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INTRODUCTION

In many application there is a need for efficient methods of data
tiltering even if then is no any preassumed geometrical structure in the
set of {condition} attributes on the basis of which the decisions should be
taken.

This situation ofien occurs when experimental data are recorded
in declision tables. The problem arises of providing a frame work for data
filiering based on non-geometric wdea.

In this study we will see who 10 extract from local relations
among data some near-to-functional relations. From these relations we
get the so called approximation functions. in this study we will see a
special mechanism for applving of these approximation functions to data
in order to produce their appropriate filtration.

The thesis is divided to four chapters, chapter zero which gives
some concepts in knowledge theory. Chapter one which gives some
concepts in rough set theory, Chapler twe which gives some concepis in
information svstern. Chapter three which presents some ideas related to
data ftiltration based on rough set approach. Chapler four concerns with

mathematical morphology.



Abstract

We study a method called analytical morphology for data filtering.
The method was created on the basis of some ideas of rough set
theory and mathematical morphology. Mathematical merphology
makes on essential use of geometric structure of objects.

While the aim of the introduced method in to provide tools for data
filtering where is no directly available geometric structure in the set

of data.
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CHAPTER ZLERO

Back Ground Material

Knowledge theory0.1

We present here a concise intrcduction, based on literature
to the notation of knowledge, our approach in that of rough set
theory as proposed in [B).

Introduction

Knowledge theory has a long and rich history for

understanding, representing, and manipulating knowledge. There
is a variety of opinions and approaches in this area.
One can understand knowledge as a body of an infoarmation about
some parts of reality, which form the domain of interest. But this
definition fails to meet precision standards and on cleser inspection
has multiple meaning tending to mean one of several things
depending on the context and the area of interest.

We well give the formal definition of term " knowledge "

proposed by Pawlak (6] and some of its basic properties.
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The concept of knowledge presented here is general enough to
cover various understanding of this concept in the current
iterature.

We advocate here a rough set concept as a theoretical

fromwork for discussion about knowledge .

Definition 0.1.1

Let &/ be a set of objects we are interested in such that

{ U} 21 {the universe).

Definition 0.1.2

Any subset X £ U/ of the universe will be called (a concept or
a category) in I/

Definition 0.1.3

Any family {\:}a of concepts in U will be referred to as an

abstract knowledge ( or in a short knowledge ). For fermal reason
we can also admit the null set & as a category.

Definition 0.1.4

Any knowledge {}{f} " of a certain universe ¢/ such that

XiclU, X=@ XiNXj=0 for i=] j=1 2,...n
And U, = ¢/ will form a partition of ¢/ and will be called a

classification of {/. Since we usually deal, not with a single

classification.
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But with some families of classifications over &/ | we will
submit the following definition.
Definition 0.1.5

Any family {C;}., of classification over U/, will be called a
knowledge base over U. thus knowledge base represents a variety
of basic classification skills {e.g. according to color, shape and
size} of an "intelligent” agent or group of agents (e.g. cars, toys).

Now since the concept of classification (partitions) and
equivalence relation are mutually interchangeable and relation are
easier to deal, with we will aften use equivalence relations. Let us

now give some necessary definition using equivalence relations.

Definition 0.1.6

1. U/R={]y1r:y e U}isthat family of all equivalence classes
of the equivalence relation R. i.e /R is a classification of U/
and [ y Jr ( the equivalence class of ¥ ) is a concept or a
category in K containing y € {/.

2. Let U be auniverse such that =| U] 2 1.
let R = { R: R is an equivalence refation on U }. Then we

define a relation system K= (U, R) as a knowledge base.
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Proposition 0.1.1

fIP c /R, /P« @, where /IR is a family of equivalence

M

relations over a non-empty finite universe U, then R e/R

R is
( an equivalence relation) and denoted by IND(/P)

Le. IND(IP) = RQ,I, /P, and we call it an indiscrnibility relation

over P.
Moreover,
[ ]rNDfF‘_! = ﬂReP[ %R

Proof

1. Reflexivity - since vV RelP(y, 1) e R,

(rxye N R

Resl
2. Symmetry : {yy) e 1 /Pimplies {3y . v) e Rforall R e /P,
But each R is symmetricso(yy) e R
Forall Re /P ie (yx) e N /P
3. Transitivity : let {x,y), (v, z) e /P which implies

¥ R e Py, ¥)({y 2z) e R buteach
R is transitive, therefore {4, y) e ) /P

Definition 0.1.7
1. The family U/ND{/P) will be called the P-basic knowledge

about /in K= (U/1P).




2. Equivalence classes of IND{/P} are called basic concepts

(categories) of knowledge /P.
In particular if Qe/R, then Q will be calied a Q - elementary
knowledge ( about U/ in K), and equivalence classes of Q are
referred to as Q - elementary concepts of knowledge /R .
3.  We define the minimal set of all equivalence relations
defined in K, to be
IND(K) = {IND{/FP} . ¢ 2 IPC IR}
Example 0.1.1
Let &= { %1 x2 %3 74, #s5}
Where y, is a student in Tahddi university at Libya, for each i =
L IR 5. these students have different sex, nationality and
specialty. Suppose U is a classification according to sex,

nationality and specialty for example as shown below

%1 %3, x5 female ™) According to sex
o
x2. K, male
—
w1, X3 Polish M
According to nationality

¥z, ¥4 Libyan j
15 German
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¥1 . ¥z mathematics

43 physics According to specialty

“a Y5 Cchemistry
By these three classification we define three equivalence
relation R;, Ry R respectively having the following equivalence

classes .

UIFF-’1 = { {]f_h X3, ?,5} 1 {):2 ?4}}
UIRz = { fanva ). {nz 2e) {xs} }

UIRs = { {x1 22} (o) (s, 75} }
These are elementary concepts in the knowledge base
K={U . {R R Ry})
Examples of basic concepts
{23 xsh O { o, 2ad = Lo, 3
This set is { Ry, R, }- basic concept female and Polish. The set
(o 2 2t (1 (e e D) o 22} = (o}
Is { R4, Rz, K3 } - basic category female, Polish and mathematics.

Definition (0.1.8
1. LetK= (U, /P)and K' = (U, Q) be two knowledge bases.

We will say that K and K’ {/# and Q) are equivalent, denoted

K=K, {{P=Q),if INDIP)=INDIQ) or UIP=UIQ




2. Let K= (U /P)and K = (U,Q) be two knowledge bases. if

IND{IP) < IND(Q},

We say that knowledge /P ( knowledge base K) is finer than

knowledge Q ( knowledge base K ) or Q is coarser than P.
3. We will say that if /P 1s finer than Q then /P is a specialization

of Q and Q is a generalization of /P.

