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Introduction

Smith normal form was introduced in 1869 by its founder Mr. Henry
John Stephen Smith, born in 2 Nov. 1826 in Dublin, Ireland. Mr. Smith had
important contributions in number theory where he worked on elementary
divisors, He provided that any integer can be expressed as the sum of &
squares for any fixed &. From 1859 to 1865 he prepared a report in five parts
on the Theory of Numbers. He analyzed the work of other mathematicians
but added much of his own. After that he introduced the smith normal form
for matrices. In 1975 he gave examples of discontinuous sets which are
similar to the Sierpinsks gasket. His paper was published in the proceeding
of the London Mathematical Society for 1875 contains a description of the

Cantor set eight years before Cantor [7).

In this thesis we gather ail important information and material about
smith normal form; as it’s known that smith normal form is used in different
fields and has a lot of applications (e.g. solving systemns of Diophantine
equations over the domain of entries, determining the canonical
decomposition of finitely generated abelian groups, determining the
similarity of two matrices and computing additional normal forms such as

Frobenius and Jordan normal form).

Even though, we faced a huge problem in getting information about smith
normal form due to the leakage in sources and references, however, we
could suceeed to find some references and papers which provided our thesis

with a number of significant information,



This thesis has been organized into three chapters as follows:

Chapter I introduces some definitions and basic theories which are

considered as our research bases,

Chaprer 2: studies the smith normal form and its properties. It shows that

smith normal form is unique.

Chapter 3: has two main parts, first part, demonstrates one of the
applications of smith normal form, i.e. “every finitely generated abelian
group can be represented by relation matrix”,

Second part, list a code of our developed software which can construct the

smith normal form using the computer in a smart and fast manner.
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Chapter One

Preliminaries



1.1  Linear Algebra:

Definition 1.1.1 {5}
A vector space V over the field F and xp,x5, ...,Xy any finite element

inV,or(x.x;...,.% 2 ¥)the finite sum of the form

ettt e, = Y ox, issaidto be linear Combination of the
|

VeCIOrs  Xp.xz...x,, wherec,cs...c, F,

Remark:
A linear combination is called trivial if all its coefficients ¢, =0 and

nontrivial if at least one coefficient is different frem zero.

Example 1.1.2;
In 7, any vector x =fa,,a,,...,a,) can be written as a linear

combination such that :
x =ae;t.. +awe, Where ey=(1,0,...,0),...,e, =(0,....1).

Definition 1.1.3 {16}

Let §={x;x;...,x,}be a set of vectorsin a vector space V', the set S
spans Vor Vis spanned by S if every vector in ¥ is a linear combination of
the vectors in S.

Example 1.1.4:
Inexample 1.1.2 F" 15 spanned by the vectors e;,e5,....e, .

Definitionl. 1.5 (4]

A finite set {x,,x,....x, } of avector space ¥ overa field Fis said to
be flinearly dependent if there exist scalars ¢,.¢,,...,c, € F, not all are zero ,

suchthat ¢x,+c, x, +..4¢c, x_=0.



Definitionl. 1.6 {4}
A finite set {x,.x,,...x, } of a vector space ¥ over a field £ is said 1o be
linearly independent if the trivial solution is the only solution of

cte, X, t..te, x, =0, Where the scalars e ¢, ,....c ef

Example 1.1.7:
The vectors ey e,...,e, of F* are linearly independent
since  cpe;terert . Fege, = (,0....,00+ (O0icy,. Yt +(0,...c ) =
(€ncy,..e,) =(0,..,0).
Implies that ¢,=¢c,=...=¢_=0

Definitionl. 1.8 f14f

A set of vectors 8={x, x;,....x,] in a vector space V is called n Bayis
for Vif S spans ¥ and S is linear independent,

Example 1.1.9:
Inexample 1.1.2  the vectors ee;, ...,e, of F"is a basis {oris
called canonical basis or natural basis) of F”,

Thegrem 1.1.10;
Every nonzero vector space V possesses a basis.

Definition 1.1.11 5}
The rank of matrix is the maximal number of rows or columns of
linearly independent in a given matrix.



1.2 Group Theory

Definition 1L.2.1 {9
A Group is a non empty set G with a binary operation » on G such
that: forall g, &, ccG: '
I G is associative, i.e (asb}+c =ax (bsc).
ii. G has identity element; there is ee G s.1 gre=a=esq,
i, G has the inverse element: for all ac G, there is be (7 5.t g» b=e=b=xaq,
where & is the inverse element of a.

Example 1.2.2:
The set of integers Z, and the set of rational number {2, also the set of
real number A are groups with addition,

Definition 1.2.2;
A group G is called abelian (commutative) if ax b=bra,
forall a, beG.

Definition 1.2.3 {9}
A group G is said to be epefic if there is @ in G such that for all x in G
we have x=a" forsome ninZ, ais called the generator of G denote by

G={a}.

Exampie 1.2.4;
The set of integers Z with addition is a cyclic group with generators /

and -7, i.e. Z={1},{-1}.

Example 1.2.5:;
"The set of residue classes modulo 4, Z, ={[0],[| 1.{2],[3]} with

addition is cyclic group with generators [1] and [3] i.e Z={[I]) , Z,=([3].



1.3 Ring Theory

Definition 1,3.1 [9f
A nonempty set £ is said to be a Ring if there are two binary
operations addition {+} and multiplication () such that:
i atb=b+agforalla be R

i) fatbjtc=a+((b+c)foralla b ce R
ki) There exists an element 0 such that  a+0= a=0+a forevery ae R. (0
1s additive identity of R).
iv) givena e R, thereexists, b ¢ R suchthat a+b=0=b+a(b=-g, the
additive inverse of ).
vj a.fbe)=(abjclorall abec e R
Vi) a.(btc)=ab+a.cand (b+c).a=b.a+c.a forall abece R
Remarks:
I} Aring R is called @ ring with unity, if there is an element ee R
suchthat a.e=¢. a=a forevery acR.

2) Aring Riscalled a commutative ting \f a.bh=p. a forallabeh.

Examplel.3.2:;
The set of integers Z is a commutative ring with unitv, under (+)
and (.).

Definition 1.3.4 {9]

LetRbearing and S subsetof R S iscalled a subring of R if §
isaring with respect to addition and muitiplication of R,
Example 1.3.5;

nZ is a subring of Z.



Definition 1.3.6 8]
A commutative ring R with unity is an integral domain if a. b =0 in

R implies that a = (orb =0

Exampic 1.3.7:

The ring of raticnal numbers Q is an integral domain.

Definition 1.3.8 {8}
A ring with unity is said to be a division ring if any nonzero eiement

has a multiplicative inverse.

Example 1.3.9:

The ring of rational numbers @ is a division ring,

Definition 1.3.10 f15]

A ring R is said to be a fle/d if R is a commutative division ring.

Example 1.3.11:
The ring of rational numbers ¢, and the ring of real numbers R are
ficlds.

Definition 1.3.12:
Let R be an integral domain with zero and unity e. Let 2, eR with

a= (0, we say that a divides b (or a is a factor of b) if b=ca for some ceR,

this is denoted by /b iff b=ca for some ceR.



Definition 1.3.13 {8}
If2in Rand u # 0, then u is called @ anit in R, if there is vin R such

that #. v=e,

Exampie 1.3.14

{-1, 7} is the set of all units in Z
1.4 Ideals and Quotient Ring

Definition 1.4.1 {8}
Let R be a ring and / be a subring of R, / is called:
i} Aleft ideal | if ra e Iforany reR, and any ae/
i} Avright ideal ,if are [ forany reX and any ac/, and

it} An ideal (two — sided ideal) if ¥ ael arel for any reR and any ae /,

Exampie 1.4.2;
1. 5Z1s an ideat of Z.
2. {[0].[2).[4}} is an ideal of Z.
3. {0}, Rare (trivial) ideals of a ring R.

Definition 1.4.3 [8] |
Let f be an ideal of aring R. The Quotient ring of R by I
defined by R4 = {r+l: ¥ e R},
Addition and multiplication can be defined on £ /7 as foliows:
(ry D)+ (rp4f) = {r)+r) +1,
{ritl). (rptl) = riry+i

9



Theoreml.4.4:
Let /be an ideal of a ring 8. Then:
i} R/ is aring called the quotient ring.
i} If Risacommutative, then is so &/

i} If R has unity e, then R/l has unity e+/.

