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PREFACE

This thesis studies some aspects ol the stability behavior of linear
and non-linear autonomous differéntial equations which have many
applications in various fields. The concept was first introduced in the
master degree thesis made by the Russian scientist Liapunov titled “The
General Case of Movement Stability” published in 1907.

After that came many siudies, researches, and efforts which dealt
with a certain problem each time,

The main point of this study is to simplify some concepts and
present them in a easily comprchensible manner so as to enable
researchers to understand the core basics of such concepts, We have
chosen certain subjects from a resource or more which have been
inflexible and we presented them in a more appropriate manner.

We have treated these concepts with an analytical view. Avoiding
completely the geometrical view of these concepts.

Chapter one was reserved to introduce some theorems and
definitions which we will need in the following chapters, and in this
chapter we introduce the proof of the existence and uniqueness theorem
of system of ordinary differential equations.

Chapter two deals with some concepts of stablity and
asvmptotically stable and the main focus in this chapter was on studying
the relation between the critical solution and the other solutions for some
differential systems.

Continuing in the analytical view of stability concepts we have
introduced in chapter three the direct method of the scientist Liapunov
presenting the proof for some of the theorems which deal with this
concepts.

At the end of the chapter three we have presenied some methods
through which we can derive the Liapunov functions for some differential
systems.
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Chapter One

Introduction

'
In this chapter, we give some standard definitions and theorems which

we shall need later in this thesis.

Definition {1.1):

Let R be the set of all real numbers, and f be an interval on the real line R.
Let F be defined on [, and »™ is the n-th derivative of the unknown
function x with respect to t, then any ordinary differential equation of

a-th order can be written 4s
Ft,x.x, 3", ¥")=0, where (=%, =9 (1.1)
ot ar”

Dehnition (1.2):

We can write {1.1) as
M =g, x,x", x0T, (1.2)

where g 1s a function defined from F on /.
The differential equation (1.2} is said to be linear if g is finegr in

. =t . - .
x, %, .., x" Y other wise it is non finear.

Delinition (1.3):
Let x = #(¢)be defined and n-times differentiable on 7, x = d(¢) is called

a solution of difterential equation (1.2), such that.



g7 = g{t,8(1), 6°(1), ..., 6" (1)), (1.3)

Forall z ef

Definition (1.4):

Let =0 x L X, LX),

x=f000,5%, x5}, (1.4}

x.=f (1, x, %, x, ),

where £, fy. ..., £, arc n given functions of a space of (#+1) dimensions,

and x,,X,,..,x are n unknown vectors, the system (1.4} is called

1*

a system of first arder differentiaf equations.

Definitton (1.5):
Let  {¢, (). 8. (). ..., ¢, (t)}be aset of # functions defined on /,
then  {& (¢}, 6. (¢), ., $, (1)} is to be a solution of the system {1.4) on /,

if ¢ (1), @5 (£), ..., §; (1) exists on /, such that

G ()= £00,8(1). 8,0 s 6,(0)) =12, .

Definition (1.6}:
The differential equation (1.2) is equivalent to a system (1.4), by using

the relations

17

k) 2.1'1_

=x,, (1.5)
Amy

X —.1“1



Definition {1.7):

The n-dimensional column vector is define by

and the vector valued function X (+) defined by

[x (1) ]

X(1) = -1':1(!)

[ x, ()
the vector valued function £ is defined by

Sile x x,00 X,

Feexy=| BT

File, x %, x,)

Definition (1.8):

‘The system of (1.4) can be writien as

ax
_=F i, X},
1 (r,x}

(1.6)

and the solution of system (1.6} on I, is a vector valued ¢(1), where

g() = (41, 6,(1), - 6, (1)) -

Lt



Definition (1.9):
A system of first order linear differential equations of (1.6) 1s called non

autonomous ditferential system, but the system of differential equations

1
%i:puj, where X =(x ,x,,...x,) (L7)
o

is said to be auronomous. (independent of 1).

Definition (1.10):
The solution ¢{) = (4, (). &, (1}, ..., ¢, (N)of the system (1.7) is called

trajectory. {or path or orbit), and a phase portirait is obtained from the

trajectory by eliminating £

Delinition (1.11):
Let
x=a,{0)x +a,@)x, +.+a (t)x, + f(t)

I; =a:|(r}x1 tay (I}II +'"+a2~ (I)I" +f2(:’\]

xi=a, ()x, va (x, +..+a, (O)x, + [ ()

be a svstem of first order linear differenticd equations, we can write 1t as

x =% a, ()5, + £{0), (1.8)

o

where a (1), (4,7 =1,2,... 0}, f(), i=1,2,...,n are real valued

funcuons defined on /.



Definition (1.12}:
A system of first order linear differential equations in (1.8) can be

expressed as

d—X-=A(:)X+F{:} . (1.9)

dt

where A (¢)=[a,(+)] is an axn matrix, and £ (¢) is an » vector such

that F(£)= (f,{2), ., £, (1))

Definition (1.13):
The system of (1.9) is cailed homogeneous if F(1)=0, otherwise 1s

called non- hontogencolts,
Definition (1.14):
Let v +a () y" "+ +a{)y=0, (1.10)

be n-th order linear homogeneous equaiion with variable coefficients,

where ¢, (1} (i=1,2,...n) arc continuous on J, the equation (1.10} is

equivalent to an n-dimensional first order lincar homogeneous system

%=A(r}.\', (111
where
[ 0 1 0 0 1
0 0 1 0 0
Alt) = : : - :
0 0 0 g - 1
_#f'!n [I) ﬂn-l(I] a,.; {f} """ —ﬂi(f)




Remark:

"The differential equation.
yVirayrayt++ay=0, (1.12)

is a special case of {1.10), where a,, a,,---, a, are constants coefficients,

and the differential equation (1.12} is equivalent to the system

ax
_=-n{!.-"‘lII ]..1-‘I
S ax, (L.13)

where 4=|a,, } is a constants matrix.

Definition (1.15):
I"El é; =J(i {'I" gﬁll 'ﬁ::"":' ¢n ]‘ (,-=1l2"“1”}r
and b )=d,=¢,, (1.14)

The system (1.14) is called an initial value problem for the system of

differential equations.

Definition (1.16):

An imtial value problem in (1.14) can be wntten as

8 = F1,x),
(1.15)
(o) =b,.



where $=(0,,0.,....6),
F=04./...0).

60 = (B> 0n: 00 ),

:
are vectors in "'

Theorem (1.1} [1]:

An initial value problem

¢ =f(1,6,6,,..,8 ), (=12,..,n),
¢1(rﬂ) =CJ

is equivalent to intepral equation

!

g (y=c, + [ F(s, 8,0y, 8,) ds, {i=1,2,..n).

Ty

Proof:

ﬂ:ﬁ{fjﬁ,é;p"':{ﬁn)'

it

do, = (1, 8,6, .., ) dt.