Example 0.1.2

Let U= {11, %2 %3, Ya, ¥sh, let

Ri = {ixe 2o Cra n2) Cois xah Cxa 7ah (s 7s),

{ L1 xz}r ( L2 ?.'.I)- ( £ xd-}l ( L4 }:3) }

Re={ G 250 (oo 220, (3 o) Can 2a)s (s, xs)s {0, 230,

(730 700 Crzoxad Corn 2200720 a3 (oa 72), (s 750 { s, 74)

Ry= { G 2od (ot 22) Come xade (70 2a)s (20 %50 (31, Xs),

(s b Cxn 72) O 000 s 22) {2, s} )

Ra= { Gore g d Cxan xzds s xad Cra e Cass s (2 13,

(o3 % (x2 %s) (s 2) }

Rs= { (210 K1), CHas #2d (a0 73h Cxes 2ads Qs ws), Cxz, 2a),

( 23, 72) }




(720 Cran Za) Cose 2)Cotn ad (e a)s (onz, 2a),

( %z %2 220 7ah Cxa 2) Cran xad (e ¥3) }

Rr={ (s 200, (o2 720 (2 2)h (e %s), (s 25X Lae 2ad (Ya 1),

(720 750 {450 7200 22, 73), Cxan 220 25, %), (230 7s) }

UIRy = { {3, 7b. {2, 24} (s} }
UIRy = {{ 1. 23l 72, 76, 75} }
UIRy = { { 74 72, 78}, (%3} {a }}
UIRs = {{ 11, 23h{ 12, 76}, {2 }}
UIRs = {{un 1 2, b (e ), s 3
UIRs = { {1 72, %3 7 b fs 1}

UiRy = {{ %1, Lap { 22, sk {¥a }}
Now take
iP={Ry, Rs. Ra , Ry} and Q= {Rs Rs 7 )

JI'ND.[:I,I’P): R1 ﬂ Rzﬂ Rg ﬂ R.;

= {0 1) Otz 12), G xa), (a0, (s %s)}




IND(Q)= Rs N Rs [ Ry

= {0z x2). Cra 7a) Cxan 2a), (s 2l 22, 79)

(73, 72) }

It is clear that IND{IP) c IND{Q)
Therefore /P 15 a specialization of Q or Q is a generalization

of /P.

Boolean Algebra 0.2

Definition 0.2.1

A Boolean Algebra is a set B together with two binary

operations Vv and A on B such that each of the following axioms is

satisfied { for all a,b,ceB ) :

B, . commutative [aws .
avb = bva | anb = bAa,
B, . associative laws .
avibv ¢) = (avb)vc , aA(bAc) = ( aAb)Ac,
By . distributive laws .
an(bve) = (aabiv{aac), avi(bAac) = { avbia(ave),

B. . existence of zero and unity there are element 0 and 1 in B

such that

t
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Bs . existence of complements .

for each a in B there is an element & in B such that

ava =1, and

Theorem 0.2.1

ana =0,

If B Is a Boolean algebra and a,b,ceB.then:

1. ava =a,
2, avl =1,
3. av{anb) = a,
proof :
1. a=av)
= aviana’)
={ava)Aa{ava’)
={ava) A
=(ava)
and
a=ani
=an {ava’)
=(ana) v{ana')
={arna)v0

={aAa)

aAg

asd

aA{avh) = g,

10

arwdeman
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2. avil= (avi) Al B,
=(avi)Aafava} Bs
=av (1Aaa’) Bj
= ava’ B,
= 1 Bs

and
anl= (aAn0)vD B,
= (anl) v { ana’) Bs
=aAn (0va’) B,
= ana B4
=0 Bs
3. av(aab)= (aA1) V (anb) B,
= aAn{1v b) B3
= an 1 (2)
=a By
and
an{ avb)= {avl) A {avb) B,
= av {0Ab) B
= av 0 (2)
=a B.

Remark 0.2.1

The laws ( 1 ) and { 2 ) of the above theorem colled

respectively the idempotent and absorption laws .

P T S P . e e

i1
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Definition 0.2.2
Any expression as ava, avb’, [ aAa(bve’) } v [ a AB AC)
consisting of combinations by v and A of a finite number of

elements of a Boolean algebra B will be called a Boolean

function { .

Definition 0.2.3

An implicant of a Boolean function | is any conjunction of
variables, and a prime implicant is a minimal implicant .

Example 0.2.1

assume that two Boolean function {; and {; are defined to be
fi=(avbvc)A{avb)and {;=(avbve)A (avd)

The laws of a Boolean algebra can be used to simplify this

expression as follows :

{1 ={avbvc)a(avb)

= [ an{avb)] VIbA(@Vb)]V] cA(avb)]

= avibA(bva)) VicA(bva)l

= avbv[{cAablV (cAal

=avbvibAac)v{(aAac)
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= { avb}Vv( anc)
= { bva)v{aacl=bv{awv({anc))

= bwva = avb

and

{>=(avbveiafavd)
= [ aA(avd)] V[bA{avd)V] cA(avb)]
= aV[(bAa)V{bad)] VcA{avd)]
=av [{aab}v {bAd) VI caa)v{cAad)]
= [ av(aAb)V( bAGV[( ¢ A a W{ cAd)]
= avi( bAdWV( anc)l V ( cAd)
= [av(anc)]V { bAd) v({ cAd )

= av( bad)v ( cAd)
Hence, there are two and three prime implicants to the

functions {; and {; respectively , namely :

p-imp (f1)=1{ {a},{b} }and

pimp (f2)={ {a},{bd}{cd} }.

13




Chapter one
Rough Sety

Imprecise categories
Approximations and rough sets

Introduction

We introduce the idea of rough sets in order to use it as an
approach for defining approximately some categories (subsets of
the finite universe U}, which may not be defined in a give
knowledge base.

[n other words, we want {0 address here the central point of
the approach, the vague categories, the idea of the rough set was
proposed by Pawlak [ 0]

Rough sets 1.1

Definition 1.1.1

Let V' c &/, and R be an equivalence relation then we say
that X is R-definable { or R-exact set), if X is the union of some
R-kasic categones, otherwise X is R-undefinable (or R-inexact , or
R-rough set).

Approximation of set 1.2

Definition 1.2.1

Let &/ be a universe , .\'be a concept { category}, K = (U, R)

be relation system and 8 ¢ IND(K) then we define :




Bx=U{lxle:[xdsnX=d}
The former set is the B-lower approximation of X" and the

latter set is the B-upper approximation of X.