Lemma L4.5 [15f

Let R be a nng with identity e. If / 1s an ideal of R such that e< 7,
then /=R,

Definition 1.4.6 {5f

An ideal generated by a single element is called a principal ideal.

Definition 1.4.7 [5] -
A ring R which all ideals are principal is called a principai ideal

ring.

Examples 1.4.8:

The ning of integers is a principal ideal ring.
Definition 1.4.9 [8}

An integral domain D is called a principal ideal domain denoted by

(P.LD) if every ideal of D is a principal ideal.

1D



Definition 1.4.10 [5]
An Euclidean evaluation v on an Integral domain 2 is a functionv :
D -{o} - {0,1,2,...} such that:
i) v(a)s v(ab)forany a, be D-{o}.
ii) foranya, be Dwithb=0, there are g, re D such that a=bg + r where

r=0or v{r)s v{b). D with the Euclidean evaluation is called Euclidean
Domain, denoted by (ED),

Theorem 1.4,11 {5}

Every Euclidean Domain is a principal ideal domain.

Examples 1.4.12:

The set of integers Z 1s an Euclidean Domain.

Theorem 14,136}

Let R be aEuclidean Domain, Then every ideal in R is principal.

Definition 1.4.14 {10]
Let R be a commutative ring .Let a,b €8 . The element c of K is a
greatest common divisor of g and 6 iff /g, ¢/b, and if d e R is any other

element of R such that d/a and /b, then d/e.

Theorem 1.4.15 {10
Let R be Euclidean Domain and let g and # be nonzero elements of &.
Then a and b have at least one greatest common divisor, Moreover if ¢ and 4

are both greatest common divisors of @ and & then d=cw for some unit ue R.

13



Finally if ¢ is any greatest commeon divisor of a and & then there are elements

X,y € Rsothat c¢=ax+by

Theorem 1.4.16 {10}
Let R be commurative ring and a,,4,, ..., a; € R. The element ¢ of R is
a greatest common divisor of aya;,, ..., a4, iff ¢ divides all of the elements

anay....a;and if 4 is any other element of R that divides all of a;,a5, oer s
then dc,

Theorem 1.4.17 {10}
Let K be a Euclidean Domain and let ay,a;,...a; be nonzero elements

of R. Then aj,a;,...,a; have at least one greatest common divisor . Moreover

if ¢ and d are both  greatest common divisors of a;.as, ....a; ,then d=cu for

some unit we R . Finally if ¢ is any greatest common divisor of ay,a,...,a

then there are elements x;,x5,...,x, € R sothat

C=apx T ax,t .t a

Moreover the greatest common divisor ¢ is the generator of the ideal

(a,,az....,ar) of R

Definition 1.4.18 fI16]
Let A€ My xo{R). Then define /4{4):= ideal of R gencrated by kx &

sub-determinants of 4, for /<ksmin{m,n}.

Examples 1.4,19:
4 6
Let R = £ be the ring of integers and let A=| 8 10].
14 12

12



The principle ideal generated by the greatest common divisor of the
¢lements.

The Ix 1 sub-determinants of 4 are just its elements.

Thus /i( 4)= (468101214 }=(2},

The 2x 2 sub-determinants of 4 are just its elements. Thus

14 12 14 |2

Io(A)={ der[; I?J],der[4 EJ,der[E '“] ) = { -8,-36,-44 ) =(s).

Lemma 1.4.20 {10}
Let A€ Mpxa(R) and P& My, «n(R). Then the inclusion J{AP)c LA

for all & with /sksmin{m, n}.

Theorem 1.4.21 f10}

Let A€ Mux(R) and @& M xo(#), and any Pe M x (), then
IQAP) g Iif4) holds for 7 sksminim,n).
If also P and Q are invertible, then /,{QAP) = I,{4).

1.5 Ring Homomorphisms

Definition 1.5.1 [9f
Let R and R " be two rings. A mapping @ from R to R’ is said to
be a ring homomaorphism (or a homomorphism) if for all elements a, & of R
we have ¢ {a+ b) =dfa) + v (b), and
O {ab) = ofa) v(b)

13



Lemma 1.5.2 {15}

If ® is a homomorphism of R into R, then
1 o) =0;.
2} @f-a)=-wo(a) asR

Remark! 5.3;
We define @ to be an injective (surjective) if @ is an one to one

{onto). A bijective is an injective and surjective.

Definition 1.5.4:

A homomorphism @ from R to R’ is said to be:
1} An epimorphism if it is surjective,
2} A menomorphism ifit is injective.

3) Anisomorphism if it is bijective.

Definition 1.5.5 18}

Let 4 be a homomorphism from a ring & to aring R, then the kernel
of @ isthe set of all elements ¥ eR such that @ (¥} = 0. This set will be
denoted by ker@. ie.  ker®={reR: O(r) =0p} = & (0p).

Example 1.5.6; _
[f &t and R" are two rings, then the mapping @ : R — R’ defined by
ort=0forallr eR

15 2 homomorphism, and ker &= R. It is called the zero lomomeorphism.

14



Definitionl.5.7 [9]
If Risanngand/isanideal of R, then the mapping®: 8 — R/
definedby & () =r+{ forall re R, is a homomorphism, and ker® =/ It

15 called the natural (or canonical) homomorphism.

Lemma 1.5.8 {5}
The homomorphism @ : R — R’ is a monomorphism if and only
if kerd= {0}

Definition 1.5.9 |5}
Let R and R be two rings. They said to be isomorphic if there is an

1somorphism of one onto the other. ltisdenoted by B = R".

Theorem 1.5.10 (First Homomorphism Theorem)f9)
Let R and R’ be two rings, and let® be a homomaorphism from R onto
R’ with ker® =K Then R’ isomorphic to R/K,

Theorem 1.5.11 (Correspondence Theorem)f9/f

Let & and R* be two rings, and let < be a homomorphism from R onto
R'with kerd =K. If Jis an ideal of R', let { = faeR: ®(aje J§. Then/isan
Ideal of K< fand /K isnmnrghic to /£ This sets up g /-f correspondence

between all the ideals of £ ' and those of R that contain X,
Theorem 1.5.12(Second Homomorphisms Theorem){9}

Let R be aring, and let f and J be two ideals of R. Then Jis an ideal of
4 1N Jisanideal of I, and (I+2)/7 =1 NJ

13



Theorem 1.5.13 (Third homomorphism Theorem){9]

Let R and R’ be two rings, and let® be a homomorphism fram R onto
R.If J isanideal of R’ and /={a e R ®{aje J}then R/ =R /]
Equivalently, if Jis an ideal of R and J </ is an ideal of &,
then R/ = (R/AT}I/T).

1.6 Module

Definition 1.6.1 [8]
Let & be aring .M is a left R-module (left module over R} if:
i} M 1is an additive abelian group {(w.r.t +), and
i)  Thereisamap¥ RxM—M denoted by rm satisfying the conditions
al rimp+tmsl=rm; o,
b)Y fritrs} m=rm+r.m.
c) (rirz) m=r, (rom) forall v, v}, v2 & Rand m, my, mye M.

d) em=m, if R has unity e.

Remarks1.6.2;
(i} A right R-module is defined similarly except the map M=K — M and
denote by mr ¥ reR, vimeM
(i) If R is commutative any left R-module M can be made right R-module
| by defining mr = .
(i)  An R-module with unity e is called unital module (unitary module).
(iv) A module M is called Trivial module if R is a ring and M is abelian

group such that rm=0 forallre R, vme M.



Examplei.6.3;
(1) A ring R is an R-module.
(11} Any abelian group is a Z-module,

{iii) Any ideal of a ring R is an R-module,

Definition 1.6.4 [3]
Let Af be an R-module. A subset N of M is said to be
an R-submodule of Mif:
(i} N is a subgroup of the additive group M.
{iiyn eNforallreRand n e N.

Examplel.6.5:
Let Af be an R-module, then M and 6} are submodule of A,

Definition,6.6 {1f
Let R be aring and M, ¥ be R-modules. A mapd: M— N is cailed an
R-modile homomorphism if for any x, y ¢ Mand any r e R we get:
()  @exty=ol)+ o)
(i) Dfrx) =rd(x)
& is monomorphism if it is /-/, & is epimorphism if it is onto, @ is

isomorphism if it is /-7and onto.