Integral both sides from ¢, to ¢ .

Id‘jl =_*-fi(5= ¢;,¢:,...,¢,]d£_

G =6 U) =] L5, 8. 81 8,) t85.



5 =0, (1) + [ f(s. 8.8, .8, ds.

b=+ [ £(s. bty d,)ds.

Conversely .;jf:i {(ty=c, + j Fls, d by, )ds.
d o :
e LY CR TS

__4;’}_—[ (f {.‘#’1, 3500 f;})_‘z‘(ru: 1?'“?4"5‘”)]'

L0480

Since ¢ (1)1 =¢, +jﬁ{.9,¢i,¢z,,,.,¢n]d.i' :

Put ¢ ({,)=c weget.

¢(r}—c+jf(s Biobrr ) ds=c,

Thecrem (1.2) [1]:
If the functions

L b ) (1=1,2,..0),

Satisfy Lipschitz condition such that

PR R AT AT S S 1EY




where (@B (4. 8,8 )R, and k is 2 constant such that

K=>=0.

And if the functions 7, (s, 4,.4.....¢, ) be continuous on a regon D

where i

Dijt—t]sa,|¢ —¢|sbh,

a and & arc positive real numbers (=12, ., n).

and | £ U ds 8,0 <M forall (1,4,...,8)eR.
Andif @ =min (a, 2L, i—J Jf—;r),

M =max {M M M),

TF oo

My=max |/ {t, ¢, ¢, . 6.)|,

then the initial value problem (1.14) has a unique solution on |/ - #| < .

We shall prove this theorem by method of successive approximations

(Picard method).

Proof:
Define B (1) =r¢,
b, (1y=¢ + [ (s, by, o) s is continuous function on

fu

[roJ'fu +Qf].

"’ 3
;ﬁ,‘z[r)=c:,+jﬁ{s,¢5,_,,..,, ¢,.)dy 1S continuous lunctron on
T

[t,, ¢, +a].



4
s 8, (N=e +_[ff{s. 8y ,1s o By, ds 18 2 sequence of continuous functions
Ty

on[z,,2, +a}, (1=1,2,..m), (j=1,2,..), such that g (1) =lim ¢_, (1)

}--!l:-

Next we show glhat @, , () lies inside the region £ .

Since 4, ,(¢1)=¢, + j'f,.(s, Byt s oo Bo ) 5.

E |9§1.;'f:f| = _ifl('5'-é.,_;_1:----.-§§m1_|)iiﬁ' )

b
Therefore ‘ér. L= C ! <M —L=bh
' ' M

17

for all /,

and this mean @, (¢) lies inside region 12,

Next we show (hat ¢, , (1) converges uniformily on ¢, f, + o ],

we shall need the following corollary {1.3).

Corollary (1.3) |1]:

Let i 7. {x) be a seres of real functions, where x € / = [a,b ]

el

[[ 0<|f, (x)|sM, ¥n, with the series 3 M, comvergeson [ = [ﬂ,b],

ne]

then i f.(x) converges uniformiy on [a.b ].

Hul

19



Let EXRES 0| =

3 +1f(5 Bros s buq) ds ]
(6.0 =8| <M (-1).

’ (1,650 By s @) = £ (50 g s 6
=l 28 [l ua e ol = s L.
s = b | <k [ MG 1) a5

16— | < ks E200

|¢'-J - 8. = El. If- (5,625 $ur) PN e 4;5"'1)1.:1’5 )

|¢.,:¢ -6 F k ![ “45._: ~ P l Foont \"If"n_: - ¢n.:‘ ldS.

lﬁﬁ._; _¢4,:1 = kiiﬂf{i_ﬁ—rﬁd? ,

i
h 3

lé'-’ - "'5|.3l < kM (_!__.r“_)}.

3

By mathematical induction, we can show that,

{" B fn)Pl

|¢'-1*1 - 'ﬁ--:‘ < ME {j+1}

- 4 (a )
16,,, - 6.,| < MK oy

Now Let u (=08 ,01)- B o (1))

iHJU]‘=| b~ ¢ | < MK (_‘:j_i'i.

11



Lid ol

And let 3 M KU @ =2 v ).

Fe

sul : I=1
v . {t '
) _] ka0 a5 j—rw,
LI 1‘
and lim ]’—1£—} < 1. !
geven v {1)

3w, (1) is converges by ratio test.
=t

This implics that by coroltary (1.3), the serics.

i i, (1) = Zﬂ: (#, - ¢,,.,) converges uniformly, and the partial
I

Hu| 1=

sums of this senes given by 8 (¢) = i (6, (0)=d .., (#))
LS =8(0) - 4401

The sequence {;ﬁ,_j(:}} defined by ¢, =5, +é,(1), (i=1,2,..m
(j=1,2,,..) converges uniformly to a continuous function ¢ {r) on

[t,, 4, + e ] forall £

Next we show that @ (¢) satisfies the system

£

B(0)=c, +§ £(5. 0. dsren By )il

iy

Since ¢ (N =¢+ i (5, @0 By ) S
'.Wgéw[ﬂch+@lefL¢M4“”¢M4)m.

RO LTI B ACKE S SR T )

12



Next we show that an initial value problem has unique soluiion.

Supposc an initial value problem has twao solutions 4 (¢) and y, (7).

Let zf“]:|¢’i“)_§5‘ri“)l2ﬂ-
:.(rnj :lﬁﬁ.'(‘!n)_'wj{{u”:cl; - & =0

2 (0= | [ 710506, B 01 ds = [ Guvi vy v, ) 35

L]

A<k [ lé-w|+.+]8 - w, || s

ky

)Y sk j-zl.(x) s .

]

I.{:')-ﬁ'j:}(s}.:fs < 0.

‘ Iz.f} E:.‘-.t-l'.:r—h,ﬂl . ke-—k(.‘—m} j z, {5) ds = 0.

Ty

4 {e'”"‘” [ z,{5) a’s] < 0.

LX]

eft

"

oogTiheel J‘ z,(s)dy =0,

I

This implies that j z(s)ds<sQVie .1, + e l.
And this implies that 7, (¢) <0 Vi€ (1,4, + & ]

But z (1}20 Viell,! + o]

grh
Therefore & {(#) =4, (f).
and the initial value problem (1.14) has a unique solution.

Theorem (1.4) |2]:
Any combination of the solutions of the system (1.11) is also a solution of

the system (1.11).



‘Theorem (1.5): §2]
if ¢(r) is a solution of the system (1.9), then () is a sclution of (1.9)

ifand only il @(¢) - w{¢) isasolution of the system %i—(- =A(1) X.

Remark:

if ¢{t) is a solution of the system i—f = A{1)X such that ¢(r,) =0,

1, & fthen ¢fr)=10.