Notice that . BV ¢ X ¢ B X and this double inclusion provides a

description of A"in terms 8.

£23] The set x

] The B-lower Approximation of X

' 1 The B-Upper Approximation of X

Definition 1.2.2
The set BN (X )= BX-BX will be called the B-boundary

of X.

LI LY TEES P R L. .. s TR WY TR
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[ < e e

Remark 1.2.1

The set BX is the set of all elements from {f which can be

with certainty classified as elements of X in the knowledge R.

The set B X is the set of all elements from U/ which can be possibly
classified as elements of X, employing knowledge K. The set
BNg {X) is the set of elements which cannot be classified either to

X or -X having knowledge R.

Definition 1.2.3
POSg { X ) =BX |, B- positive region of X.

The positive region POSg { X ) or the lower approximation of X is
the collection of those objects which can be classified with full

certainty as members of the set X, using knowlaedge R .

Definition 1.2.4

NEGg(X) = U - BX , B- negative region of X.
The negative region NEGg{X) is the collection of objects with which
It can be determined with out any ambiguity employing knowledge
R. that they, do not belong to the set X, that is the belong to the

complement of X,

Proposition 1.2.1

1. X is R- definable (exact) iff BX = BX

2. Xisrough withrespectto B ifi BX = BX

ji

16
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Proof {2)
Follows from 1  and X is the exacl iff

X=U{lzle: Xe U} <@  X={yeU:[ylscX}
& X={yel [xle N X= [x]s}

N X=BX=8X

Example (4) 1.2.1

Assume the knowledge base k= (U.R), where U ={y,v2....7s}
and the equivalence refation RelND{(k) with the following

equivalence classes.

Ev={21 2e 78}
Ea={72 %5 77}
€3 = {43}
Ea={ s}

And we have these three sets

Xo= {20 %a us}

Xz ={%a 15}

X3 = {73 ¥e %a}

BXy=d = POSs (X)

BX; = CiUEy = {1, Y2 %o %5 %7, %o )

BNg (X0 =Ly UG = {1, 12, 74, ¥s5. %7, %8}

NEGs(X1} = E; UE, = { ¥3. 18}

17



BXo =13 UE;={ 2 %3 s 77}

BNg (X2) = Lo = { %2, ¥s 17}

NEGg(Xz) = Ey UEy={ %1, ¥4 76, ¥a)

BXa=E; UE:={ 13 s}
BX; =1 UL, UBs={ 11 %3 Ya %6 . %o}

BNg {X3) = 1 = { 31, %a, 73}

NEGg (Xa) = E;={ %2 ¥5. ¥7.}

I'ropertices ol approximation L3

Proposition 1.3.1

1.

2.

10.

11.

BXc X< BX

1l
1

Bo=® , BU= BU =U

|3

@
B(NUY)=BXUBY
B(XNY)=BXNBY

XcY  implies BXcBY
XcY implies BX - BY
B(XUY)=2BXUBY

B(NXNY)cBXN BY




BEX = B BX=BX

Proof :

1a)

1b)

2a)

2b)

Ify € BX then[y]c X , But ¥ g[y]

Hence y & Xand BXc X

If v e X, thenfz] (1 X= & , (because y € [y] N X)

Hence y € BX and X c BX

Bd = o

From {1} B &> < & and ¢ ¢ B4 (because the empty set is a
subset of every set

Thus B & = ¢

Assume B® i @ , Then there exists ¥ such that y ¢ B
Hence [x](Nd = & | but [;] Nd = 4 , which contradicts the
assumption, thus Bd=a.

From (1) BU ¢ U, now let y €U/, then [¥] ¢ U ., hence
v e B U thus BU = {7

From (1} BU o U/, and clearly BU c U, thus BU = U.

vy e B(XUY)IUF[X]N (X UY)# D iff

FINXUBIN Y= iff  [¢]N X= ¢ OR

Y= il yeBX OR zeBY il 4 e BXUBY:

19
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Thus B(X UY)=BXUBY.
LeBXNY)IT FIeXNY M [leXAlzlcY

iff y e BXNBY.

5) Because X Y ifl' X1 Y =X, then by (4) we have

8)

9}

10)

11a)

B{(XMNY)=BX ift BX N BY =BX which implies that
BXcBY

Because X Y il XU Y=Y hence B(X U Y)=BY and
by (3) we have BX UB Y =B Y and hence BX< B Y

since XcXUYumud Yo XU Y, wehiwve BXcB(XUY)
and BY < BB (X U Yiwhich implies that BX U BY < B{X U Y).
since XN YeX and XN YeY,wehave B (XM Y)c BX
and B (X 1 Y)c BY henee B (X N Y)c BX N BY.

1€ BX 0l [x]eX iff [x] N X =6 iff y & B(X%)

iff ve [(B(X®)] . hence B X =( B(X°)YF.

we substitute X< for X in {9 ) We get BX ( B X°)°.

From (1 )BBN c BX | thus we have to show BX = BBX .

If y € BX then [7]) € X hence Bly] € BX But B[¢] = [x] , Thus

[v]= BX andy € BBX ,thatis BX ¢ BRX .

20
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i1b) From ( 1 ) again ﬂ‘( c B3X . Thus it is enough to show that
BX 5 BBX .if y € BBX.then[3] N BX = ¢, i.e. there exists
¥ €[r].5TyeBX hence [y]c X, But [y [=[v]
Thus [z )< X and y e BX , which implies that BN o BBX .
12a) From ( | ) BX c BBX . we have to show , that BX SBBX .
That BX = BBX .if ye BBX . then ¥ N BX =¢ and for some
ve [¥].ve BX . hence [¥INX=¢But [z ]= |v],thus
[ ]NX#¢ ie yxeBX,which implies that BX 5 BB X.
12b) From (1} B BX < BX . we have to show , that BBX o BX .
if v e BX then [x] N X 24 enee [3] € BX { because if ye [y],
then [¥]NX=[x]NX=p ic ye BX y and & BBX , which
gives EE’EX QE}-{.

Reduction of knowledge 1.4

(Two fundamental concepts) - a reduct and core - are
considered in connection with knowledge reduction. A reduct of
knowledge is its essential part, which suffices to define all basic
concepts occurring in the considered knowledge where as the core

is the common part of all reducsts i.e. in certain sense the core is

the most important part [8].

21



CHAPTER ONE: ROUGH SETS

Definition 1.4.1

Let R = {B,} be a family of equivalence relation . We say that

B.eR for some « is dispersible in R if ;

IND(R) = IND (R- {B } )
Otherwise B, is indispensable in R. the family R is independent if
B, for each « is indispensable in R ; otherwise R is dependent.