Definitionl.6.7 [5}

Let M be an R-module and N a submodule of M then N<M
M/N={x+N: xe M}, the set of all cosets of Nin M. M/N is an abelian group
w.r.t the addition of cosets (x+N)+{+Nj=x+yIN.

17



. Define the Quotient module of M by N as follows:
rix+Nj=rx+N, ¥ reR, YmeM
Remark:

If M 15 unitary, then so is M/, .-

Definition]. 6.8 {1}
The map & M- M/N given by ¢ fx) =x+N forall xeM is called the
natural homomorphism,

it is onto and ker® ={xe M: © {x)=N}={xe M: x+N=N}=N

Definition1,6.9 f6§

Let 4 be a subset of an R-module M. A4 1s said to be finearly
independent set if for any finite number of distinct elements ay,a;, ...,a, of A,
such that 1 rja;+raa,+...+rpa,= 0 r e R then r,=0. Otherwise, 4 is called

linearly dependent.

Definition!.6.10 {6}
Let M be an R-module and let 4 be a subset of M. we shall say that 4

fs w basis of M if A generates {or spans) M, i.e A spans Mif M={ 4 };

and A is linearly independent.

Definition 1.6.11 [15}

Let & be a ring with unity, an R-module £ is called free R-modufe
(F) if F has a basis 4. Denoted by F (4).(F(A) is called a free module on
the set A).

18



Exampiel.6.12;
Let R be a ring with unity ¢ and » a positive integer, the R-module R”

is a free R-module on the subset{e,e;....,e,/ g R, where

e;=fe.0....0),....e,=(0,....e). {e, e, ....e.} is a basis for R™=

19



Chapter Two

The Smith Normal Form



2.1 Introduction:

We will describe (the smith normal form) a procedure that is very
similar to reduction of a matrix to echelon form. And the result is that every
matrix over a2 principal ideal domain is equivalent 10 a matrix in smith

normal form.

Definition 2. 1.1 (The Smith normal form){3}

Let R be a principal ideal domain and let 4 be an m = » matrix with
entries in R. If there are nonzero ay,..., g, €& Such that ; divides a;., for

each { <M then 4 is in Smith Normal Form, i.e.

We explain the basic idea by numerical example.

Let us start with the following matrix:

0 0 22 0
-2 2 -6 -4
2 2 6 &

We assume a free Z— module with basis x|, x3, X3, xs and a sub-module K
generated by uy, 2, U3, ty, Where ;=22 x ;, uy = «2x; + 2x; - 6x3-4 x4,

uy = 2x; + 2x; + b6x;3 + Exy.

21



The first step is to bring the smallest positive integer. To the position 1-1

Thus interchange row ! and 3 1o obtain

2 2 6 8
-2 2 -6 -4 o
0 0 22 0

Since all entries in column 1, and similarly in row 1, are divisible by 2, we

can pivot about the 1-1 position; in other words, use the 1-1 entry to produce

zeros. Thus add row ltorow 2ie. [2 2 6 B8]+[-2 2 -6 -4]
To get:

2 2 6 8

0 4 0 4

0 ¢ 22 0

Add -1 times column 1 to column 2, then add -3 times column 1 to column
3, and add -4 times column | to column 4, The result is

20 0 0
0 4 0 4
g 0 22 0

Add -1 times column 2 to column 4, and we have

20 0 0O
0 4 0 0
00 22 0

We note that 4 does not divide 22 ie. a, not divide a. | Therefore the
condition of smith normal form not satisfy.
S0 we have more work to do. Add row 3 10 row 2 to get

20 0 0
0 4 22 0
0 ¢ 22 0

we pivot about the 2-2 position, 4 does not divide 22, but if we add -5 times

¢olumn 2 to column 3, we have

22



Interchange columns 2 and 3 to get

Add-11times row 2 1o row 3 to obtain

20 ¢ 0
02 4 0
00 =49 0
Finally, add-2 tumes column 2 to column 3, and the multiply row {(or

column} 3 by -1, the result is

L T e B (W
2 ko D

0
0
44

L= - T =

Which is the smith normal form of the original matrix.

2.2 Equivalence of Muatrices with entries in a principul ideal domain
(p.i.d}:

Two m * 1 matrices with entries in a principal ideal domain{ p.i.d) D
are said to be equivalent if there exists an invertible matrix P in M, (D) and
an invertible matrix § in My (Dj)such that B=PA@. It is clear that this
defines an cquivalence relation in the set M, , (D) of m x n matrices with

entries in f),

Theorem 2.2.1 [11]
If A eMun(D), D a principal ideal domain (p.ld), then A is

23



equivalent to a matrix which has the “diagonal” form diag {d,d5, ... d,,....0}
4, 3

\ ") Where the d/* 0 and dyd, if i5).

2.3 The Existence of the Smith normal form {13

We will to simplify matrices AeM_ (R) as possible by use of
elementary row and columns.
Every matrix 4e M, (R) is equivalent to a diagonal matrix. Moreover by
requiring that the diagonal elements satisfy some extra conditions on the

diagonal elements this diagonal form is unigue.

Theorem 2.3.1 (Existence of the Smith normali form)
et B be an Euclidean domain. Then every A € M 4, . o, (R) is
equivalent to diagonal matrix of the form
‘7 ~.
£y

\ )
This is an matrix Mmxn and all off diagonal elements are 0, where
NERITIN

Proof:

We use induction on mt + ». The case 1s m+n = 2 in which case the

matrix A is / x { and there is nothing to prove. Sclet A € M ., (R) and

24



assume that the result is true for all matrices in any M . (R), where
m'+n'<m+n if A= 0 then A is already in the required form and there is
nothing to prove, so assume that A = .

Let5: R— { 0,1,2,...} be as in the definition of Euclidean domain and let 4
be the set of all entries of elements of matrices equivalent to A ,and let f e
A be anonzero element of A that minimizes §. Thatis §{f) < &(a) for
all @ # a € 2. (Recall that 5 (0) is undefined, so we leave it out of the
competition for minimizer) Let B be a matrix equivalent to 4 that has f; as an
element. If / is in the 7, j ~ th place of B, then we can interchange the first
and i-th row of B and then the first and j ~th column of B and assume that 5
is in the 1,1 place of B, (Interchanging rows and columns are elementary

row and column operations and so the resulting matrix is still equivalent to
A). So Bis of the form

J‘r| E’l}. E’]n
B= b: I b 12 i bln
b b - b

wml m2 H

We can use the division algorithm in R to find a quotient and remainder
when the elements &, b, &, of the first column are divided by £1.

That 1s there are ¢g,....¢m #2,....7n € R so that by = ¢/f;.% where either
rn=0o0rd(r) <&(1). Thenr = by — gfi . Now doing the m — | row
operations of 1aking — ¢; times the first row of A and adding to the i-th row

we get that B {and thus also A) is equivalent
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() by by o by (f) By By o B
T L S L L R
by-gfy * * . o+ |= T A

I-;"?rﬂll_"',1|r.v.|-}rl v o * A L ¥oour * I

Where * 1s use to represent unspecified elements of B. As this matrix is
equivalent to A and by the way that f; we must have », = r; =.¥n =} {as
otherwise & (r;) < & (/1) and f; was chosen so that § (f}) < & (b) for any

nonzero element of a matrix equivalent to A). Thus our matrix is of the

form
f] E'r: bIS blrr\I
{ * * *
Q0 * ¥ *
kﬂ * * *

We now clear out the first row in the same manner. There are pyand §; so
that &; = pf} + s; and either ;= G or §(s;) < §(f;). Then by doing the n — !
column operations of taking ~ p; times the first column and adding to the j-th

column we can farther reduce our matrix to

(1, ay=-pf, as—pf, o a,—pS Y (fL s s, o5, )
ﬂ * L »* ﬂ x * "
n * * e L = 'D L] [ ] ava x*

'\.ﬂ * " o * J "ﬂ * x s ‘J

Exactly as above this the minimulity of § (/) over all elements in matrices
equivalentto A implies that 5;,=0 for j=2,....n So we now have that A is

equivalent 1o the matrix
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If either m = f or n = I then C is of one of the two forms

[/.0,0,...,0),0r

and we are done.

(5

ml

So assume that m, # 2 2 . We claim that every element in this matrix is

divisible by f;. To see this consider any element ¢; in the i-th row {where

f,/2 2). Then we can the i-th row to the first row to get the matrix:

/f]
0
0

Which is equivalent to 4, We use the same manner as above.

