea,ab,a’ 6,67, 6% ab,a’b,a’b,ab? 6%, &°b7 b’ a®h" @b} which is a
non-abelian group of order 16 which has 7 elements of order 2 and 8 clements
of order 4.
GE(a,b:a“ =b' =e.abab = e ba’ =a£13].
[f b =g
G=l.aa’.a’ 6.6’ .b° b ab).
A OE- (c;t,.b:a4 =¢,b’ :aj,ba=fz]b).
« Ifo'enN.
Wc have four possibilities for 5*:
1. b =e 2. 6" =a 3.5 =4’ 1.8 =4
If % =a or 4! =&°, then b would be of order 16.
b =e or b =4t
'* N <G, then bat™ e N
‘bab"‘ =4.

So. either bab™ =g or a°.
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== = ir= - e

If bab™' = a, then ba=ab and so G would be abelian.
~bab™ =a® = ba=a’b.

If b =e.

Then we have a presentation (a.b:a" = b’ =e,ab=ba])is a non-abelian

group of order 16 which has 12 elements of order 4 and 3 clements of order 2.

b= [c':,f:r:a‘i =4 =e,ab=ba3).

If ' =a’.
t"={e.a,nz,aj,b,b},bs,b",ab}.
G;-:‘“(.rz,.!:r:ﬂ"i =g b =a1,ba=a3b).

2. if N is not cyclic, then N =C, x G,
+ N 4G, then GfN is of order 4 and thus isomorphic to Cj.
If ceG and ¢ € N, we must then have ¢! e M.
+every clement of ¥ has order 1 or 2, then |c’|=l or 2.
NaG,thenene™'eN ¥ nelN,
\:ac"‘ =1or2 and ‘cbc_lizl or 2.
ceacT =a and chet=b = ca=ac and cb=be.

If ‘c‘*l =2, then |c| =8.

Groups of order 18;

We know that from lemma (2.1.3) that every abelian group of order 18 is

isomorphic to Cj; or Cy x (5.

Suppose that G is 2 non-abelian group of order 18.=

By Sylow theory, G contains a normal subgroup H of order 9. and then

fi=Cyor H=CyxCy.
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B 0 — — em=—rTr =P _————r e e o e e e

Casc (1)

If # is cyclic then let @ be a generator of /. Le. H=(a g’ = e).
.+ H G, then G/H is of order 2 and thus isomorphic to €.
If be¢; and b¢ H, we must then have b’ e H , since every element of H

except the identity clement has order 3 or 9, then \bz‘=1,3 or 9.

If ‘bzl=9, then |4 =18 andthus G is cyclic and hence abelian.

cHaG then bab™' e H
\zmb"|=9

2 ]

bab =aat.at .’ ,a or ab.
If ‘b1‘=3, then [B[=6 butany group generated by a’ =b% =e with
2

5 ]

bab™' =a,a’.a',a”,a’ or & must be ol order less then 18,
~bi=e

If bab™'=a = ba=ab . which would make & abelian.
If pap ™' =a® = ba=a’b but not all elements of any group which generated
by a.f such that &’ = b = e ha=a’h are distinct.

(ﬂ,b q'=hl=eba= azb)= {(r,a,al,b.ab,alb 5.

NS (a.b a’ =b'=eba= azb),

A similar study of @ =(bb)a=b{ba).

For

{a,b a’=e b’ =eba= a*b],

(a,b: a’=e bt =e¢ba= ajb), and

9 T
(r;,b:a —g bt =eba=u b),

Shows that a° = e in each group, so this yiclds to group of order 6.
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This leaves just (a,b @’ =e bt zeba= agb],and all elements of this group arc
distinet because (a‘b a =e b =e.ba= aﬂb) =y

Case (2

If A is not cyclic, then H = C; x C; which is abelian,
 H G, then Gf/#H is of order 2 and thus isomorphic to C,.
If ceG and ce H,wemust then have ¢® € H.

“cevery element of 71 has order 1 or 3, then ir:?l:l or 3.

v HAaG, thenche™ e H ¥ heH.
LeacT e H and ebel e H
‘mc_]‘=3 and ‘c‘br:"‘=3.

- -
eacT =a or ¢ and ebet =8 or B

If lcz‘=3, then |c]=6 bulany group generated by a’ =d’ =e, ¢* = ¢ with

L

cac” = a ora’ and ebe' =b or #* must be of order less than 18.

et =g,
If ca=ac and cb=bc then & is abelian.