Definition 1.4.2

Let A and B be families of equivalence relation such that
A < B, then Ais a reduct of B, if A is independent and
IND(A) = IND(B)
The set of all reducts in A Is denoted by RED(A),

Definition 1.4.3

The set of all indispensable relation in B will be called the
core of B, and will be denoted by CORE (B) i.e
CORE(B} = { B.B is indispensable in B}

Proposition 1.4.1
If R is independent and /P ¢ /R, then /P is also independent

Proof :

The proof is by contradiction. Suppose /P ¢ IR and /P is

dependent , then there exists S < /P such that IND(S) = IND{IR)
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e s —

P I V. v = iy g iyigpyiey

which implies IND(S U{(/R -/P} = IND{/R} and SU{/R -I1P) c IR,
hence /K is dependent, which is a contradiction.,

Proposition 1.4.2
CORE{A) =N RED(A)

Where Red(A) = { B:B is a reduct of A}.

Proof .

If B is areduct of Aand R e A-B,
Then IND(A)=IND (B}, and Bc A-{R}.
Note that , if A,B,R are sets of equivalence relation,
IND(A)=IND (B}, andBcRcA,then
IND (B) = IND {R)
Assuming that R= A-{R} we conclude that R ¢ CORE (A}, and
CORE(A)c N {B:Be RED{A))
Now suppose R ¢ CORE (A) ie. IND{A}=IND(A-{R})
Which implies that there exists an independent subset Cc A-{R}

such that

IND{C) = IND (A-{R})
ltisclearthatCisareductofAand R £ C

This shows that

CORE(A) o N {B:B e RED (A)}.
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Example 1.4.1
Suppose we are given a family /1R = { P, Q R } of

equivalence relations P, Q and R with the following equivalence

classes:

% = {{71 2a 75t L3} {72 x8h (s 17} }
% = { {73 ash {xe b {2 240 27 28} }

%: { {xh;rj},{xﬁ}.{}:zn i1 :{ﬁ}n {13! }14}}

Thus the relation {ND{/R) has the equivalence classes
%m(m; ={ {unast {rz e {usd {ad {2} )}

The relation P is indispensable in R | since

%ﬂ-’f_@“!ﬂ-{ﬁ})z{{ xa. dshd xa x7 e b vah{ a4 b { %o }}ﬁ IND{/R)
Far relation Q we have

%ND{Qf{{ xo 2sh{ r2, 7zeh A na W xa b (v b {7 3} = %\_@{m}

Thus the relation Q is dispensable in /R.

Similarly for the relation /R

%ND(,J’R-{R;f{{Ih xoh {2 2eh{zah (2a Lizeh{xt} = %\’D{IR)

Hence the relation R is also dispensable in /R.
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check whether pairs of relation P,Q and P,R are independent or

not.
U u
Because /ND(gP_Q}) # A\?D(Q}
U
and Vinowe.ay® Yinoee)

Hence the relation P and Q are independent, and consequently
{P.Q} is a reduct of R, proceeding in the same way we find {P, R}
Is also a reduct of R. thus there are two reducts of the family R,

namely {F,Q} and {P.R} and {P,Q} N{FP,R} = {F} is the core of IR.

Relative reducts and relative core of knowledge and categories 1.5

In this section we give the generalization of the concepts of a
reduct and a core. To do this we need first to define the concepts
of the positive region of a classification with respect to another

classification.

Definition 1.5.1

1. Let /A and /8 be two equivalence relations over U |, then the

set

POS (18)= U, (A X)

This set will be understand as the /A-positive region of /8.




Let /A and /B be two families of eguivalence relations over

the universe {/ . then A = /A is B- dispensable in /A if

PO Sy (IND(IB)) = POSinpeanayy (IND(IB))

Otherwise A is /B- indispensable in /A,

If v A e /A is /B- indispensable, then we say that /A is

/B-independent {or /A is independent with respect to /8).

the family C < fA, is called a /B-reduct of /A, iff C is a /8

independent subfamily of A and POS¢ (/B) = POS, {/B)

the set of all /B- indispensable elementary relation in /A will

be called the /B-Core of /A | and denoted by : COREg(/A}

letF ={xx2, ... . Xp}whereeach Xjc UandletY ¢ /.

1 Fc Y. then

1) Xiis Y —dispensable n 1 F,if N (F- {X}c Y.

otherwise the set X;is Y — indispensable in () F .

lt) The family F is Y- independent in () F if all of its
Components are Y- indispensable in 1 F . otherwise F
is Y—dependent in (F .

I} The family K F is a reduct of N F , if K is Y-

indispensablein M Fand NK cY.
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V) The family of all Y- indispensable sets in {1 F will be

called the Y-Core of F , and will be denoted by :
CORELF)
We will also say that a Y-reduct { Y- Core ) is a relative reduct

{ core ) with respectto Y .

Proposition 1.5.1
[} COREg(A) = MREDg(A).

[} CORE(F )= MNRED (F).

[y COREWF) = MREDJF).

Proof:

The proof of (1}, (1l yand { Ill } is a Copy of The proof of

proposition { 1.4.2 )
Dependencies in khowledge base 1.5

If knowledge Q is derivable from knowledge /P , If all
elementary categories of Q can be define in term of some
elementary categories of knowledge /P. And we say that Q is

depends on /P . And can be written in the form /P = Q

Dependency of knowledge .

Formally , the dependency can be defined as shown below
Let K= { U, R } be a knowledge base and let P.Q c R.

1. knowledge @ depends on knowledge P iff

L ... _ . - Ca o - iyt L a - oo
S
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IND{P ) IND(Q).
2. knowledge P and Q are equivalent , denoted as

p=Qiff P=Q and Qo P.

3. knowledge P and Q are independent , denoted as

p # Qiff neither P ©Q nor Q = P hold .

Cbviously p=Q iff IND(P)=IND{(Q).
The following example will demonstrate the definition of

dependency .

Example 1.5.1

Suppose we are given knowledge, P and Q with the following

partitions .

Up= {115} {28, {3}.{4},{6}.{7}} and

Uh=1{(15).12.7.8) 3,46 }

Hence IND (P ) IND { Q ) and onseguently
P=Q

Partial Dependency of knowledge 1.6

The partial derivability can be defined using the notion of the
positive region of knowledge .

We will define the partial derivability formally .
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— — i —— — . = e b S ——

ey e el o - i e raa

Let K = (U//R) be the Kk

nowledge base and P, Q, ¢ /R. we say
that knowledge Q depends in a degree K ( 0 K < 1) from
knowiedge P.