There are #,p; s R for 2 <j<n sothat

L0 e, c

ci=4hitp with py=0 or

S{p) < &(fi). Then add — times the first column of to the j-th column to

et

a.u'r _r.u.fl )
*

¥
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As this matrix is equivalent to A again the minimality of & {f}) implies that
S¢p) = 0forj =2, n Therefore ¢y = tf) - which implies that ¢ is divisible
by fi.

As each element of O is divisible by £; we can write c;=Aic'; ;. Factor the

froutof the elements of C implies that we can write € in block form as

Where C" is (m -1} x (n -1},
Now at long last we get to use the induction hypothesis.

As{m-1)+{n-1)<m+ n the matrix C'is equivalent to a matrix of the form
(fl'

b

7

\ -/
Where f5, fi,..., f, satisfy /4 / /5 1.1 1. (We start at f%, rather than /7 to
make later notation easier.) This means there is a {m -1} x (m -7) matrix P
and an (z -1) x (n -7) matrices Q so that each of P and (7 are products of

elementary matrices and so that

A )
r
PC'O=

28



This in turn implies

(12 )
P
PRC'Q= £PC'O=/, ‘ P ]
0
\ ."J
(/£ )
A
- -f‘l f;
0
LY /

The block matrices

1 0 d 1 0@
o 2) N0 @
are of size m>m and nxn respectively and are products of elementary

matrices. Using our caleulation of P/,C'Q) in equation (*) gives

o 2FG o 26 e o)

_fH 0
(5 neol
(J,'! y
At
— J{‘fr.
0
\ .
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/i

Where /2 = /if2, s =\/3.-.. /. =fif-. As this matrix is equivalent to 4 to
finish the proof it enough to show that f; /6 / /3 /... If..

As fi=fifritisclearthat f; /4 If 2 < <r - { then we have that Tt fien
50 by definition there is a ¢; & R so that f . | = ¢/

Multiply by /i and use ;= Af; and fj.1 =/}, to get
Ji=1=Nj«1=hef;=cf This implies that // £ and we are done,

2.4 An application of the Existence of The Smith Normal Frem
Invertible matrices are products of elementary matrices.

Theorems 2.3.1 give u very nice characterization of invertible matrices,

Theorem 2.4.1 {10f

LetA e M, ., (R) be a square matrix over an Fuclidean domain.

Then A is invertible if and only if it is a product of elementary matrices.

Proaf:

One direction is clear: elementary matrices are invertible, so product
of elementary matrices is invertible.
Now assume that A in invertible, Then by theorem 2.3.7 A is equivalentto a

diagonal! matrix
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D=diag (fi, 5,..../, 0...,0).
Hence there are matrices P and ©, each a product of elementary matrices, so
that A=PDQ,
As A, Pand § are invertible their determinants are units (Theorem 1.4.21)
and therefore form det (4) = det () det (D) det (@) it follws that det {i) =
det (A) det (P) ' det (@) is a unit. But the determinant of a diagonal matrix
is the product of its diagonal elements.
Thus in the definition of D if ¥ < # there will be a zero on the diagonal and
so det (D)) = 0, which is not a unit. Thus r = 2 and so det {(Dy=ff... fn.
But then fi{(£...fa det (DY) =1 so that /; is a unit with inverse f;! = (A Sfa
det (DY"). Likewise each f; is a unit with inverse f; "' = det (D) 1. But
then letting E; be the diagonal matrix

Ei=diag(?, 1.... /o, D)
We have that E;is a an elementary matrix and that [} factors as

D=EE,. . E.

Thus D is a product of elementary matrices. But then A = PDQ@isa product

of elementary matrices,

2.5 Uniqueness of the Smith normal form 13}

Recall, theorem (1.4.17) , that in a Euclidean domain K that any finite
set of elements {a, @,....q;} has a greatest common divisor and that greatest
common divisor of {4, a.....a;} is the generator of the ideal {a), az,....ap
(which is a principle ideal ). Recall, Definition (1.4.18), for 4 € M (mun)
that I; {A) is the ideal of R generated by all k x k sub —determinants of A.

3
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is another Smith normal form of A then we have

L(SY=1(A)=1(S)
and therefore, as greatest common divisors are unique up to multiplication

by units, there are units i, ,u,,....lr of R such that

F1=ud V2= uh o S s = Ufffsns Y e 5 = U
This implies f1=wfiand fi=w' uf for 2<j<k

Which show fi,....£ are unique up to muhiplication by units.

Theorem 2.5.2 {12}

If 4 is a matrix with entries in a principal ideal domain R, then therc
are invertible matrices P and Q over R such that PAQ is in Smith Normal

Form,
Proof:

Let us iliustrate the idea by consider the 2 » 2 matrix, i.e.

Suppose we have (” b].
c d

Lete = ged(a,c), and e=ar+ep for somex. ye R, where a=eaand c=ef for

somea.feR.Then e=ax+cy=caxr+efy=sl=cax+ fy..

-1
We have( xﬁ ;}:J =[; _"'J. So the matrix [ *
- X

x wYa b _ e b.r+af}’
Moreover, [_ﬂ QI" JJ*[—aﬁ+m _5ﬁ+a’a]'

y] 15 1nvertible.
ir

. . L
Then reduces this matrix to the form (E J .
¥
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A similar argument, applied to the first row instead of the first column,

atlows us to multiply on the right by an invertible matrix and obtain a matrix

to the form [e, ﬂ).

Where e, = gedie,u). Continuing this process, alterniating between the first
row and the first column, will produce a sequence of elements e.e,,...such

that ¢, divides ¢,e, divides ¢,, and so on.
In terms of ideals, (e} g (e} g ...

Because any increasing sequence of principal ideals stabilizers in & principal

ideal domain, we get after finitely many steps, with a matrix of the form

S0 f gy, : -
[g h] or (ﬂ h] mn which fdivides g.

One more row or column operation will then yield a matrix of the

fﬂnn(f ﬁ).
0 %

Thus, by multiplying on the left and right by invertibie matrices, we obtain a

diagonal matrix.

. . 0 .
Once we have reduced to a diagonal matrix (g :‘J’ to get the Smith Normal

Form, let 4= ged{a, ).
Where o = ax+by for some x,peR.
Moreover, a=da and b=df forsome a, B R.

By performing the rew and column operations, yielding

34



S A G (A
-l 36 )6 )

a diagonal matrix in Smith Normal Form since d divides — pg |
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Chapter Three

Some Applications of the smith
normal form



3.1 Generators and Relations:

Let R be a principal ideal domain and let M be a finitely generated k-

module. If {m, - ,m, } is a set of senerators of M then we have a

surjective R-module homomorphism ¢:R"——> M given by sending

{r, ~.r) =2 >rm. The Kerg={(n, -, r) eiln, . r.)=01=K. So we

I=l

have by the first isomorphism theorem, M = R" /K .

If (.,..r,)e X ,then 3} /m, =0,

i1
Thus, an element of K gives rise to a relation among the

generators{ m,, -, m_ }.

Lemma 3. 1.1 f12f
The submodule X of R is finitely generated.
Proof:
Suppose that {k,,,....k_}c R" is a generating set for X
If k, ={a,.a,....a,), then the matrix [a,J,J over R as the relation matrix for M
relative to the generating set lm], - m.‘] of M and the generating set

{k......k.} of K. This matrix has % as its i-th row for each /.

(Since this matrix depends not just on the generating sets for M and X but by
the order in which we write the elements), we use ordered sets, or lists, to

denote generating sets. We will write [m,,....m ] 10 denote an ordered n-tuple.
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Exampie 3.1.2:

LetM=2,®Z,, where M is generated by m, =([1,,9)
and m, = (0,[1,,).
Moreover, 4m, =0 and 12m, =0,
Consider the homomorphism ¢:Z @ Z —— M sending(r,s) — {rm,,sm,},
then  ker (p)={(r.s)e 2@ Z:(r+42,5+122)=(0,0))

={(4a,128): 2,6 ¢ Z}.

Thus, every element (4a, 125} in the kemnel can be written as:
a(d, D +5b(0, 12y forsomea, beZ.
Therefore, [(4,0)(0,12)]is an ordered generating se1 for ker ().