Definition (1.17):

Let {v (e), v, (1), ..., v, (¢)} be a set of vector valued functiens on {, and

€ ,C...,C, are constants not all zeros, such that 3 ¢ v (1} =0,

1m]

the vector valued functions v (), v.(¢),... v, (f) are called linearly

dependent on 1, and are lincarly independent on {if 3" ¢, v, (¢} =0, for al

fimplies that ¢, = c.=..=¢, =0 .

Theorem (1.6) [2]:
i {@, (1), 8, (1), &, (1) }is a set of linearly independent solution of the

svstem (1.11), then i ¢, ¢, (t)yisequalzeroif ¢ =¢, =...=¢, = 0.

1=l

Definition (1.18):
A set of the solutions {¢, (1), @, (¢), .. ¢ {r)}of the system (1.11) is

called a ﬂmdame;na." systens of solutions of the system (1.11).

14



Theorem {1,7) [1]:

A fundamental system of solutions of the system (1.11} exists.

Definition (1.19):

Let @ be an #xn matrix such that

(6, (1) é,(1) - 4.(1) ]

ﬂJ(I)= ¢1I:(") ¢12:{:‘!} ‘f’z.(r}

_;‘l’ll{r) iﬁ.:{f} ¢n{r)_
where
g, 0r={8,00), ¢, {t) .. 8, (1),

15 & solution of the sysiem (1.11), and ¢, (1) = ¢,, ¢, is the standard unit

vectors, O{¢) 18 called a fundamental matriy of the system (1.11) , and

Dz, ) =1, where [is the identity matrix.

Corellary (1.8) [2]:

A fundamental matrix @{¢)is also a solution of the system (1.11), and if
X (f) 15 a solution of the system (1.11), Such that X (¢, )= X, then
A{)y=P®() X, where X, =(x,. X001, )

Definition {1.20):

Let ¢ (), 6,(2), ..., @, (1) be solutions of the system (1.11) such that

i:é; = {iﬁu (1}, gfl”{.'.'}, ¢.j{f}}'

15



The Wronskian of @ (¢}, ... ¢, () is given by

W (1) = det D(r). (1.16)

Theorem (1.9) j2]: '

®(¢) of the system (1.11} is a fundamental matrix if and only if

Wit)=0forret.

Theorem (1.10) |2]:

If @ (1)is a fundamental matrix of the system (1.11), then @(¢).C also

is a fundamental matrix of the system (1.11), where C is any constant

non singular matrix.

Definition (1.21):

Let A be an #xn matrix, then a mairix exponential of A is given by

Iz ] =] L
e = Z A" —
v ml

Remark:

2]
e=® (1) ®'(0) if Alisaconstant matrix.

Definition (1.23):

The polynomial in Aof degree n
f{Ay=det{d-al)=a, A" +a, A" +..+an,

is called characteristic pohynomial of A where A is an nxn matrix, I is the

1dentity matrix.

6



Definition (1.23):

Let ¢{¢) = Ce"' is a solution of the sysiem (1.13), where A is a scalar

constant, C is nonzero constant vector, then
1
F(A)=det (d=-2f)=0, (1.17)

is called the characteristic equation of A andit’s nroots 2, 4;, ... 4, are

called the eigenvalues of A. For given eigenvalues the nonzero vectors

V., ¥, .., V, are called eigenveciors.

Theorem {1.11) [11]:

The general solution of the system {1.13) on (-, +) is given by
)=t e e, Ve ++e, T, e™, (1.18)

where A, A, , ..., 4, are n distinct real eigenvalues, and ¥, V,, ...}, are

their corresponding eigenvectors, e,, ¢ . ..., ¢, ar¢ arbitrary constants.

Theorem (1.12) [11]:
If A =a +if. B is real then the general solution of the system (1.13)
on R={(-=,®) is given by ¢ () =cx, +¢.x,, where ¢, ¢arc

arbitrary constants, and

x, =& [B cospt - B,sinfr ].
(1.19)

x, =" [.Jf:‘2 cospr + B, sinfit ].

= real parts (1), and B, = imaginary parts (1) ).

1

17



Theorem (1.13) [2]:

The general solution of the system (1.9} 15 given by

i

g1y = D{1) ${t,) +D(e) [ D7 (5) B(s) ds, (1.20)

where (1) is the fundamental matrix of the system {111}, ¢(r,) = X,

Remark:

If A is a constant matrix in the system (1.9), then

61)= (o) e™ + [ f(s) ds. (1.21)

fn

Definition (1.24):

The general solution of the system (1.13) can be writien as
g(1) =gty " (1.22)

Theorem (1.14) |2]:

If all eigenvalues of (1.17) have negative real parts, then

()| s M e™ 120,

lim|g (1) | =0,

4=

where @(¢) is anv solution of the system (1.13), & and M are posilive

numbers. .

18



Theorem {1.15} [2]:

Let ¢(¢) be a solution of the system {1.13), and if

| @ (¢ }] < M forall t 3> 0, where M is a positive constant,
!

then ¢{t) is bounded on 0,00 ).

Definition (1.25):

The norm of any vecior X € R" is given by

|]X1|.=§‘Xrl= ' (1.23)

Which satisfy

| X[|> 0 with [|X | =0 ifandif X =0,

(i)

\x | for any constant K,

i) |jxx|=|&

Giy Jx+risfxysfrf . X ¥Ye£

Definition (1.26):

The norm of the axx matrix A is given by

k= 3] (1.24)

W=

19




Definition {1.27):
Suppoese that ﬂ:f—f = F{X), the point X, such that F(X,) =10 is called

equilibrium point {or equilibrivm solution, ¢ritical point).
)
Definition (1.28):

Equilibrim point is called isolafed if there exists a neighborhood about 1t

which does not contain any other equilibrium points.

Definition (1.29):

Let two dimensional linear autonomous systen.

e x
—=uax+hy,
a1 iax ¥
(1.25)
e ¥
Y cxvdy,
= cx +dy
- I.F} ,
or . a S =ﬂ,},- :i}_’ (1.26)
¥ e d ||y ai o ¢

where a, b, ¢ and d are real constlants,

Remark:
(1) The point (0,0) 15 the only critical poinl of the system (1.25) if
ad —bc+#0, and the trajectory of the system (1.25)

approaches the critical point (0,0} as ¢t > o if

lim ¢, (1) = 0,
lim ¢, (¢) =0,

=L

where ¢ (¢), ¢, (#) are solutions of (1.25),

20




(i) Let the trajectories ¢ () and ¢, (1) of the system (1.25)

approache (0,0) as 1 —» =, We say that the trajectories enter
¢ (1)
(1)

ex1sts.

the critical point (0,0)as r — £= if lim

[omt i



Chapter Two

Some concept of stability, asymptetically stable

and two dimensional linear autonomous systems.