Symbolically P=¢ Q, if

cardPos {Q)
o N p
K= vl [ card U ]

Where card denotes cardinality of the set

It (K = 1). we will say that Q totally depends from P
1f ( 0< K < 1) . we say that Q roughly (parially} depends from P, if
( K=0) we say that Q1s totallv independent from P.

Example 1.6.1

Compute the degree of dependency of knowledge Q from

knowledge P, where the corresponding partitions are the following

%z{x1, Xo Xa. Xo . Xs} and

%z{ Y1 Ya Y3 Ys, Vs Yl

Xi={ 13X, = {27}, X3 = {3.68} , X4 = {4}, Xs= {5,8} and
Yi={1.5}, Yz={2.8}, Ya={3}, Ya:={4)}, Y5 {6}, Y& = {7}
Because P X,=@ , P X;=Ys, PX3=Y:UYs,

PXa=Y, and PXs=@ thus
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POSH(Q) = Y; UY, U Ys U Y, ={34,6,7}. That is to say that only

these elements can be classified into blocks of the paitition %

employing the knowledge P .

Hence the degree of dependency between Q and P is
_ _4/ _
kwxp{Q]-é—D.S

Knowledge Representation 1.7

Introduction

The issue of knowledge representation is of a primary
Importance in current research in Al and variety of approaches.
Our major concern in this section is to discuss the issue of
knowledge representation in the framework of concept infroduced
so far | i.e knowledge understood as partition (classification), which
can be viewed as semantic definition of knowledge .

A data table will be called knowledge representation system
(KR - system or KRS) (Sometimes also called knowledge

information system or attribute — value system).

Definition 1.7.1

The knowledge representation system can be perceived as @
data table, column of which are labelled by attributes, rows are
labelled by objects (states, processes, ....etc) and each row

represents a piece of information about the corresponding object.




Example 1.7.1

In this example a characterization of animals in terms of size,

Animality and color .

Kinds Size Animality color
A, Small Bear Black
A, Medium Bear Black
A, Large Dog Brown
A, Small Cat Black
A, Medium Horse Black
A Large horse Black
A, Large horse Brown
" Objects in the system are kinds A; , ... A, and attributes are

size, animality and color.
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Information systems

Information systems 2.1

An information system can be reviewed as a description of
a knowledge base, sometimes the information system is called
data tables, attribute-value system table, knowledge representation
system etc. the notation of information system presented here is

taken from [6].

Definition 2.1.1

Formally, a knowledge representation system can be
formulated as follows

Knowledge representation system (information system) is a
pair fA = (UA) , where
U = 1s a nonempty, finite set called the universe.
A- is a nonempty, finite set of attributes. Each attribute acA is a
function a: U= ¥V, Where I, is the set of values of a.
Hence, the expression a(y) denotes the value of attribute for a

object yel/.




ai aj am
%1 a1(ys) Amly1}
% a,(xi) Am{1)
in Am(in}

TaBLE{2.1.1): AN INFORMATION SYSTEM

Definition 2.1.2

Let /A = (U,A) be an information system and B ¢ A, then by
IA/IB we denotes the information system ({/,B), called the
restriction of /A To B,

Definition: 2.1.3

Let 1A = ({/, A} be an information system. Every subset of
aftributes B c A, defines an equivalence relation INDA(B} or IND{B)
called the B- indiscernibility relation defined as follows

IND(8) = {(1s, 72) & P aly)=aly) foreverya e B }

The object yx, yx; satisfying the relation IND(B) are

indiscernible by attributes from B.
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Definition 2.1.4

Every subset B c A will be called an atftribute. if B is a single
element set, then B is called primitive, otherwise the attribute is

said io be compound.

Remark 2.1.1

1. Notice that for each a €A,IND{{a}) is an equivalence relation.

2. Forany Bc A, (1 IND(a)is an equivalence relation .
ac g

Properties of indiscernibility relation 2.1.1

1. IND(B) = N IND(a).

acB
2. IND(B U C) = IND(B) N IND(C) .
3. [§ C c B then IND(B) < IND(C) .

Examplie 2.1.1

Let us consider a simple example of an information system
{A = (U,A). where U/ = { oo X2 A - Ve } VA= {E,b,C,d,E} and the

values of the attributes are defined as in the table helow { 2.1.2)

1] a b c d e
¥ 4 57 37 90 130/90 32
fp 30 39 110 100/70 37
Yy a7 40 110 95/80 26
Ya 30 37 50 95/80 37
1s of 37 75 130/90 26
Ve 27 40 110 95/80 26
¥4 30 40 110 100/70 37
Ya 30 39 75 100/70 265
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a- Age

b- Temperature
c- Pulse

d- Blood pressure
e- Resp. valary

. LetB={ab.c}c A now we want to compute IND(B)
IND{ {a}} = { ( LA A }.- { Lo :':2}: ( X3 }:.3}: ( X4, :{41 ( L5 15}: ( pi:T I.E):

Coroved Creeozed o wado Coa 2ad Coean 2sd (s Y,
(%5 2a) Oz wad Cozowz) Oz xsd (va 26)s (e, %70

( va ¥8) { o7, w2 { i 3!’,4}. { %7, ¥8) [ e, 1‘,2}, ( 8, }:4).
( 78, }i?)} -
INDCEBY) = { (oo 2o) (2o 2) (s v o dads (s )y { e e,

{;':?1 ;fv?:], (T{Bu :{5}' { A1 :{.4}: {}:h 15)r{ A ;{.1JI||:: L4 K5]|

(zs wah(xs xad (s wed (o %) (s 22) { He 22),
Cors tsh Cxro 26 Ciz xeds { s, }:2]'} ,
IND(CLeh) = { Con o (o 72 (ot 23), (s ad (20 250, ( 2ss %e),

Cor ozd (s wsd Conn zady Coan ads oy 2a), Coa, v,

(ozoarh Cusovzd Coay o) Cxan 2o d e 22) (s, 2a),

Caeo %7) Cor 2h O wad Cxrs 26 (s %), (s }:5)} :
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IND(B)= ., IND{a) = IND(a) ) IND{b) N} IND{c)
IND(B) = {( %1, %) (%2 x2), (3, %3] (e ade { 750 25}, { %o, %6)

{xroxrd (s ?{B)}-

Decision tables 2.2

Introduction 2.2.1

In this section we will consider a special, important class of
knowledge information system, called decision tables, which play
an important part in many applications.

A decision table is a kind of prescription, which specifies
what the decision (action) should be undertaken when some
conditions are satisfied. Most decision problems can be formulated
employing decision table formalism; therefore, this tool is
particularly useful in decision making.