The relation matrix for this generating set is then the diagonal matrix.
4 0
0 12)

Example 3.1.3:

Suppose that A is abelian group have generators{m,, m, ), and suppose

the relation submodule X is generated by [(3,0},(0, 6))-
: - : .3 0
Then the relation matrix is the diagonal matrix o ¢l

So, the relation submodule X relative to [m,,m, ] is:

K ={a{3,0)+ 5(0,6): a, be Z} = {(3a, 6b):q, be Z}

38



Furthermore, K is also the kemel of the map o:7% - Z, ® Z, which is

defined by o{r,s)={r + 32,5+ 6Z). Therefore, Z2/K = Z,®0Z,

However, M =2°/K. Therefore, M =2, @ Zy.

Remark:

Generating sets for a module M and for a relation submodule & are

not unique.

Example 3.1.4;
Suppose that M be abelian group with generators{m,, m, ],

such that 2m; + 4my =0 and - 2m, +6m, =0.

Then the relation submodule X contains &, = (2,4) and , = (- 2,6).

2 4
If these generate K, then the relation marrix is [ ) 6}

Note that X 1s also generated by &; and ky+ks.

These pairs are {2,4) and (0, 16). Therefore relative 1o this new generating set

of X, the relation matrix is (2 4)={] ﬂ)(z 4}
0 14 P 1JL-2 6

Lemma 3.1.5 f12]

Consider A be a finitely generated R-module, with ordered

generating set [m,,..,m_]. Suppose that the relation submodule X is generated

by [...%,]. Let 4 be the n x p relation matrix relative to these generators.
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(1)  Let Qe M (R) be an invertible matrix and write 0= (qg-). If

m, is defined by m) =3 ,q,m, for 1< j<n, then [m,..m.] is

a generating set for M and the rows of A(} generate the
corresponding relation submodule. Therefore, 4( is a relation

matrix relative to [m;....m.

(1) LetPand Qbe P x Pandn = ainvertible matrices, respectively.

If B = PAQ, then B is the relation matrix relative to an appropriate
ordered set of generators of M and of the corresponding relation

submodule.

Proposition 3.1.7 f12{

Let 4 is a relation matrix for an R-module 3. If there are invertible

matrices P and O for which

a 0
_ |0 a . . .
PAQ= | | 0 1s a diagonal matrix, then
0 0 - a

M=RNa)®..0 Ria,).

3.2 Algorithm for computing the Smith Normal Form |1 3}

As we mentioned in chapter two, we know the smith normal form of
principal ideal domain (P.ID) inputs. An example of P.LD is the set of
integers. Therefore, we developed to calculate and evaluate the smith normal
form for any »xm matrix A with entries from the ring of integers, We take

into account that smith normal form is unique.
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Algorithm Idea 3,2.1
The algorithm has two stages:
The first stage is to produce a diagonalization from a given matrix

over a principle ideal domain R.

The diagonal matrix has the form

¢, 0 - 0
0 a, 0
0 ¢ a

The second stage, we compute the invariant factors of the diagonal

matrix obtained in the first stage,

The Steps For The Smith Normal Form 3.2.2

The first stage is to produce any diagonalization from the matrix A, the steps

are as following;

Step 1. Interchange columns and rows so that % js the element of smallest
absolute value among all nonzero elements in the first row and first column

of the matrix .Go to step 2.

Step 2. if a,/fa,, for j=23,..n, g0 10 step 3.Otherwise cio not divide
a,falj for some j=k(say). Let ak=ga,+r where grare integers and
0{r{a, .Let 4[,k] denote the kth column of A.

Replace 4] k) by A[.k]-q4].1].Gotostep 1.

Step 3. If a,/a, for i=23...n, go to step 4.Othersise do not divides a,/a,
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for some i=# (say). Let e, =gqa, +r where ¢,r are integers and 0~ {a,.
Let Al | denote the kth row of A. Replace 4k, | by Alk, |- g4I, ] .Go to

step 1.

Stepd. a,/a, for j=23.nand g, /a, for i=23...n.
Efther assume &, =g,4, , then replace 4[,;] by Al jl-q,4[ J]for

J=23..,n. This will ensure that the first row of the matrix has only the first
element nonzero. Then since it can be similarly assumed that a, =4« for

i=23...n ,every element a,,i=223...,n ,can be set to zero.

Or assume a, =g,a,, then replace 4t | by Afi, |-q,4[L ], for j=2,..n.
This will ensure that the first column of the matrix has only the first element

nonzero. Then since it can be similarly assumed that 4, ,=q,a, . for

j=23...n everyelement g, . j=2...n can be setto zero.

Step 5. The matrix is now of the form

I'ra“ o .. 0 k
0 ap - 0
0 el

Step 1 to 4 are now applied to the submatrix

'(au ¢ )
0 a, 0
I'\l.".' Qe )
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And the process continues until the matrix is completely diagonalized.

The first stage of the algorithm will convert the matrix A into diagonai form,

The second stage of the process is to compute the invariant factors from this

diagonalization,

Step 6 If x,/x,, i=2,.,n, then check that x,/x,, i=3..n. This process is
repeated until value =x,is found such that do not divides x [x, for
some j(i s n. Say do not divides x,/x, row k of the matrix is added to row

Jand the algorithm is reentered 1o create a new x, of smaller value.
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I3
Unit | listing:

inte

uses

The program

rface

Windows, Messages, SysUtils, Varlants, Classes, Graphica, Controls,
Farmz,

[i)

type

alogs, Grids, StdCrrls, Buttons,

Troerml = clasa([TForm)

StringGridl: TStringGrid;
StringGridi: TScringGrid:
XPManifescl: THXPManifest:
GroupBoexl: TGroupBox;
BitBtnd: TBicBtn;
EitBtnl: TBitBtn:

Edlt2: TEdit;

UpDown?: TUpDawn;

Label?: TLabel;

UpDownl: TUpDown:

Edivl: TEdix;

Labell: TLabel;

Panell: TPanel;

BitBind: TBicBon;
BitBrnld: TBitBtn:
Wajitlabel: TLabel:
FainMenul: TMainMenuo;:

Comiirls,

ocperationl
RandemMumhersl:
SmithttormalFormial;
Showletallsl:

TManultem:

[ HE

THenultem:;
THMenhultem;
THenultem;
THenultem:

NZ2: TMenultam:

Closal:
Aboutl ;

AbhosutPrograml ;
Steplabel:

progedurea
procadure
procedura
crocedure
procedure
procedurea
procedure
procedura
procedare
preocedure
procedure

THenulItem;
TManultem;

IMenultem;
Tlabal;

XFMan,

Fi11 AR _Matrix_BtnClick{Sender: TObject):

FormCreate (Sender: TObject);
BitBLndCliecx(Sender: ToDject):
EditlChange [(Sender: Tabjecz);
EditiChange [Sender: TObiect;;
BitBtnlClick{Sendar: TObject):
BitBen2Clicki{Sender: TOhject):
BitBen3llicki{Sender: TObject);

ExtCtrls,

Manua;

StringGridlKeyPress(Sender: TObiect; var Key: Char);

CloselClick(Sender: ™Chiject);

SmithNormalFormislClick{Sender: TObjec:};

conlinue,,.
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—— O i e = = = N e e e EE s e m e e m ——m ==

procedure RandomMumbers:Click(Sender: TOnject);
procedure ShowDetailalClick|Sender: TObjecco):
procedure AboutProgramlClick|Sender: Tohiecz);

private
[ Private declaracions |
publiie
[ Public daclaratiorns )
end;
var

Forml: TForml:
irplementation
uses Unit2, InfolUnt, Unalt3:

{SR * ., dfm}
ffiiiiiii}ii!i‘]i***.
Funectioen FillA:Boolean:
Var i,3:integer;
begin
try
Fesult := True;
for i.=1 to n do for j:=1 o n do
Ali.J]:=strTolnti{Forml . 5tringGridl,.Cells{d-1,1i-11}:

exceps
Result :w= Falawm;
Appligation.MessageBor('Flease.. . Enter Integere
Values.', 'Info',MB QK] ;
end;
end; //Fil1A. ..

procedurs EnpryGrid({G:TStringGrid};
var i,j:Integer;X:Shorting;
begin

for i:=0 to G.ColCount-1 do

for ):=0 ro G.Roewlount-I do G.Cells{i,;1 := '';

end;
f;-***"tfiiii!iiiirl
procedure TForml.FormCreate [Sendey: ToObiect):
begin

StringGridl Cells(0,0):w'-2";3rirgGridl . Cellial{, 2} ="~

3':51ringGridl . CellaiQ, 2] ;="-12";

StringGridl.Cells{l,Q):="3' ;StringGridl . CeXls{l,1}:="3"';5tTingGridl

.Cellg{l,2]:='12";

StringGridl.Cells[2,0]:='0";ScringGridl.Cells[2,1] :="0" ;5tringGridl

Cellaf2,2)im' e
ff Fillh;
end;

continue,.,
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procedure TForml.Fill A Matrzx BuinClick{Sender: TOhject};
Var i,j:Integer;
bagiln

for ii=1 to n d¢ for j:=1 to Stringfrid2.CclCount do
StringGrid2.Calls[f-1,1=3) := IntToStrik{i,j));
end;

]

I

]

!