1. Some concept of stability and asymptotically stable:

Consider the system

=,

|:

X

= P (x,»),

L

)

(2.1.1)
dy _ .
E - Q ( ' 3 ):

where P(x,v)and { {x,y) are rcal functions which have
continuous first partial derivatives for all {x,y).
However, the point (0,0) is an isolated critical point for this

system.

Detinition (2.1.1):
The critical point of the system (2.1.1) is said to be szable if for every

neigh bourhood & of (0,0}, there is a smaller neigh- hourhood £ g & of
(0,0), such thai every trajectory which passes through £ remains in &

as f INCIeises.

a——

Figure. (2.1.1) XN
slable

22



Definition (2.1.2):
The critical point (0,0) of the system (2.1.1) is asymptotically stable if

there is 2 neighborhood & approaches (0,0} as ¢ tends to infinity.

asymptotically
stable

4
o X
d
L unstatle
A -
s L

Figure (2.1.2)

We shall consider the system

%ZF(,,I}, (2.1.2)

with initial condition ¢ (1, = ¢, .

Definition (2.1.3):
Let ¢(1)be a solution of the system (2.1.2), then ¢(1)is called Laplace

stable if there exists a constant A such that |¢{s)| s Af.

Definition {2.1.4):
A solution ¢(¢) of the system (2.1.2) is called Liapunov stable if given

£ > 0, then we can choose &(&) such that for ahy other solution ()

and | ¢ (1,) —w (1,)] <Swehave |4 (1) -w ()| < sforall 1 24,

23



Note that if we put ¢, = 0, then we get l $(0) =y {0Q) | < ¢ this implies

that | ¢ (1) - (¢1}| <& forall 12 0.

Definition (2.1.5):
The solution ¢(¢) of the system {2.1.2) is called asymptotically stable if

(i)  @(¢) is stable.

(i) | ¢#(e) ~w(r)| tends to zeroas ¢ tends to infinity.

Observe that every asymptotically stable equilibrium solution is stable.

However the converse is not true.

For cxample the critical point (0,0) of the differential equation
x" +(x") + x =0 is stable, but is not asymptotically stable, we will

explain the solution of this example in the next chapter.

Definttion (2.1.60):

The sotution #{#) of the system (2.1.2) is called unstabie if there exists

at least one solution f(#) of (2.1.2) such that
|8(8,) = h{t)]< &, but |g(1)—h(s)|> ¢, forall 1 24,

Now we shall consider the autonomous svstem

d X .
——=4X (2.1.3)
Theorem (2.1.1) {4]: .
(i)  Lvery solution #{r) of the system (2.1.3) is stable if

equilibrium solution 15 stable.



(i) Every solution g@{s}of the system (2.1.3) is asymprotically

stable if equilibrium solution is asymptotically stable.

Proof:

(i)  Let w(7) be another solution of the autonomous system.

=7 = AX,
such that | (0) - w (0)| < &, and x(:) = 0 is equilibrium sclution,
To show that |4,15[:] - w[r][ < g forallt20.
Since x{r)=0 is stable.
Let z{¢) be another solution such that
|z(0}| < ¢ and we have |z(r)| <g forall r 2 0.
Since @(r) is a solution, y{f) is a solution, and also z{7) is
a solution, therefore z{¢} = @ () — w (¢}, (0} = $(0) — w(0}.
And we get [2(0}] =4 - w(0)| <&
therefore [§(1) - w (0| =]z ()| <«
By definition {2.1.4) the solution ¢(¢) is stable.
(ii) Let (¢) be another solution of the system (2.1.3) such that
|$(0) - w(0)| <& forali+ >0,
To show that |¢{r) — & (z)| tends to zcro as 7 tends to infimty.
Since x{r) = 0 is asymptotically stabie then we have
2)] = $() v )], |2(0)] =| $(0) = p ()] < &
we have |§() - w(t)|=|z(r)| rends to zero as ¢ tends to

infinity.
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Theorem (2.1.2) [4]):
Every sclution ¢(:}# 0 of the system {(2.1.3) is unstable if the

equilibrium solution i wunstable,

Prool: '

Given x{t) =0 is unstable, by definition (2.1.7) there exists another
solution A {t) such that |h{0)[ <d but |h(0)|>¢ forall sz 0.
Let w(t)=¢({t)+ h{t) beasolution of the system {2.1.3) such that

| (0) - 6(0)] = | n(0)| < 6.

But | () — ()| =|hi)| < forall zz0.

Therefore the sclution ¢(2) is unstable by definition (2.1.7).

Theorem (2.1.3) [4]:

Every solution of the system

X _ax, (2.1.4)
it

(where A = (a;) 15 constant matrix}, is asvmprosically stable if all eigen

values of the matrix A have negative real patts.

Prouf:

Let ¢(t) 1s sclution of the system {2.1.3) given by

rés(f}_ _¢:| él! éln ‘ét(ﬂ)-
sz () ¢'3| ‘ﬁﬁu 5?52:1 gjz (0)

b b - 0,1 [6,(0)]

RAGCH
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or  ${1)= e $(0),
or é;(r)=_)":l¢g,(r) $,(0)

Since all elgen values of the matrix A have negative real parts by theorem

(1.14), there exists positive constant X and' & such that

19, ()| < ke™

|¢.(I)| =

z 4, () 4, m)‘

lg,(0)] <

z¢ )| 14,0

80| ke=]4,0)
=l

Define 4= max {|§.()].]4, ], .., |4, ()]}
1¢(0) = max {|¢, ()] ,]¢, @), .....| 8, ©)])

Then we have |6,(1)] < |é(0)] forall i.
16, (0)| < |¢ O forall i.

o LIO] B FIOH
Lee 6@ <6 = =

16| <ke™.n.|é (0]

which tends to zero as ¢ tends to infinity.
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Therefore by definition (2.1.5) X {r) =0 is asymptotically stable, this
implies that the solution ¢(¢) of the system (2.1.3) is asymprotically

stable by theorem {2,1.1).

Theorem (2.1.4) |4}: ’
Every solution of the system (2.1.4) is unstable if at least one eigen

values of the matrix A has positive real part.

Proof:
Let A be eigenvalues of the matrix A with positive real part, and ¥ are
the corresponding eigenvectors.

i) =c.e™ .V issolution of (2.1.3) for any constant c.

We have [4(0)] ={d|e* o]

If 4>0 then [|¢{r)| tends to infinity as ¢ tends infinity.

If Z=a+ib, a>0,then |$(7)]f tends to infinity as ¢ tens to infinity.

Therefore x(2) =0 is unstable, and every solution ¢{t) of (2.1.3) is

unstable by theorem (2.1.2).

Now, consider the Jinear non-homogeneous system.

d X

i

=AX + F(1), (2.1.6)

where 4 =(a, )is a constant matrix and F(¢) are continuous n-vector

for all .