In this section we wish to discuss some basic problems of

decision tables theory in terms of rough sets philosophy.

Formal definition and some properties 2.2.2

{1} The decision table in KRS
decision tables can be defined in terms of KR-system as

follows! let K= ( /A ) be a knowledge representation system
and let C DzA be two subsets of attributes, called condition

and decision attributes respectively. KR-system with
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g e e -

e a oL

distinguished condition and decision attributes will be calted
a decision table and will be denoted T= ( LA, C.D ), orin

short CD-decision table [B] .

Definition 2.2.2.1
Equivalence classes of the relation IND(C) and IND(D) will

be called condition and decision classes, respectively,

Definition 2.2.2.2

For every veU we will associate a function dy : A=V such
that di{a)= a(y) for every acCUD ; the function d; will be called a
decision rule {in T ) and ¥ will be referred to as iabel of the decision
rule dy .

Definition 2.2.2.3

IF dy 1s a decision rule, then the restriction of dy to C,
denoted d,|C , and the restriction of d; To D denoted d,|D will be
called condition and decisions (actions) of dy respectively.

Definition 2.2.2.4

1-  The decision rule dy is consistent (in T), if for every y=v ,
d,IC =ds|C impels d,|D = dy|D; other wise the decision
rule is inconsistent.

Z2- A decision table is consistent if all it's decision rule are

consistent, otherwise the decision table in inconsistent.




The following is the important properties that establish the
relationship between consistency and dependency of attributes in

a decision Table.

Proposition 2.2.2.1

A decision table T= ({/4,C D) is consistent iff C=D.

Proposition 2.2.2.2
Each decision table T=(UAC. D) can be unigquely

decomposed into two decision tables T,=({/,A C. D) and
T, = {(UJACD)sothat C=Din T; and C=¢y D in 75, where

Ty = POS.{D)and

T, = U:\'EUI BN (X}

NP
Example { 2.2.2.1):

let us consider table { 2.2.2.1 ) given helow

@ ~Nlojo| s |w|ln| |
e B L B LN B R e LS I e I P 1
s |l=lm|lo|=|lOoj=|O|T
= |l=alolm|lolo|l=|Mm]o
D= O ==
- (P | =k | = (PN = M| DD

|
]
|
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Assume that a, b, and ¢ are condifion attributes, d and e are
decision attributes. In this table, for instance, the decision rule 1 is
inconsistent where as decision rule 3 is consistent. by employing
proposition { 2.2.2.2 ) we can decompose the table { 2.2.2.1 }into
the fallowing two tables

Table ( 2.2.2.2 } consistent

U, a b c d e
3 2 0 0 1 1
4 1 1 0 2 2
6 2 2 0 1 1
7 2 1 1 1 2

Table { 2.2.2.3 ) Inconsistent

U a b c d e
1 1 0 2 2 0
2 0 1 1 1 2
5 1 0 2 0 1
8 0 i 1 0 1

Table { 2.2.2.2 ) is consistent where as table { 2.2.2.3 ) s
totally inconsistent, which means that all decision rules in table
(2.2.22 }are consistent, and table { 2.2.2.3 ) all decision rules are

inconsistent.
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Simplification of decision tables 2.2.3

Simplification of decisicn tables is of a primary importance in
many applications. An example of simplification is the reduction of
condition attribuies in a decision table. In the reduced decision
table. The same decision can be based on a smaller number of
conditions.

This kind of simplification eliminates the need for checking
unnecessary condition or, in some applications for performing
expensive test to arrive at a conclusion which eventually be
achieved by simpler means.

The approach to table simplification presented here consist of
the following steps
1- Computation of reducts of condition attributes which is
equivalent to elimination of some column from the decision
table.
2- Elimination of duplicate rows.

3- Elimination of superfluous value of attributes.

Remark 2.2.3.1

We should note that in contrast to the general notion of
knowledge representation system rows do not represent here
description on any real objects. Consequently duplicate rows can

be eliminated as they correspond to the same decision,

e R L ST SV Ve o —r—m —— - SR T T geammge,

—— M — “H PP rmlslen o o T ———
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In th-i-s a we obtain an "incomplete” decision tables,
containing only those values of condition attributes which are
necessary to make decisions. According to our definition of a
decision table, the incomplete table, is not a decision table and can
be treated as an abbreviation of such a table.

From mathematical point of view, removing attributes an
removing values of attnbutes are a like and will be explained in
what follows. For the sake of simplicity, we assume that the set of
condition attributes is already reduced. le there are not

superfluous condition altributes in the decision table.

As we have already mentioned, with every subset of

a . Ly U
attributes BcA we can associate partition /m'm{g} , and

consequently the set of condition and decision attributes define
partitions of objects into condition and decision classes.

Because we want to discern every decision class using a
minimal number of condition — our problem can be reduced fo
searching for relative reducts of condition classes with respect to
decision classes. To this end we can use method similar to that
used in finding reducts of attributes.

Similarly we can reduce superflucus value of condition

attributes from a decision table.
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In "formal definft]ﬁn“ we know that w.ith every subset of
attributes B ¢ A and object y we may associate set [y]a.
([xle denotes an equivalence class of the relation IND{B)
containing object ¥ ).

1.e. [¥]gis an abbreviation of [}]inp ) thus with any set of condition

attribites C in decision rule d, we can associate set [¢], = ﬂ[z]u.

aeg

But esach set [x], is uniguely determined by attributes value
a(y), hence in order to remove superfluous equivalence classes
[x]a from the equivalence class [¢). as discussed in " significance of
attributes” . Thus the problem of elimination of superfluous value of
attributes and elimination of corresponding equivalence classes
are equivalent,

Example 2.2.3.1

suppose we are given the following decision table

Table { 2.2.3.1)

U a b C d e
1 1 0 0 1 1
2 1 0 0 0 1
3 ) 0 0 0 0
4 1 1 0 1 0
5 1 1 0 2 2
B 2 1 0 2 2
7 2 2 2 2 2



Where a, b, ¢ and d are condition attributes and e is a

decision attribute.

It is easy to compute that the only e- dispensable condition
aftribute is ¢, consequently, we can remove column C in table
above, which yield table below

Table (2.2,3.2)

U a b d e
1 1 0 1 1
2 1 0 ¢ 1
3 0 0 ) 0
4 1 1 1 0
5 i 1 2 2
6 2 1 2 2
7 2 2 2 2

In the next step we have to reduce superfluous values of
condition attributes, in every decision rule, to this end we have first
to compute core values of condition attributes in every decision
rule,

For the sake of illustration, let us compute the core values of
condition attributes for the first decision rule i.e. the core of the
family of sets

F={ U1 Ol 11a } ={{ 1,245} {4.5.6). {1.4) }

e s i M— g T L ———
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From consideration in reduction of categories and formal definition

we have
(v = [0 1 11 (1 [1)e= {1,2.4,5) N {4,5,6} ) {1,4} = {4)
Moreovera (1) =1,b{1)=0and d{1)= 1.