]

1

]

: procedure TForml.BitBindClick(Sender: Tobiect):

| var Flag, IaSmith:Boolean;:i:Integer;

| begin

| InfoForm.Tag = {;

| Step := 0;

f if FlllAwFalse then exit;

[ Screan.Qurscr :w= crHourfilass;

| Waiclabal.Visible ‘= True:Refresh;

| try

| InfoForm.RichEditl.Lines.Clear;

I repeat

! Is3mith := Falsge;

I for 1 = 1 o =1 co

: begin

I Flag := False;

I repaat

i LesaVal{il;

' Flag := DivOK({i};

¥ DivDaca(i):

t until Flag;

1 end;frfer. ..

1 IsSmith := IaSmithNormal;

I until IzSmith:

I AbsOfMatrix;

| Fill & Matrix_BtnClick (Sender);

! Waitlakel.Visible := Falze:

: Screen.Cursgr = crbefaplt;

I Steplabel.Captien := 'Number of Step :'+IntToStr{Step):
 BxCaEpt

I HaitLakel . ¥Vislble := Falsa;

1 Screan.Cursar = crPafaulc:

| raise;

1 end;

i end;

!
|
|
|
]
|
|
|
|
|
|
|

procedurs TForml.EditlChange [Sender: Tobjecz);
hegin

n := UpDownl.Foaltian;

SiringGridl .RowCount := OpDowni.Posztzon;

StringGrid?.RowCount := UpDownl.Fosit-on:
end;

continue...
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procedure TFoeml  Edic2Change {Sender: TOciect); §
begin
Z = UpDown2,.Position;
StringGridl.ColCount := Uplown2.Posits

Lo
-

SiringGrid2 .ColCount := UpDown?.Positicn;

end; .

procedure TForml.BitBtnlClick({Sendar: Tobiect}:
var
Flag, IsSwith-Boglean; i:Integer;
begin
1fiUpDownl .Position*Uplown? . Posicion»225) then
if Applicaticon.MessageBox{'.0%=C... 4D4 GaTH4iE REAC EAlD =Bl O=is
a5 ERQOE %4
GAAECEUE", 'EELA " MB_YESNO+MB_RIGHT~M3_ICONINTORMATION+MB DEFBUTTON2
T=mrye then
Exik:;
InfoForm.Tag := 1;
Step 1= 0§;
lf FillrwFalse then exit;
Screen.Curspr = grHEourGlass:
WaitLabel.Visible := True:Refresh;
try
itfcForm.RichEditl.Lines.Clear;

1

r I
! I
1

i }
. '
1

i :
! I
' I
' I
! I
I I
! )
! I
! )
! '
i i
I i
! I
! I
! I
' I
! [
I i
I 1
! I
! I
1 InfeFarm.RichEditl.Lines. Add('Stratr time : '+TimeTaStr(Now}); [
! showdatrix: 1
: repeat t
I IsSmith 1=+ False; 1
| for ¢ := 1 to n-i do r
I begin :
| Flag := False; |
| cepeat :
1 Lessval iy, 1
i Flag := DivOXi{i}; i
l DivDatali); I
| until Flag; I
I and: //for. .. I
! IsEmith :e IaSmithNormal; I
' uptil IsSmith: I
L' AbsOtMarrix: I
: InfoForm.RichEditl.Lines . Add("Smith Normal Form is:'}; |
I showMatrix; !
| Fill A_vatrix_BenClick (Sender); ;
| WaitLabel.Viaible := False; I
) Screen.Curgor = crbefaulr; I
1 Steplabel .Caption := 'Humber of Step ;'+IncToStriStep); i
| except |
I Waitlabel Visible := False; I
1 Screen.Curacsr e crlafauly; 1
I raise; [
! end; I
! I
! I
| 1

continue...

——— WS BN BN e SR e mm mm e e R EE EE B mm e e e am B ek e e e e e wm B BN B e e
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InfeForm.RichEdis]l . Lines Ad2{'Znd time : '+TimeToSty tNow) ) ;
Infoform. ShowMadal;
end;
procedura TForm].BitBtn2Click(Sender: TChiect);
begin
Closa;
end;

precedure TForml.BitBiniClick(Sender: TObjecl):
var 1,]:Integer;X:Shartint;
hegin

EmpryGrid(StringGrid?y;

o= 33;

Randomize;

for i:=0 to StringGridl.ColCount-1 do

for j:=0 to SrringGridl.RowCocunt-i do StringGridl.Cells[i,]]

i= IntTeStr{Randocmi{x));

end;

procedure TForml.StringGridl¥eyPress(Sernder: TObject; var Key:
Char):
begin
EmptySrid{StringGrid2)
end;

procedure TForml.CloselClick(Sender: TObjecrt):
begin

BitBtn2Click (Sender);
end;

procedure TForrl.SmithNormalFormisltliex [Sender: TObjact);
hegin

BitBtndiClickiSander)
and;

procedure TForml.RandomNumberslClick(Sender: TObject);
beagin

Bi«BtniClick({Sender}
end;

procedure TForrxl.ShowDetailsiClick{Sender: Tobject)
begin

Bit3tnlClick(Sender)
end:;

procedure TEQrml.RboutProgramlClick (Sender: TGhiesc):
Begin
AboutBex. ShowkModal ;

————---—.-—-———---————-—.---———---——---—.-—-——--__‘

1
1
1
!
1
|
1
|
1
i
i
|
§
I
1
|
1
|
1
I
1
|
1
I
|
1
[
|
1
1
1
[
1
|
1
1
1
i
1
k
|
|
1
|
1
I
!
|
1
1
i
1
k
I
|
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Unit 2 listing:

interfarce

Procedure LesaVal(P:Integer);
Procedure AToM;

Fenction DivOK{P:Integer}:Boslean;
Frocedure DivDhata(F:Inceger):
Fenction IsEmith¥ormal:Boolean:
procedure showMarrix;

procedure AbsOfMarrix;

var
Ararray!l..100,1..100) of Integer;
M:array(1..100,1..100] of Integer;
n:inceger=3;z:Integers3;
Step: Integer=0;

implerentation
uses Syaltils, Infolnt:

|

|

|

|

|

|

|

|

|

I

1

i

1

I

b

I

k

|

|

1

I

t

[

I

| Procedure ATcM;

| ¥Yar i,j:Integer;

| begin

| for 1:=1 to n do for ji=1 Lo n do M{L,9]:=A[4,3];
I end:f/ATcM. ..

|
1
¢
|
[
|
|
|
|
F
I
|
|
|
|
|
|
|
!
[
|
|
|
I
|

Procedure LesaVal (P:Integer);
Var X,1i,C,B:Inteqer;
begin
C = -1;R = =1;
X = A[P,P];
fFor i:=mp+]1 to n do
iffalp,i]e»0and (Abs AP, 1] i=Abs{X}then
hegin
if Abs{AlIF,i]1> % then
begin
C o= i;d = A[B, 1]
end;
end else if{A[P,1]<>0)and{Absia{F,. i])<abs (X)) then
beagin
C o= 1:¥ = A[B,1];
end elze if ¥=0 then
begin
C:m i;¥ ;= RfP,i];
end;

continue...