Theureﬁ (2.1.5) [2]:
Any solution #(r) of the system (2.1.6) is stable if and only if

equilibrium solution of the system (2.1.4) is stable.
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Proof:

Let ¢{f) be any solution of (2.1.6) given by
gy =e” g(0)+ [V F(s)ds
f

and  (f) be another solution of (2.1.6) given by

¢

w{ty=e"w(0)+ [ F(s) ds

1]

since ¢ () is stable.
Therefore by definition (2.1.7).

|¢(r) —w ()] < &£, whereevery [$(0) - (0)] < &
1)~ w ()] = |e $(0) — e* w(0)
16 () —w ()] = e |¢(0) - w (D)

|6() - w()| < e* . & <& thisimplies e < %.

To show that x(¢) = 0 is stable.
i.e. 10 show that |z(r) < s| where every |z(0)[ < &, where z{) is any

solution of (2.1.5) given by

(@) =e"=z(0),
|=()] =|e* = (0)]

|z{r}|<:e'“§{§5 =£

this implies that x(r) = 0 1s stable.
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Conversely given x(i) = 0 is stable for the system (2.1 4.
There exists z{r) = e 2(0) such that |z(#)| < £ there every |2(0)| < 4.
To show that ¢{¢) # 0 is stable for (2.1.6).

Let w{t) be another solution of (2.1.6}.

¢ (1) = z(1) + w (1) this implies that

160 - w(0)] =2()| < and |#(0) - ()| =|z(0)] <&
orLet |¢(0) — @ (0)| =|2(®)] <&

|64 - w ()] =| e $(0) - e* w(0)| = " $(0) -~ w (0)|
|91 — w()| < " |2(0)| =|e* z(0)] < &

Therefore ¢ (z) # 0 of (2.1.6) is stable.

We shall consider the system

X _ 4y x, (2.1.7)
et

where A(:) is an nxn continuous matrix on [0,%), and
X=g()={4() - ¢,(1))is an unknown n-dimensional  vector

functions.

Theorem {2.1.6) [2]:

All the solutions of the system (2.1.7) are stable if and only if these

solutions are bounded.



Definition (2.1.7):
Let
F(M= A Hag a0 v+, =0, (2.1.8)
be a polynomial in A of degree n, where .., q, arc real constants

!
coefficients, and

¥4 WV vy =0, (2.1.9)

is the wn-th order linear homogeneous differential equation related to
(2.1.8).

Theorem (2.1.7) [6]:
All the roots of (2.1.8) have negative real parts if and only if all the

principal diagonal minors of Hurewitz s matrix H,are positive, where

a 1 0 0 0 0 0 0
a, a, a L 0 0 0 0
H =la, a, a, a a 1 D 0

A Hurewitz matrix is constructed in the following way. We place the
cocfficients of (2.1.8) o, to &, on the principle diagonal,

The colums are then flled with coefficients that have only odd indices or
only even (including a, =1).

Hence, the elements of the Hurewilz matrix #H, =(A} are given

B, =y, (L,j=1,2,3, .1} All the missing ¢lements {coefficients

with indices greater than # or less than zero) being replaced by zeros,

Denote the principal disgonal minors of the Hurewitz matrix by
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Ho=[a ], detiff,} =0,
[, 1
H.= , det(H,) » 0,
0 a,
-a'l 1 ¢
H,=|a, a, a |, det(ffy} >0,
(0 0 g
g, 1 0 0
, 4
H, =" % D T e s,
0 a, a, a,
(0 0 9 a,

Theorem (2.1.8): 2]
Let A be a matrix of the system (2.1.4) such that all eigenvalues of the

matrix A have negative real parts. The matrix A 1s stable.

Theorem (2.1.9): [6]

All the roots of the equation (2.1.8) have negative real parts if and only 1f

N g >0,a>0,..,a>0

(i) A, >0,A

The theorem (2.1.9) is called Lienard = Chaipart test.

Theorem (2.1.10): [6]

Let all roots of the equation (2.1.8) have negative real parts. The equation
(2.1.8) 15 stable,

Theorem (2.1.11} |2]:
If all eigenvalue of the matrix A have negative real parts, then every

solution ¢ () of the system (2.1.5} is asympiotically stable,

el
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2. Two dimensional linear autonomous systems:

Consider the linear autonomous system

dx
—=ax+by,
af )

t

(2.2.1)
%:;i =cxy+dy,

where a, &, c and d are real constants, the point {0,3) is the only

. . . , a b
critical point, and A, ,4, are eigenvalites of the matrix A = [ J ], and
¢

ad -bc=0.

Theorem (2.2.1):

If Aand A, are real and distinct eigenvalues, then the peneral solution

of the system (2.2.1) 1s given by

_ L iyt
x=¢ A e +¢ A, ",

V= A &)
y=c B e +¢, B, ™,
where 4, 4,, B, B, are constants, c,, ¢, are arbitrary constants,

B

A A
and v, = [ | ] J ¥, = [ Bz ] are correspoind eigenvectors,
1 3
If Aand 2, are real and equal eigenvalues, such that there exists one
linearly independent eigenvecior, then the general solution of the system
(2.2.1) is given by
x=c Ade e, (At+A4)e",

y=c B e +e, (Bt +B,)e",



where ¢, ¢, are arbitrary constants, 4, 4,, B,, B, ar¢ constants,

A A, .
and v, = [ BI ], v, = [ B* ] are correspoind eigenvectors.
2

1

1
The characteristic equation of the system (2.2.1) is given by
A —{a+d)YA+(ad-bc)=0,

Definition {2.2.1):

The critical point (0,0)of the system (2.2.1) is called ceniter if there
exists ¥ (0,0){a neighborhood of {0,0)) Such that this neighborhood
contains infinite number of closed trajectorics, and (0,0) is not
approached by any trajectory as ¢ tends to « or ¢ tends to -—oo,

(Figure 2.2.1).

&

Figure (2.2.1}
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Definition (2.2.2):
The critical point (0,0) of the system (2.2.1) is called saddle point if

there exists N(0,0) (a neighborhood of (¢,0)) such that:
|. There exists two trajectories which approach and enter {0,0} from

a pair opposite directions as ¢ tends to o, ‘and there exists two

trajectories which approach and enter (0,0} from different pair of

opposite directions as ¢ tends to — =.

>

4]

2\

Fipure (2.2.2)

2 1 each of the four domains between any 1wo of the four directions in
(1) there are infinitely many trajectories which don’t approach to

(0,0) as ¢ tendsto « or ¢ tendsto —oo. (Figure 2.2.2)

Definition (2.2.3):

The critical point (0,0) of the system (2.2.1) 1s called a spiral point it
there exists a neighborhood about (0,0) such that every trajectory inside
this neighborhood is defined for all 1>/, and it approaches {0,0) as ¢
tends to « or f tends to —oo, and approaches {0,0} in a spiral like
manner, winding around (0,0) an infinite number of times as ¢ tends to

o or 7 tends to —oo. (Figure 2.2.3).
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P/

Figure (1.2.3}

Definition {2.2.4):
The critical point (0,0) of the system (2.2.1) 1s called improper node if

there exists a neighborhood about (0,0) such that every trajectory inside
a neighborhood is defined for all 1 > ¢,, and it approaches and enters
(0,0) as#tends to o2 or ¢ tends to — oo and enters (0,0) as ¢ tends w

or  tends to —». (Figure 2.2.4}.