IN order to find dispensable categories, we have to drop one
category at a ime and check whether the intersection of remaining
categornes is still included in the decision category [1].= {1,2}, i.e.

[} (1 [1)e= {4,5,6}1{1.4} = {4}

[1. 1] [1Ja= {1.2,4.5}(1{1.4}= {1.4}

(1]a N [ = {1.2,4,5}(1 {4,568} = {4,5}

This means that the core value is b {1) = o . Similarly we can
compute remaining core value of condition attribute in every

decision rule and the final results are presented in table below

Table (2.2.3.3)

U a b d e
i - 0 - 1
2 1 - - 1
3 0 - - 0
4 - 1 1 0
5 - - 2 2
6 - - - 2
7 - - - 2




Now we can preceed to compute value reducts. As an

example, let us compute value reducts for the first decision rule of

the decision tahle.

F={1L.0k. (1} = {01245}, (123}, 114}
We have to find all subfamilies G ¢ Fsuch that (1G < [1)e= {1,2}
There are three following subfamilies of F
(1o 1 [Ma= (1231 014) = 1)
[ N [1)e= 1123331 (1.4)= {4}
[11: N [Ml= 02450 11233 = 1.2y
And only two of them
(1} 1 [a= 12300 (133 = (1} £ [1]e = {1.2}
1 N o=11.245) 11233 = {1.2) = [1]e={1,2}
Are reducts of the family F. hence we have two value reducts:

b{(1)=0 and d(1)=1 or a(1)=1 and b{1)=0

This means that the attribute values of attribute aand b or d
and b are characteristic for decision class 1 and do not occur in
any other decision class in the decision table. We see also that the
value of atiribute b is the intersection of both values reducts,

b(1)=0 i.e. itis the core value.

k()
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In table below ( 2.2.3.4 ) we list value reducts for all decision rule in

table {2.2.2.1),

U a b d e

1 1 0 X 1

1 X 0 1 1

2 1 0 X 1

2' 1 X 0 1
......... 30}(}(0

4 x 1 1 0
......... = xx22

& X X pi 2

6’ 2 X x 2

7 X ¥ 2 2

7' x 2 X 2

7" 2 X X 2

As we can see from table { 2.2.3.4 ), for decision rules 1 and
2 we have two value reducts of condition attributes. Decision rules
3.4 and 5 have only one value reduct of condition attributes for
each decision rule row. The remaining decision rules 6 and 7
contain two and three values reducts respectively.

Hence there are two reduce forms of decision rule 1 and 2 ,
decision rules 3 , 4 and 5 have only one reduced form each,
decision rule 6 have two reducts and decision rule 7 have three

reducts.
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Thus there are 4x2x3 = 24 (not necessarily different} solution
to our problem. One such solutian is presented in table below

Table (2.2.3.5 )

U a b d e
1 1 0 X 1
2 1 X 0 1
3 0 X X 0
4 X 1 1 0
5 X X Z 2
6 X X 2 2
7 2 X X 2

Anocther solution is shown in table { 2.2.3.6 )

Table (2.2.36)

U a b d e
1 1 0 X 1
2 1 0 X 1
3 0 X X 0
4 X 1 1 0
5 X X 2 2
6 X X 2 Z
7 X X 2 2
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Because a decision rules 1 and 2 are identical, and so are

rules 5, 6 and 7, we can represent our table in form.

Table (2.23.7)
U a b d e
1.2 1 Q0 X 1
3 G X X 0
4 X 1 1 0
5.6,7 X X 2 2

In fact, enumeration of decision rules is not essential, so we
can enumerate them arbitrarily and we get as final result table

below (2.2.3.8

U a b d &
1 1 -0 X 1
2 0 X X 0
3 X 1 1 0
4 X X 2 2

This solution will be referred to as a minimal.
The presented method of decision table simplification can be

semantic, since it refers to the meaning of information contained in

the table.
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(2) The decision table in information system
We consider a special case of an information systems called
decision tables. a decision table is an information system of
the form 1A = (U, 4 U{d} ), where d eA is a distinguished
attribute called the decision. The elements of A are called
conditions.
Decision tables are called training sets of examples in

machine learning [13] [16] [20].

Definition ( 2.2.3.1 )

Every information system /A = (U, 4) and non- empty B ¢ A

determine a B- information function
14
. - 3
Inf U~ I (ngv”)
Defined by
Ifi{x)y={{a, alx)): aeB}. We writelnf,( x ) instead of

h;}"r; ( x ) when no confusicon arises.
The set
{Infp(x)izel)
Is called the B-information set and it is denoted by INF(IA)[B.

the set INF(IA}| A will be denoted by INF(IA} By INF{A V) we
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¥l prmplpropfirsl e ey oy ST

denote the set of all functions a from U into V satisfying a(y)eV, for
anyy e Uanda e A

Definition 2.2.3.2

The cardinality of the image
d (U)={K:d(s)=Kfor some seU } s called the rank of d and is
denoted by r{d).

We assume that the set of Vy of values of the decision d is
equalto {1, ... ,r{d) }.

Let us observe that the decision d determines the partition
{1, ...7qa } of the universe U, where 3, = {yelU: d(y) = k} for

1 <k <r{d). The set y; is called the i-th decision class of /A.

Discernibility matrix and the Boolean function 2.3

Definition 2.3.1

Let IA be an information system with n objects. By M (IA) we
denotes an n x n matrix (C;) such that U= {y,. %2 ....7, } and

A={a,, a, ...,a,}, called the discernibility matrix of A such that

Cy={aehA a(y)=a(y)} for ij=12.n
Notice here that this matrix is symmetric and C; =¢
for i=1,2, ....n
For any atiribute a € A, we denote by & the Boolean

variable corresponding to a [ 16 ]
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We denote by /2 the Boolean function of m Boolean

variables a,,a,,....a, , where A = {a,,3;,...a,} defined by letting

Jia (8.8, T, = A{VC, . 1gj<isn  Cy=D)

Where E';.: { a:aeCy}

i

Here V{CJ.} 15 the disjunction of all vanables & such thata «
Ci . We denote by Val, the set of all Boolean valuation on the set :
LGyl )
l.e. Any v e Val, is a function
v={ @y Ty @, ) = {0,1)
For any B ¢ A, we denote by Vge Val,, the characteristic
function of B ie. Vg (a) =11 aecB we denote by MIN (/. ) the

set

{BcA: [a (Veld@) Va(7,). . Veldy)=1 and

Jin (Va (@)}, Vo (@,) ... Va{@, ) =0 and
Forany B ¢B and B =B}

Example 2.3.1
Let U = {1,2,3,4,5} and A={a b,c,d} . Let the valuas of the

attributes be defined as in table (2.3.1)
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Theorem 2.3.1[19]

Let /A =(U, A) be an information system with U= {¥, 32 ... %a |,
A={a.a;,... a,}, and let ¢ # B c A. the following condition are

equivalent:

{iy B contains a reduct from RED{/A) (e IND(A) = IND(B}.