— e o SR v v o e e R e mm e
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'———q-- ———————— - O A mm mm mm o e W B ek e e e e e A O s o = oy T AR
for i:=P+1 ta n oo }
L1E{AlL, Pl<>0rand (ADadA[Ll, Pl =Ahs (X)) then

and;//LessVal, ..

coatinue,.,

1 1
1 I
| begin |
1 if Bbs(AfZ,Pl}= ¥ then [
! begin I
! T ow =1 |
I R oi= i;¥% := A[i,P]; I
: and; !
I end elee if(A{i,Pl<>0and(AbalAli,P1}<ins{X) ithen :
| begin

- I
I C = -7 [
I B = 2i;% := A[i,P): I
1 end elses i X=0 then |
i begin I
I A 1
! a = 1;% = A[l,P]; 1
1 end; |
I if(C<»>-1)andiX<>0) then I
' hegin |
! ATaM; !
: for i :» 1 to n do f
I begin :
| a{i,P} := M{i,C}; I
1 Afi,C) := M(i, Pl I
I end; I
) anc{Sten); I
1 if InfoFcrm.Tag=1 chen 1
| Degin I
1 infoForn.Richfditl.Linea.Add{inttosts{Stept+ ' Interchange 1
I Column "~inttostriPi+' And Column '+inttoat={C)3; 1
I showMatrin; |
! end; '
: and else if{R<»-lland(X<=0)then !
i cegin :
I AToM; i
I tor i =1 to n do I
I begin I
i A{P,ij = M{R,1i]: I
i A{R.i} = ¥[P,i]: I
[} end; |
| Inc(Steg) |
| if InfoForm.Tag=1 chen 1
| begin 1
! InfeForn.RichEditl.Linas Addiinttosts(Stepl+':Interchange Row !
I '+inttostr{Pr+' And RBow 'vinttostriR)); i
! showhMarrix; !
e :
I and; i
| |
| |
I |
I |
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Function DivCX(P:Integer):Boolean;
var i:Inteqer;

|

|

|

begin !
Result = Trpe; :
for 1 = P+l te n do i
begin i
Fesult = [[A[F,Ljm0lox[ [A[P,i]) Mod A[R,P]=0 1
VARG {{A[L, P]=0)ar{ {ALL,P] Mod A[P,P]i=C }); '
if Besult = Falaes +hen Break: F

end; I
end; FFDivOR. .. I
|

Procedure DivData(P:Integer); 1
var I,j.q:Integer; !
begin !
AToM; !
for i:=P~1 to n duo :
begin I

if A[F,P]l<rOthen q := Trunc(A[P,i]/A[P,Pllelse g := 0; i

fzr 1 = 1 ton do I
Bl3.1) = -g*R{4.P]+A[3,L): I

if g € 0 then |

bagin |
Incistep): i

if InfoForm.Tag=1l then 1

begin t
TnioForm.RichEdit]l.Lines.Add{inttostr{Step)+' :add !
"+inttostri-g)+' times Column "+inttostriPi+' to Column '
"+inttaostriil]: :
showMatbtrix: |

end; I

erd; i
erd;fffor i... i
tor 1:=F+1 to n do I
begzx |

if A{F,P)<>0than q := Trunc{A|l,F]/R[E,F]lelza g = O; |

for 4 = 1 ta o do !

Ali, 3] := -gva[P,j}+A{i,3); !

if g <» ¢ then 1
begin |

Inc [Step); :

if InioForm.Tag=1 thean '

beglin I
InfoForm.RichEditl . Lines. Add({inttostr (5ten)+ ' :Add t
'eintrostri-gl+' times Row '+intioatr(P)+' to Row '+inttoscriil); I
showMatrix; |

end; 1

end; |

end; fffor 1... i
end; //DivData. .. 1
o l‘-ﬁﬂ"’i'ﬂl_llﬂ _!
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Function IsSmithNormal ;Boclean:
var i,j:Integer;

begin
Result :=-True;
fer i:=7 to n-1 do
begin

Aeszlt = Result Andi(A{i.i]=0Jor ({A'i+l,i+1] Mod Af[z,-]1}=0

Y
if Aesuit=Falae then
begin
for 3:=1 ta n do A4, j]:= Afi,3}~A[1+1,1];
Inc(3tep]:;
if InfoForm.Tagel then
Begin

InfoForm RichEditl.Lines.Addlinttostr (Step)+':Add Row

"Hinttostrii+ll+' to Row 'sintiostriil);
showMatrix;
end;
Brezx;
end;
end;
end; f/fisSniznNormal. .,

procedure showMatrix;
var i,3j:Integer;str:Steing;

pegin
for 1 = 2 ton do
begin
S5tr ;= "';

for j := 1 to z do Str := str+Format{'%12d', [A[4.3]]);

InfoForm.RichEdivl.Lines . add{=s%r);
end;
Infoform. . RichEditl . Lines.Add(""');

and;

procedure AnsQfMacrix;
var 1,i:Integer;

begin
for 1 := 1 te n do
for 3 =1 co = do A{i,9] := absia(i,d]1);
end;
end.
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3.4  Screenshots:

Calculating smith normal form window:

n 2 4 o e

— - T
0 ‘2 15 ®x oz !
—— e
® 3 115 AT 15

Smith Nomsal Farm i3: I B4 Aandum Mumbare
1 i0 L N ‘0 1
R g 1 0 i
0 0, ST S
v d T s TR o
R 9 1208017
e
Number of Step 53 | &l Show Details... | JL Qlose
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Show details bution:

® Smith Normal Fosm . .
10:17:45.132 PN

Stratr tiae

3 &2
4 22
11 2
a 2 1
28 3 1
l:Interchapge Colusn I &nd Colusp 32
2 22
L 22
4 2 1
15 2
15 3 2
2:4dd -11 time= Caolumn % to Columa
2
5 =313
4 —-42 1
15 =163
15 =162 2
3:4dd -1 time=s Column Iutn Coluan 3
2
5 -33 -
L ! =42
15 -16% -1
15 -162 1
4:4dd 10 timerg Colusn 1 ta Coluan
2 0
L -33 -
i -42
15 —-163 -1
15 -1l62 1
S5:4dd -1 times Colymn 1 to Columo 5
2 a
5 =13 —
4 -42
15 =163 -1
15 1Y 1

LM LA LT P

LR I - - A

= =

B

1
1
7
5
3

4
1
1
7
5
3

1
i
7
5
3

L+ Ll LR B N | Lt B X ]
=Lt RSO

Ll N ]
bt O O

-4l
=27
-124
=139

-44
-27
=124
-1329
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2 Smith Nermal Ferm

6:4dd -2 times Fow 1 to Row
z a
1 =33 .
1 —-47
15 —163
15 -162

7:Add -2 times Row¥ 1 io Row
2 1]

to

1 =23
1] —-42
15 —163
15 =162
8:4dd -7 times Rov 1 to Pow
2 1]
1 ~33
| -42
1 —163
15 -162
9:44d -7 times Pow 1 to Row
2 a
1 -33
1] -2
1 -163
1 —-162
10:Interchanga Column 1 And
. | ]
-3 -33
L -42
=22 —163
& -162
11:4dd -2 times Coluan 1
1 ]
-3 —33
L -42
=22 —163
[ =162

-15
13

-3

-15
13

-1
-22

|

1
]

Lol =t =T ] Ll o8 N R LR B D LM Gl

Calaan

Calaan

1
- g

~124
-139

~44
-27
124
-139

—4i4
=27
—-124
-139

-44
=27
—-124
-139

-4
=27
—-124
=139

1<
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% Smith Nosmal Form,

i2:4dd 3 tiaes Row 1 to Row 2
1 1]

Bl

.

1]
a K | ?
] -42 -1
-22 =161 45
] -162 =11
13:Add -5 timms Rov 1 ta Row 3
1 1] a
)] =313 7
1] -4z ~10
22 -1463 i5
[ =162 -11
l4:kdd 2?2 timex Pov ! to Row 4
1 1] ]
1] =33 7
D -42 -10
1] =163 15
| h =162 =11
15:4de -6 timms Row 1 to Rov G
1 ] 0
i =313 7
0 -42 —~10
1] =163 15
1] =162 -11
16:Intmrchange Colusn 2 dnd Column 5
1 0 1]
a -1 ?
1] g =14
)] 17 15
L] 1] -11
i7:4dd 7 times Coluapn 2 to Colusn ]
1 i 1]
a -1 1]
0 | 46
1] 17 164
1] 1] -11

~163
-162

I<i
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% Smith Normal Form ;
1B:4dd —44 times Coluan ? to Calumsn 4
1l 1) 1)
1] =1 0
L) a8 15
1] 17 164
I 0 1] =11
19:4dd -3 times Column 2 to CululnDS
1
1] -1 D
1) A 16
1] 17 164
[H] a -11
20:4dd B times Rov 2 to Bow 3
1 i} a
n -1 a
I a n 16
0 17 164
0 0 =11
21:4dd 17 times Row 2 to Row 4
1 a i)
1] -1 1}
1] 0 16
1] ) 164
D 0 -11
22 :Interchange Row 1 Arnd Eow &
1 0 0
1] -1 0
0 1] -11
1] 0 164
D i 1Bk
23:ddd -12 timexs Coluan 3 to Colunn &
| 1 0 |
0 -1 a
0 1] =11
1] 1] 164
1] a £y

| ¢
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# Smith Mormmal Form

24:hdd —1i4 tises Column 3 Lo Coloan S
H]