If cac™ =a® and cbe™' =b, then all elements of the group G, with

presentation [a,b,c @’ =b'=¢c'=eba=abca=a’c,ch= br:) are distinct.
This group has 6 clements order 6, § elements of order 3 and 3 elements of
order 2.

Similarly, il cac™ = a and cbe™ = 47, then all elements of the group G, with

Y= ba=ab,ca=ac,cb= bzc.‘) are distingt and

prescntation (a,.’:,f: at=h=¢
this group has & clements order 8, 8 elements order 3 and 3 clements of order 2.

LG EG,.

But §; x € =<a,b:a:’ = e, b* =e.ab=ba3>x(c:03 =£). )
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=T

§; x & has 6 elements of orders, 8 clements of order 3 and 3 elements of

order 2,
LGS« 0.

1

If cac”' =a° and ebe™ = H% then ca =a’e.

2

~.The group with presentation la,b,c:a’ =8’ =c? =e.ca=a’c,ch=h"c.be = ab)

is isomorphic to {C, x C, )= C;.

SLG= (a,b,c = =cl=eca =alc.ch=bc.bc= ab].

Groups of order 20:

Let G be a group order 20. ie [Gl=20=5.22
.. G has Sylow 2-subgroup of order 4 say £/ , and Sylow 5-subgroup of order §
say K.
Let 2 be the number of Sylow 2-subgroup.and let m be the number of
Sylow-subgroub,
ca=lors  and m=l,
Therefore we have two possibililies:
I. n=1 and m=1.
2. n=5 and m=1.
Now we verify cach possible of them:
l. n=1 and m=]
L Gz2CxCy or G0y
Now assume that G is not abelian.

2. w=5 and m=l.
L. 1r'1!"=<a:c:"“=e)E¢'L‘4 and K=(b:b5=e>.
G =KX H therefore Gz CxC,,

K afi, and |a.-5a"|=5.
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et e = e et ey I TAF _ —

Saba”'=pb% 67 or b
If gha™' =b =>ab=ba then G is abelian,
If aba™' =b' = ab=b%a,and a=aa’=a’,. .  ab =a'b.

The group with presentation (a.b a*=b" =e.ab =b1a) 1$ a non-abelian
group of order 20 which has 4 clement of order 5,10 element of order 4 and 5
element of order 2.

If aba™ =8° > ab=8a ,and a=a,a’ =a*.....a’6" =a%p".

The group with presentation [a.b:a“‘ =b’= e,ab:b’a] is a non abelian

group of order 20 which has 4 elements of order 3,10 clements of order 4 and 5

element of order 2.
o= (a,b:a': =5’ =e.ba=abz)
If aba™' =b* > ab=b*a and a=ab=b,....0°b =a'b’,

The group with presentation (a,b ra* = b =e,bab =a} is anon —abelian
group of order 20 which has 4 elements of order 10, 4 elements of order 5 and
10 elements of order 4 and { elements of order 2.

LGz [a,b a' =4’ =¢,bab = a).

ii. Let #/={fe,x,v.z2}= C,x C;. and Kﬂ(c:c’:e).
LOG=K+9H .
G2 C(Cyx C,).
K aii,wehave heh™'eH ¥ hell .
By ussumption for at least one element fie 7f such that hch™ % ¢
Let x e Hsuch that xex™ =¢%.¢” or ¢
Againput x=g, y=b mnd z=ab.

3

4
.'.CIC:C.'EH or ae=a'a o ac=0C a

If ac=c’a=vc=c"and ¢* =¢” thisisa contradiction.
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——— — et P D] - P 1]

3

4 2 3 o i
Ifac=c’a mc=c” and ¢° =¢” this is 2 contradiction.

If ac=eta=a=ac=cc*=c%. ac'=ac’.

" (IC=C4{1 .

k| 2 ]

. _ 7 4 3.
We clain that S—{e,a.c,c 00,0 ac, 0t ae .ac‘J is subgroup of .

Such that § is a group of order 6 and § is anon-ablian group.
Also that § has 5 elements of order 2 and 4 elements of order 5.
& =D

544G =beh'e§ where beS

v et =5.

4
JDTC .

~bebt =, e
If bcb'=c then hi=b,

If beb™ =c” then

(ab)elab)™ = ¢* = a contradiction.