\

\ -t X

fa=

Figure {2.2.4)



Theorem (2.2.2} ]1):

. If 4 =4, and 4, >0, 4, >0 0r (4 <0, 4, <0), then the critical point

(0,0} of the system (2.2.1) is improper node,

2014 =24, and 2 >0, 4 <0or (4 <0, 2, >0), then the critical point

(0,0} of the system (2.2.1) is saddle point.

3 If & =2, then the critical point (0,0) of the system (2.2.1) is
improper node if (here exists one eigenvector, and proper node if there
exist two corresponding eigenvectors.

4 1f A =a+if, 4, =a-ip such that & =0, then the critical point
(0,0) of the system (2.2.1) is a spiral point, and if « =0, then the

critical point (0,0) of the system (2.2.1) is a center,

Theorem (2.2.3) [2]:

I If 4, <4, <0, then the critical point of the system (2.2.1) is

asymptotically stable, and the phase portrait is an improper node.
(Figure 2.2.5).

Figure (2.2.5)



2. If A4 > A, >0, then the critical point (0,0) of the system (2.2.1) is

unstable, the phase portrait is improper node. (Figure 2.2.6).

N

N

Figure (2.2.6)

3. If 2, <0 and A, >0, then the critical point of the system (2.2.1) is

nnstable, the phase portrait is a saddle point. (Figure 2.2.7).

¥

L
RS

Figure (2.2.7)

4. 1f 4 =0 and 4, <0, then the critical point (0,0) of the system

(2.2.1) 1s stable, the phase portrait is a praper node. (Figure 2.2.8).
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Figure (2.2.8)

5. If 4 =0 and 4, >0, then the critical point (0,0) of the system

(2.2.1) is unstable, the phase portrait is proper node. (Figure 2.2.9}

¥

I ¥ 3 '

Figure (2.2.9)

Theorem (2.2.4) [2):
If 4, = A, we have two cases:

Case {: linearly dependent eipenvectors:

L. If 2, =4, <0, then the critical point (0,0) of the system (2.2.1) is

asympiotically stable, the phase portrait is impreper node. (Figure
2.2.10).
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Figure (2.2.10)

2. If A = A, > 0, then the critical point (0,0} of the system (2.2.1) is

unstable, the phase portrait is improper node. (Figure 2.2.11).

\

Figure (2.2.11)

3. If 2, = A, = 0, then the critical point (0,0} of the system (2.2.1) is

unstable, the phase portrait is a proper node. (Figure 2.2.12).
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»

Figure (2.2.12)

Case I linearly independent eigenmvectors:

. If & =2, <0, then the critical point of the system (2.2.1) is

asymptotically stable, the phase portrait is a proper node. (Figure

2.2.13).

Figure {2.2.13)

2. If 4, = 2, > 0, then the critical point (0,0) of the system (2.2.1} is

unsiable, the phase pretrial is a proper node. (Figure 2.2.14),

4]



Figure (2.2.14)

3. If 2, = A, = 0, then the critical point (0,0) of the svstem (2.2.1) is

unstable, the phase portrait is a proper node. (Figure 2.2.12).

Theorem (2.2.5) [2]):
Consider the system (2.2.1), where 4, =@ +if and 4, =a —if, then

we have the following cases:

l. If @ <0, #>0, then the critical point (0,0) of the system (2.2.1) s

asympiotically stable, the phase portrait is a spiral. (Figure 2.2.15).
‘}r

Figure (2.2.15)
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2, Ifa>0,p > 0, then the critical point (0,0} of the system (2.2.1} 13

unstable, the phase portrait is a spiral. (Figure 2.2.160).

}.l

().

&

Figure (2.2.16)

3. Ifa=0, 8 >0, then the critical point (0,0) of the system (2.2.1) 15

stable, the phase portrait is a center, (Figure 2.2.17).

Figurc (3.2.17)

4, If a<Q.fF <0, then the critical point (0,0) of the system

(2.2.1} is asymptotically stable, and the phase portrait is a spiral.
{Figure 2.2.13).
5. If =0, 8 <0, then the critical point (0,0) of the system (2.2.1) is

stable, and the phase portrait 1s a center. (Figure 2.2.17)

6. If >0, p <0, then the critical point (0,0) of the system (2.2.1) 13

unstable, and the phase portrait is a spiral. (Figure 2.2.16)
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Definition (2.2.5):

Consider the non linear system

dx
—_—= F X, 1),
7 (x,30) |
(2.2.2)
dy
df - Q(xu.}‘}:—

where P and Q are real functions which have continuous first partial
derivatives for all (x,y) and system (2.2.2) has an isolated critical point
{0,0}.

If P(x,y) and Q(x,y) can be expanded in power series about (0,0)

such that

Plx,y) = F(0,0)x+ P (0,0)y+ R,
Qxy) = Q,(0,0)x+ 0, (0,0)y + R,

where R, and R, are terims of order 2 or higher in x and y, such that

: R : R
Iim  ——_——= lim —====0,

[r.p1 = {00 II":? + .vi fx,p]=v (0.0 '\.I||x2 + -}.Il

x'=P,(0,0)x+ P (0,0)y+R,,
(2.2.3)
3 =0,00,00x+ 0 (0,0)y+R,,
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and for the system (2.2.3), the svstem of equations of first approximation
1§
=L (0,0)x+ P (0,0)y ,
! (2.2.4)
y =0, 00,0)x+02,(0,0)y,

‘Theorem (2.2.6) [1]:

Consider the system (2.2.3} where R, and R, have continuous first

partial derivatives for all (v, y) such that

lim  ——=—==lim R,

= [ 2 IS f 2 ]
= (0.0 X4y (e ¥k=2 00,0) gy

=0,

If the system of equations of first approximation (2.2.4), where the
system (2.2.3) and the system (2.2.4) have an isolated critical point

(0.0),and 4 and 4, are eigenvalues of the system (2.2.4), such that:

1. If 4, >0, 4, > 0, then the critical point (0,0) of the system (2.2.2) 1s

a node.

2. 1f 4 >0,%, <0, then the critical point (0,0) of the system (2.2.2) is

a point saddle.

3.If 2, =4, such that ¢ =d =0,6=c =0, then the critical point
(0.0) of the system (2.2.2) is a node.
4. If 4, =a+if,and & =0, then the critical point (0,0} of the system

(2.2.2) 1s a center.
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5. If A =a +if,and a =0, then the critical peint (0,0) of the system
(2.2.2) mavbe a center or a spiral point.