1 i
4] -1 ]
1] L1} =11
1] a 164
1] a 16
25:4dd 14 times Row 3 to Raw 4
1 1] 1]
1] -1 1]
0 1] -11
4] 1] 10
1] n ih
26:hdd 4 times Rew 2 to Bow 5
1 a a
1] -1 ]
1] 1] -11
0 1] 10
1} 1] 2
IZ?:Interchange BRow 3 Adnd Rovw 5
1 a ]
1] -1 1]
1] ] 2
1] 1] 10
1] 1] -11
28:4dd 479 times ColulnDS to CDlu:nul
1
a -1 1]
! 0 o ?
1] a 10
1] 1] -11
29:hdd 491 times Column 3 to CnlulnDS
1 0
i 1] -1 )]
1] a 2
1] a 10
1] 1] =11

1852
-5276

-1
1952
-5276

17748
-S409

|
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% Smhth Mormal Farm . )
30:ddd -5 times Row 3 to Row 4

=3 N —N-—0 ]

3l:hkdd 5 tiwms Rov 3 to Pow &
1

1]
a
0
0

3}:loterchangm Row

31:ddd -528

34:hdd -%40

[ ~R=0 =0 =] _Nt:] [N —N—0 =00 ] [—N-N=F_F"]

35:4dd 2 times Row

Qoo

1 ind Rovw 5
1

times Column 3 to Column 4
1]

Coluan 3 to Caluan

J to Rov &

=3 =R~ ]

1857
-5276

-1
1e57
-5281

-52K1
14857

HE

I+




9 Smith Normal Form . o
}o:Interchange Coluan 4 ind Colusn &

1 0 ]
- 1l -1 n
] 1] -1
1] 1] ]
a 1] 1]
37:4dd -1 times Coluan a tc Coluan S
1 1]
a -1 a
] [H -1
1] 1] 1]
1] ] 1]
389:Add b times Fov 4 to Row S
1 a 1]
n -1 1]
n a -1
] 1] i
i] 1] 1]
3%:Interchangs Column 4 ind Coleysn 5
1 ] 1]
1] -1 1]
1] q -1
i) ] 1]
1] a 1]
£40:Add =22 times Coluasn 4 tn Calumn ©
1 1] 1]
n -1 ]
a 1] -1
a 1] a
a [H a
41:4dd -9 timom Row 4 to Bow 5
1 ] n
)] -1 +]
1] a -1
] a i)
I} 1] 1

= g
- == ]

[—=2-X-]

40
-16544




& Smith Normal Ferm

i
1}
0
a

0
0
0

1 "0

—=2—0—N— 1]

[=N-0 XN

47:4dd 1211

CSOQOO=-a QoooeE

42 :Interchang= Row 4 And Fow &
T o1 1]
41:4dd 919 time= Colume 4 tn Calusn §
1 0

44 :4dd -4 cism= Row 4 to Row &

CoO-DoU oD s

l45:Interchangs Column 4 And Coluan

[—3-F_F N -]

16:ddd 3 timex Coluao 4 ta Column

SoQRO
i
=R =N =]

timex Fovw 4 to Fovw §

L —a-1~-]
=N =1~ ]

]
LR - ]

e i
LROOo

b LN -E N ]

-6
72665

[=J—1 =]

-6
72665

Lal-aR =1 =1 -]




£t Smith Normat Fasm I

[— 2 —R=—N-=1_0]

oQSoM

49:Intarchanga Row 4 ind Row
a
-1

0
0
o

-1
a
a
a

50:idd 1 times Fow 4 to Fow §
1 ]
-1

5l:Iotarchange Rov 4 ind Eow &
1

=R =F-N ]

0
1
-1
(]
o

49:4dd 43600 timex Column 4 to Column 5
n o

0
-1
]
0

0
0
-1
0
a

Gl:hdd 261602 timrs Column 4 to Column 5

1 1} 1]

0 -1 I}

0 ] -k

1] 0 (1]

[1; 1] a
523:4dd 5 tinex Row 4 to Row 5

1 1] 0

a -1 o =

Q I -1

a I} I} —

a li] 1] -
Smith Hormal Fora is:

1 1] a 0

0 1 1] 1]

a D 1 1]

a I} 0 1 .

a L] 1: D ‘=
End vtimse : 10:17:45_50% PH —

v

| I Close J

i p—




et padd L

A

Al | e W asan S8 e AN LY o glaall g et ol e dlild
R R PP THE PP

Aad Wy aih g pdagall g data d galpdl g a8 40 e e ai 0 e
S 5 i eldal e e it AN OMi o it g fuadl b Uaga
aad oy oY Syan JS0 Ge dalglly Ll Cilogbaadl e Jpaall dtad
- Al

,uiﬁﬁmqﬂhﬁ_@b—aﬁjmpﬁ_\iﬁ |.‘_h3_)£_"'.c___|_..h_).3_5_,

o ole Lnaded b LUl iy datlly Cig il ey LGl gy o 1 o
A LS i e e e S S ey YT e s

cAlray g

o Ugieae Ae Aoty 3y ey Bagaadaln T L]
Ax s By paan g Iaie iyl t’!;‘-LlﬁJ%e_JJH%MMJ

3 jwaliiag

64



References

(1] Adamson, lain, Elementary Rings and Modules, 1972 by page bros.
[2] Adamson, lain, Rings, Modules and Algebras, 1971 by page bros.

[3] Ash, Robert, Abstract algebra, 2000 by Robert B, Ash.

(4] Berberian, Sterling, Linear algebra, 1992 by Interprint Lid.

[3] Burton, David, Abstract and linear algebra, 1972 by Addison-Wesley.

[6] Cohn, P.M., F.R.S, Algebra volume 1,2™ Edition, 1982 by John Wiley &
Sons Ltd.

[7]O’Connor, JJ and Robertson, E F, www-groups.dcs.st-
and.ac.uk/~history/Printonty/Smith.html.

[8] Dummit, David, and Foote, Richard, Abstract algebra, 1999 by Prentice-
Hall, Inc.

(9] Herstein, LN., Abstract algebra, 3" Edition, 1996 by Prentice - Hall, Inc,

[10] Howard, Ralph, Rings, Determinants and The Smith Norma) Form, and
canonical forms for similarity of matrices, (2002).

[11] Jacobson, Nathan, Basic algebra I, 2" Edition , 1985 by W. H,
Freeman and Company.

[12] Morand), Patrick, The Smith Normal Form of a matrix, (2005),

[13] Rayward-Smith, V. J., On Computing the Smith Normal Form of an
integer Matrix , Vol.5, No.4, Page 451-456 (1979).

[14] Samelseon, Hans, An introduction to linear algebra, 1974 by John Wiley
& Sons, Inc.

65



[15) Sims, Charles, Abstract algebra, 1984 by John Wiley & Sons, Inc.

[16] Strang, Gilbert, Linear algebra and it’s applications, 2™ Edition, 1980
by Academic Press, Inc.

*x
11

66



[ | W[ i W RPN [ BN ) ,_1|. } _.ﬂ;‘:...'-'—-'m i | .............Lq ,.,._.r/__pj ﬂL.-
dmrardt s gt i s b Lgladl it

3 :;q.:.] | d<a I:.
.................................. H oL ™

-;I.;l' ! gt ‘:’...?"’“'

:95?/5 ----- Ly S

WWqutqham edu Iv

R L L B A Y A T ) R L

no@atahacieduly 6?4'&{- | 054/60361 - 62151 & anft&DSéS 55704 @



salyiefl Ssom Jhadi Sl oy

e Janall gija calbaioS Slaaly il eandl doady dlle o1 aiy
Gluialasll eele o8 yrionalol] da s

sauladl soal ) gaaio aAliito: ~dihall o oy
(032313): gaulyall 54,11
b gl Liads: ypisaall 1)

2008-2007  gxolsll olall




	t
	2
	c
	1
	2
	3
	a
	r
	t