If bch™ =c* and we have aca™' =¢* then (ab)e{ab) ' =¢ .
soh=ab

.. There exist an clement s S in & such that heh™' =c.
Consider M =(#), |M]=2,

Clearly SMM ={e}, |9] |M| =[G, andso G=SxM
But S=D,, M=C,. '

s G2DxCo=Dy

Groups of order 21:

We know that from lemma (2.1.5) that every abelain group of order 21 is

isomorphic to C,,.

Suppose that G is anon -abelian group of order 21,
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By sylow theory, G contains a normal subgroup 77 of order 7, and [f must by
cyclic.
Let a be generator of 77, e H f—(a: a’ = e).
* HaG ,then G/H is of order 3 and thus isomorphic to C;.
if beG and be H, we must then have &° e ¥/ .
~+every element of Jf has order 1 or 7.

:[8|=7.then [p|=21 and thus G is cyclic and hence abelian.

B =e
cHaG = bab'eH.

- - d
.'.|bab '|='ir = bab™'=a, a®. &, a . a or at.

lf( bra' =e, b =¢, ba=ab ),lhcn { 13 abelian.

If {a,b: a'=e, b®=e, ba=a’h), then all clements of the group with this

prescntation are distinct.

~Galab:a =e, b =e, ba=a’h).

This group has 6 elements of order 7 and 14 elements of order 3.

If (a.b: a’=e, b =¢, ba=a'b), then not all clements of this group are

distinct and we will prove that by using the associative law as fotlow:
a=a'=a'=a'=a’=a"=4a" =¢.

~.every element in the group with presentation (g, a =e,b’=e, ba=a’bh)

is equal to e,b or b%, that is, this group is isomorphic to C,.

A stmilar siudy of (bb)a = blba)

For (a.b: ¢’ =e, b’ =c.ba=a’b),and (a,b: a’ =e. b =e ba=a’b).

Shows that ¢® = a again, so this vicld a gain these two groups are isomorphic

to C,.
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H {ab: a’ =e, &' =e, ba=a*b), then il clements of the group with this
presentation are distinel.

SO = (a,b: @ =e, b =e, ba:ad‘b).

-.this group has 6 elements of order 7 and 14 clements of order 3.

apia’=e, b1 =e, bu=a*t)=(ab:a" =¢, b’ =¢, ba=a?b).

Group of order 28:

Let G be a group order 28. ic. [Gl=7.2%

‘. G has Sylow 2-subgroup of order 4 Say A, and Sylow 7-subgroup of order
7 Say K.
Let # be the number of Sylow 2-subgroup, and let m be the number of
Sylow 7-subgroub,
n=1{mod2), x\7 and m=1{mod7), m4.
sn=lor7 and m=1,
Therefore we have two possibilities :
1. n=1 and m=1.
2. n=7 and m=1.
Now we verifv each possibie of them:
oor=1 and m=1,
v HaCG and KaG.
CHNK={} = |HOK|=1and  |HK|=|G].

L G=HxK.
We have two possibilities of H:
1 i =C, = GzC,xC; =0y
ii. H=C,xC, = C=CyxCyxCy=CyxC,.

2 n=7 and m=1l.

a. H:(a:(J*:e) and K=(c:c?=e).
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L G=KAH =2 GaCxC,.
K aG so aca €k.
. =1
..‘am \:?.
- E|
cacat =ectt et or oL
f aea” =¢ —ac=ca = a contradicts.
If aea™' =¢* =>ac=c’a and ca=c’a.
- ac=ca = (G is abelian group.

If gca” =¢® =>ac=c’a but not all elements of any group which generated
by a,c such that a'=¢' =e, ac=c’a are distinct.
LG= {eaa .a c,c3 acac azcac3aca3c3‘}

A similar study of ¢=a*{c)=a’(ac). For

(a,.*::a4 =¢ =eac=c a)

(a,c :a® ='c? =g r = csa).

So this yields to group of order 1Z.

If qea”' =c® = ac=cla.

- This lcave just [agc a' =¢' =e,ca= ac’ ), and all clements of this group are
distinct and this group is order 28,

b. Let H= {e,x}}l,z}z C,xC, and K=<|:' e’ = e)

cG=KAH 2GR0 xG)

K aG,wehave heh™ el ¥ heH.

By assumption for at least one clement he H suchthat hAch™' ¢

Lot xeH suchthat xex™' = et

Againput x=a, y=4 and z=ab.