6. If A, = 4,,suchthat £, (0,0)=¢,{0,0)= 0 and

P (0,0)=¢ (0,0)=0 then the critical point (0,0} of the system
1

Theorem (2.2,7) [1}]:

et 7 and A, are eigenvalues of the system (2.2.4), and definition (2.2.5)

hold: -

1. If 2 <0, 4, <0, then the critical point {0,0) of the system (2.2.2) 1s
asymptotically stable.

2. If 4, » 0, A, <0, then the critical point {0,0) of the system (2.2.2} is
unstable.

3. If, A, =a+if such that « < 0, then the critical point (0,0) of the
svstem (2.2.2) is asymptotically stable.

4, If 2 = +ip, such that & > 0, then the critical point (0,0} of the

syslem {2.2.2) is unstable.

5. If 2, =a +if,suchthat ¢ =0, then theorem is not applicable.
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Chapter Three

Stability by Liapunov Direct Method.

There 1s a large nu!mbr::r of differential equations systems which are
not easy to find solutions for them by simple methods, and even if
solutions were found they could not be efficiently applied in studying the
characteristics of stability.

The study of stability concepts through finding solutions as we have
scen in chapter two was used by the scientist “Ligpunoy” and was named
the first method of Liapusov, but later he found another more effective
method which was called the direct method because it did not depend on
previously knowing the solutions. The method in fact dealt directly with
the differential systems through functions of special nature, which were
named Ligpunov functions.

These functions and this method will be the subject of this chapter.

[.et us start with the following definitions.

Definition (3.1):

Let £ be an open set In R conlaining the point (0,0), and let

V{X)=F(x,.x...,x ), bevaled continuous scalar function defined on

Qg R —» R,

. Let #(X) be a scalar function such that ¥(0)=0,¥{X)» 0 for all
X #0eQ, then VF{X) is called positive definite on Q.

2. Let V(X) be a scalar function such that F{0)=0, ¥(¥)<0 for all

X #0eQ,then F(X) 1s called negarive definite on 1.
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3. Let ¥(X) be a scalar function such that ¥(0)=0,¥(Xx)20 for all
X = 0eQ,then V(.X) is called positive semi definite on Q.
4. Let ¥{X) be a scalar function such that ¥(0) =0, F (X} <0 for all

X =00, then ¥(.Y) is called negative semi definite on Q.

Example (3.1):
The function V(X)=x' +x! is positive definite on R*, but the function

V(X)) = x} is positive semi definite on R’

Definition (3.2):

The derivative of the function ¥ (X'} with respect to the system,

X _rexy, 3.1
o

where X = (x,. x;. .., x,) € R" is denoted by ¥’ (X ), and defined as

VX)) = grad V(X). F(X),

or
. gy av gy
F{Xy= \ N Y PO
(x) {ﬂ.rl dx, a,l.") SARE 2
. av g ay
P = — it fy 4 A —  fo,
X, 8, dx

or by the chain rule

. {v od _ -
V{X):f-l=a1 dt,+av dr2+“m+at dxn.
dt dx, dr  dx, dt dx, dt

:r
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Definition (3.3):

A scalar function ¥ (X)e Q2 is called Liapunov function for the system
(3.1)if v ¢ X )satfies:

i) YV { X )is positive definite on £,

. av ey dv . .
i) —.,—.....—— ,existsand continuous on O,
dx, dx, dx,

1ii) {f—l Is negative semi definite on Q.
il

Theorem (3.1) [3]:

[f there exists a Liapunov function ¥ (x, , x,) for the system.

dx,

F:F{x,,x:],
(3.2)
71 =Q{x.,x),

on €, then the critical point {0,0)of the system (3.2) is stuble,

Theorem (3.2) [3]:
If there exists a Liapunov function ¥ (x,,x,) for the system (3.2) on ©, and

%5-,3 <0 for points out side of a neighborhood of (0,0} (denoted by

N{0,0)), then the critical point (0,0) of the system (3.2) is asymprotically

stable.

Proof:

Stnce v (x,, x,} is define function, and bounded below by zero.

slimv{x, x,) exists.

== -

Let

imy (x,x,)=L.

(LT
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Case (i):-
L=0 :lim (x () x () =0=v(0,0).
This implies that (x,().x,{) tends to (0,0)as ¢ tends to infinity.
.. by definition (2.1.5) the critical point (0,0)of the system (3.2) 15
t

asymptotically stable.

Case (ii):-

L<0.
Since v(x,,x,) is positive definite.

This implies that this case is not possible .

Case {il

>0 we have

limv(x, ,x,)=L>0.
-t

This implies that trajectory {x, (1), x,(1)) it can not be inside N{0,0).

%S -p <0
'J-dbirj-ﬂtﬂ
0 ]

v (1) 50 -v(5(0), 5(0)) s - 81-0).
s {x ) () 2 vi(x (0), x (0)) - Br.

This implies that v (x, (1), 5 (1))< 0 for all r24,.
But it is a contradiction,
~. L must be equal zero.

-, The critical point (0,0)of the system (3.2) is asymptotically stable.

50



Example (3.2):

Consider the differential equation

Mt r=0,

!

The Liapunov function is v (x,x,)=x" + x!, and the crtical point (0,0) is

. . . e
stable, but it 1s not asympotically stable, since {;-;— =-x] 20,
t

Example (3.3):

Consider the systein

The Liapunov function is:
Yix ,x,Y=x> +xi.
The cntical point (0,0)of the system 15 asympiotically stable.

Example (3.4) [3]:

Consider the differential eguation

o x o x o
F+f[r}z+£(x)—ﬂ, (3.3)

where f({x) and g(x)are continuous function on the given inlerval,
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The differential equation (3.3) is called Lienard differential eguation

which 1s equivalent to the system.

/
Ty - F),
) (3.4)
2y _ .
’r g{x),
where F(x)= Tf{s) ds. Since X2 8Y_ ey @ and F ()= f(x)
5 drt  dt dr’

3y idx
therefore &= = — - —
P g(x) - fix) e

and we have %"— + f(x, )? + g(x)=0 whichis equation (3.3).
i 4

The point (x,y)=(0.0) is the only critical point of the system (3.4) if

The Liapunov function for the system (3.4) is

V{x,»)= BRI &ix),

2
2

I

where G(.r]:jg(s)dﬁ, Fix,»)>0 for all {(x,3)=0, and F{x,}) is

¢

positive definite, this implies that _[g(s] ds> 0, then g(x)> 0 and x>0 or
o

g{x)<0and x<0 thisimplies that xg(x)>0forall x = 0.

!
Therefore V(x,y) = :‘2—+ G (x)is positive definite provided xg(x)>0.