G’C:CE{T.
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2 3

- 4
We again that S = {é‘,a,c,c et e’

,cf',ac?acz,ac3,a(.-4.acs,ac‘5} isa
subgroup of G.

- & is a group of order 14 and S 1s anon-ablian group.

Also that S has 7 elements of order 2 and ¢ element of order 7.
~S=D,. |

- 854G = bebT'eS where beS.

s |peb|=17.

~beb =t et et et or c®  we shall now choose an clement hell heS
such that hch™' =c.

If bch™'=c then h=2.

If beb™=c? and we have ¢® = aca™ then (ab)e(ab)™ =¢’.

SRt ab

If beb'=¢" = (abklab)' =¢* = hzab.

If beb'=c' = (ab)clab) ' =c* = hzab.

If beb™'=c® = (ab)elab) ' =c* = hzab.

I bcb'=c® and we have ¢®=aca™ then (abklab)' =c.

h=ab

~ There exist an clement Ag S in # suchthat hch™ =c.

Consider M=(/), |M|=2.

Clearly SN M =le}, |S].|M|=1G], and so G=SxM

But S=bD,, M=,
v GzCxC =D,
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Groups of order 30:

We know from lemma (2.1.5) that cvery abelian group of order 30 is
isomorphic to Cy,.

Suppose that ¢ be anon-abelian group of order 30,
If & had an element of order 30 then G would be ¢cyelic , and hence abelian.
.. cvery element except the identity is of order either 2,3,5,6,10 orl 5.
If each element of & except identity had order 2, then & would be abclian.
If each element of G except the identity had order 3 or 5, then G would be
abelian,
If cach clement of & except the identity had order 6 or 10, then & = C; or D,
or G =G, or D, !
Thus & must contain at least one element of order 15.

Let 2 G with |a] =15, and let N={a}be a subgroup of G of order 15
- N @G and there are precisely 2 cosets, given by N and AN | for any element
bae V.
N <G, then 5N e G/N and |[G/N|=2.
~pN|=2 = bleN.
. we have fifteen possibilitics for &°:
1. b =e 2. b*=a 3.b'=4 4. 0*=a> 5. 8=d
6. b7 =a 1. B =a" 8. b =d 9. ' =4 10.8'=4"

11. 62 =a"% 12, 82 =4 13, B¥ =4V 14, 82 =" 15, pi=g'

3 4

If b’ =aa’ a0’ .a".a".a".a"” or @ then & would be of order 30.
If 82 =a’,a%,a’ ,a'? then G=C,, or D.

If 5 =o°,a" then G=C, or D,.

b =e

N aG, then badb™' e N
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‘bab“" =15,

2 g 11 11 11 4

; - 4
So, either had™ =a, 0, a*,a’.a".a".a".a" or a

If beh™'=a = ba=ab andse G would be abelian,

If beb™'=a® => ba=a’h. Then

4 3 7
a=at dt =t =d"=d P =a?=ada =at a" =" M =

If beb'=a" = ba=a'h,

ca=aa’ =a®,...a“b=4"b, and we have non-abelian group of order 30 such
that this group which has 8§ clements of order 15, 10 elements of order 6, 4
elements of order 5, 2 elements of order 3 and 5 clements of order 2.

LG=Dyx .

If bep™ =a’ =>ba=a’b. Then

a=a'* a? =a® which is a contradiction.

If beb™'=a® = ba=a". Then

a=a',a’ =a’,a’ =a’ &' =a'" which is a contradiction,

If beb™'=a"" = ba=a""h. Then

a=a,a’ =a’,....a"b=a"h, and we have non-ubelian group of order 30 such
that this group which has § elements of order 15, 12 elements of order 10, 4
clements of order 5, 2 elements of order 3 and 3 elements of order 2.

VI o

If heb'=a" = ba=g"h. Then

1 2
g=da,a

& . . .
=a" which is a contradiction.

If beb™'=a" = ba=a""h and & =¢, B*=¢ then G is isomorphic to the

dihedral group D,;.
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CHAPTER FOUR

CONCLUSION

In this chapler, we classify all groups of order less than or equal 30.

Groups of order 1 and all prime orders (1 group:1 abelian, § non abelian)

Any group of order 1 or of prime order p 13 cyclic and isomorphic to €,

Groups of order 4 (2 groups:2 abelian, 0 non-abelian)

Any group of order 4 is abelian and isomorphic to either
C,
abelian,
Cy x O

Groups of order 6 (2 groups: 1 abelian, 1 non-abelian)

Any group of order 6 is isomorphic to either

Cﬁ } abelian.