Now, we shall compuie



dv__ﬁv e Av d_}

dr 6x di 8y di’

-f%:g{x] {y=-F{x))+pr(-g(x)).
§=—F(x} g(x). '

We require to be F(x)gi(x)>0, this implies that xg(x)>0 or
xF(x)=0.
Therefore the critical point of the system (3.4} is asymptotically stable

provided £(0) =0, xf(x)>0and x g(x)> 0.

Now we shall consider some methods to construct a Ligpusov function for

sonle linear systems.

Theorem {3.3) [2]:

A scalar function

F(X)=XTBY = 3 b x, x,, (3.5)

1, 4=1

is called @ guadratic form with the real (nxn) symmetric matrnx

B=(h,1=(b,), i, i=1L2 ..n.

2

I'(X) is positive definite it and only if for the matrix B = (&)

! ‘F’u bln

b“'l ‘I}r' j;‘n
det{f) = der| | . =0,

bnl bn: bﬂ
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Consider the autonomaous system
X' =F(X), (3.6)

where F:R" > R",F(0)=o0for X =0 in N(0,0), and F(X) Iis

differentiable with respect to x..

Definition (3.4):

The real symmetric #xn matrix B is said to be
{1)  Positive definite if the quadratic from X7 BX is positive definite.

(1)  Negative definite if — B is positive definite.

Definition (3.5);

The Jacobian matrix of the system {3.6) is define by

oty 84 0/,

dx,  dux, ax,

ar |8 3L | 24
SX)=25 = 8x 8, 0%, |
| 6x, 0Ox, dx, |

Theorem (3.4) [2]:
Consider a matrix M (X)) =J7 (X)) + J(X), where JT (X)is the transpose
of J(X), and define a Ligpunov function for the system (3.6} by

Y(X)=FT(X)YF(X).

34



IT a matrix Af {x) is negative definile in N {0,0), then the critical point

{0,0) of the system (3.0) is asympiotically stable.

Proof:
F{X)=FT(X) - F(X) ‘
P (XY= FI{X). 1. F(X)
o V(XY 1s positive definite m & (0,0), where [ 1s tl;u: ideptity .
matrix.
;;T and -:_;“ are exists and continuous on Q¢ R”.
SFX)=(FXYY L F(X) + FI(X). F(Xx).

Since (F _oF dX _ J(XYF(X).

dt  8Xx  di

Therefore P (XY= FT(X)JTUX)F(X)+ FT(X) J(X)F(X).
(XY= FT(X)(F (X)) + J(X)) F(X).
FUXY=FI{X)YM(X) F(X).

We require A (X) to be negative.

. 'The critical point (0, 0) of the system (3.0) is asymptorically stable,

This theorem is called Krasovskii's method, and it is not true for the a-th

{rh

order {# 2 2) differential equation x'™ + g (x, 3", ..., ") =0.

Example (3.5):

Determine the stability of the zero solution of
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For this system, X = [ :' 1 F(X)= [ﬁ?” :

Where fix)=-x,

filxy=x —x, - x5,
Thercfore,

-1 0
Jm:[ 1 —1—3.&]’

and hence

M () -2 !
X]= .
f 1 —2-622)

Since M (x) 1s negative definite for all x e R?, krasovskii’s method ensures

that the zero solution of the given svstem is asymptotically stable.
Now we shall construct a Ligpunov function for some linear system with

consiant coefficients.

Definition (3.6):
Two matrices 4 and B are satd to be similar if these exists an invertible

matrix T suchthat A =7 BT.

Theorem (3.5) |2:

Sinular matrices have the same characteristic polynomials,



Theorem (3.6) [2]:
If the eigenvealues of the matrix A4 are real and distinct, then there exists

an invertible matrix T such thal

A 0 0 0 ] !
0 4 O 0

THAT=|0 0 A4 0
0 0 0 A |

Remark:

‘The linear autonomous syslent

X _ax. (3.7)

where X Is an n-vector, A is nxa constant matrix, and it has real and
distinct eigemvalies can be transformed by x =7Y, (where Tis a real

constant non singular matnx) to the system

d ¥

“X oy, 3.8

p (3.8)
where D=T"4T.

Definition {3.7h
Let u.v be vectors in R", the function <w,v> defined by <u,v>=r"v is

called an imner product on R”.
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Theorem (3.7):

Let the matrix 4 of the system (3.7) be stable and its eigenvalues are real,

distinct, and negative.

Let ¥V(¥)=<F, BY>, \

(3.9)

be the Ligpmmoy function for the system (3.8}, where is a real sxn conslant

symmetric matrix, then

—— 0 0 - 0
24
o ~Lg. 0
8= 24, > 0,
-]
D 0 0 —_
I 24, ]

and Liapunoy function 1n (3.9) 1s given by

-] 2

- -1 .
J “):_FH = ¥ = e

7
=

24,

Proof:

2 Fu:

Since 4., 4,,..., 4, are negative this implies that all the diagonal elements

of 1) are negative therefore the system ¥’ = DY is asymptotically stable,

where D =747,

Since V(¥)=<F. BY »

L v (FP)Y=F¥T BY s positive definite.
The matrix £ must be positive.
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V' (¥y=Y"BY+ ¥ BY',
F'(Y)y=<)Y" .BY >+ <Y, BY >,
V*{¥Y)=< DY ,BY >+ <}t,BD¥>,
V' (¥Y)= ¥ DT BY + YT BDY,
V' (¥Yy=Y" (DB + 8D) <0,

We require ¥ (¥) < 0, this implies that

D'B+ BD=-1,and we get

;f- N 0
24,
0 =L o 0
= 24,
0 ¢ 0 —'i
24,

Since 4, 4,, ..., 2, are negative,

Therefore B>0 and F(¥y=Y"BY =) b, » ¥;.

f. jml

] 1 1
£ - T S —_— 1
F{Y) 27 ¥ 2, o= e >3 Yo

Example (3.6):

. . adaX
Construct a Ligpunov funcuion for — = 4 X,

di
where,
0 ] 0
A=| 0 0 1 |. (3.10)
-12 =20 -9 .

The characteristic equation det (4-4i7)=0 has roots 7 =-1, 2 =-2, and

4, =—6. Then, it follows that
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Therefore,

! 1 1
f=l-1 -2 =-6].
1 4 36

[t can be easily shown that

The transformation X = T'¥ reduces (3.10) to

dy

. =p¥ 3.11

= pv, (3.11)
where D=T"AT.

To find a Liapunov function for system (3.11), we leok for a matrix 8 such

that
D'R+BD=-1,weget

& by e—
o
o

=

G
12

e -

Thus, the Liapunov function for (3.11) is

1 1 . 1 .
F{¥y=<l, BYo== 3t + =33 + —7¥i.
{¥) z.h 4.3: 12,}3

To get a Liapunov function for (3.10), we transform variable ¥ back into

the variable X.
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