S } non-aheifan,

a

Groups of erder 8 (5 groups: 3 abelian, 2 non-abelian)

Any group of order 8 is isomorphic to

Cy
C X Cg ahelian.
CyxCyxCy
D

4 } non-cabelicn.
g,
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Groups of erder 9 (2 groups: 2 abelian, 0 non-abelian)

Any group of order 8 is abelian and isomorphic to

C
? ahelian
C, x G,

Groups of order 18 (2 groups: 1 abelian, | non-abelian)

Any group of order 10 is isomorphic to
Cm } chelian.

b, } non-abelian.

Groups of order 12 (5 groups: 2 abelian, 3 non-abelian)

Any group of order 12 15 i1somorphic to

C

. abelian,
Cyx Cy
4,
D net-abelian,
CyHC,y

Groups of order 14 (2 groups: 1 abelian, I non-abelian)

Any group of order 14 is isomorphic to

Cl 4 } ahedion.

Iy ' } row-cheliar.

Groups of order 15 (1 groups: 1 abelian, 0 non-abelian)

Any group of order 4 is abelian and isomorphic to either

Cl:" } ﬂl{’f.l?f.ﬂn.
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Groups of order 16 (14 groups: 3 abelian, 9 non-abelian)

Any group of order 16 is isomorphic to
Cie

Cy x Cy

CyxC,

C, xCy xC,

C, xC, x Cy, xC,

Dg

Dy,

0y x Cy

(:.f::,:fr:arE =b" =e,ab=ba
(a,b:a* =b* =c,ab=ba
( Brat =3’ :e,ab=ba3)

[ biab=eb® =a4jaba=b)

a
il
(a,b:ai =b' =e,abab =e,ba’ =ab3]
(a

')
)

K|
beal =bt =¢? ze,cbcalb=e,bab=a,cac=a] ’

v abelian,

s non-abelian.

Groups of order 18 (5 groups: 2 abelian, 3 non-abelian)

Anv group of order 18 is isomorphic to

Cig
Cy x Oy

i1

D,
S, x €
(CsxG)x Gy

49
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Groups of order 20 (5 groups: 2 abelian, 3 non-abelian)

Any group of order 20 15 1somorphic to

C

<0 abolian,
Cyg x €, '
Dy,
(a,b at=b° =e bab= a)
(a,b a*=b"=eba= abl)

net-cbelian.

Groups of order 21 (2 groups: 1 abelian, 1 non-abelian)
Any group of order 21 18 isomorphic to

Cy } abelian.

[a,b q' =b =eba= azb)

} non-abefion.

Groups of order 22 (2 groups: 1 abelian, 1 non-abelian)

Any group of order 22 is isomorphic to
Co
D,

} abelian.

} ror-abelian.

Groups of order 24 (15 groups: 3 abelian, 12 non-abelian)

Any group of order 24 is 1somorphic to
Cyq

Cpp Gy

CexCyxC,

abelian.
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S, :
‘Dlz
o

: ror-abelian.
0,xC;

Groups of order 23 {2 groups: 2 abelian, 0 non-abelian)

Any group of order 23 is abelian and isomorphic to either

CES

- chelian,
Oy x s

-~

Groups of order 26 (2 groups: 1 abelian, 1 non-abelian)

Any group of order 26 is isomorphic to either
Czﬁ } ﬂbi‘-}h‘ﬂn.

Dy } non-abelian,

Groups of order 27 (5 groups: 3 abelian, 2 non-abelian)

Any group of order 27 is isomorphic to either

Cy

Cy » Cy abelian.
Cyx o x G,
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(a,b a’=bh =eba= a4bJ

) ; ) ; } ron-abelian,
(a,b,c g’ =b"=¢" =e,ab=cac’ ba=ab,bc= ::.'b)

Groups ef order 28 (4 groups: 2 abelian, 2 non-abelian)

Any group of order 28§ is isomorphic to either

C
* abelian.
CaxC,
‘E}H .
4 1 -1 -1 non-abelian.
(a,b:a =h'=e,a ba=h )

Groups of order 30 (4 groups: 1 abelian, 3 non-abelian)

Any group of order 30 is isomorphic to either

Cyy } ahelicn,

L

Dy x Cy non-abelian,
Dy x C;
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