(i) /,(Ve(as) ..Va(an))=1.

(i) foralliand} suchthat c;=¢ and 1ifjcign,
Ci(1B =4

Proof the equivalence

(i) <> (ui) follows from the constructions of the discernibility
function {14 and the discernibility matrix M (fA).

() < (i) by our assumption we have : ¢; f1 B¢ forany Cj
such that 1 € j<i € n . it means that in 8 we have
enough attributes to discern between all these
chjects from U , which are to discernible with
respect to ali attribute In /A ; i.e. B contains a reduct
from RED(A).

(1} < (it} If B contains reduct X from RED{IA} , then any two

objects discernible with respect to some attributes

from A are also discernible with respect to some .

- - -
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Table {2.3.1)
U a b C d
1 1 0 2 1
2 2 ] 0 1
3 ! 1 0 1
4 1 1 4] 2
5 0 1 2 0
The discernibility matrix for this table is as follows:
Table ( 2.3.2)
U 1 2 3 4 5
i O abc he bed abd
2 abc O a ad acd
3 be a O d acd
4 bed ad d O acd
5 abd acd acd acd O

The discernibility matrix M (A).

The discernibtlity function:
Jis (abed)=a Ad A (bVe) A{avd) A (aVbVc) A

(bVCVd ) A {aVbVd ) A {aVeVd )
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A v i AP il

from attributes B o X. hence if ¢; #¢ then ¢; [ B = ¢
foranyi,j .

Definition 2.3.2
IF/A ={U.A Ul{d} } is a decision table then we define a

function éx: U —=/p ({1...., r{d) Jcalled the generalized decision in
/A, by

Aa{y={i:3%' e U " IND{AYy and d{zx)=i}

Definition 2.3.3

A decision table /A is called consistent (deterministic) if
|5A{;.:]|= 1 for any yel/ other wise /A is inconsistent {non-
deterministic). |t is easy to see that a decision table /A is consistent
Iff  pos,(d)={/ . Moreover, if Zg=cp then Posg(d) = Posg {d)
for any non-empty sets B,B' c A.

Definition 2,.3.4

A subset B of the set A of atiributes of decision table

A= {0 A U {d} )is a relative reduct of IA iff B is a minimal set with
the following property: Gg =da . The set of all relative reducts in /A is
denoted by RED{/A d).

IF Be RED(IA,d) thenthe set {{{a=a (y):a eB}, d=d(y)): yeU}

is called the trace of B in /A and is a denoted by Trace,.(B).

R I P Er iy S L T ST Iy P IE S ST L LI W LI TR =)
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Rough membership function 2.4

One of the fundamenta! notions of set theory is the membership
relation, usually denoted by = When one consider subsets of a
given universe one usually applies characteristic function in order
to express the fact that a given element belongs to a given set .
We discuss the case when only partial information about objects is
accessible. In this section we show that it is possible to extend the

notion of a characteristic function to that case.

Definition 2.4.1

Let fA = (U/, A) be an information system and ¢ # X /. the

rough lA-membership function of the set X denoted bﬂ.tT, E
defined by

IA 1A |ix1.NX]|
by :U—-[01]and [, {}:}="m|—

Obviousiy uﬁ (v)e[0.1] . A value of membership function u'ffj isa
kind of conditional probability, and can be interpreted as a degree

of certainty to which X belongs to y ( or 1-;1? (vYas a degree of

uncertainty).

The rough membership function can be used to define

approximations and the boundary region of a set, as shown below

A(X)={ze U Uy () =1},
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BNAX) = e U0 < WG (x) <i).

The meaning of rough membership function can be depicted

as shown below [ 19]

[x.]ﬁ 1A
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Theorem 2.4.1 [ 6] [19][20]
Let /A = (U, A) be an information system and let XY < U, the

_ 1A . : ,
rm-function [l has the following properties:

M MY =1 il yeAX

N 1A . -
(i) M, =0 i yelU-AX,
1A ‘o

(i) O< My ()<l T 7eBN, (X)

(iv) IFIND(A) = { () xeU}  then L% is the characteristic

function of X ;

(v} 1fZIND(A)y then W ()= 1Y (1)

. 1A ¥ |
(vi) My, =1L (x) for any yeX

(vil) Ly (02 Max (U GOy () forany g eU,
(i) )2 G S Min (LU GOV HYy () ) forany 7 <U

(ix) if Xis a family of pairwise disjoint subset s of U

1A .l
Then L. {z)= xé—\: Hy (z) for any 7 el

Deterministic decision rules 2.5 [19]

Now we can recall the definition of decision rules. Let

fA& = (U ,AlJ{d} ) be a decision table and let V = UV, aeA: YU Vyor

v=Uwv,uv,

as A

a7
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Definition 2.5.1

The atomic formulas over B cAU {d} and V expressions of
the form a=v, called descriptors over B and V, where aeB and
veV,. the set IF (B,V) of formulas over B and V is the least set
containing all atomic formulas over B and V and closed with
respect to the classical propasitional connectives V {disjunction}, A
{conjunction).

Definition 2.5.2

Let TelF{B,V). Then by T, we denote the meaning of T in the

decision table /A, i.e. the set of all objects in U with property T,

defined inductively as follows:
1- if Tisoftheform a=V then Tp={yelU:a(y)=v}.
2 ( TAT }-}I = Ta ﬂ TM R [TVT‘ )-_4 = Tsa U TM

The set IF{A.V) is called the set of conditicnal formulas of f/A and is
denoted by C(A V).

A decision rule of /A 1s any expression of the form

T = d=v

WhereT e C{AV) and veV,




The decision rule 1= d=v for /A is true in A iff T, o (d=v)y if

T,s= (d=v) then we say that the rule is /A-exact,

IF /A = (U, A U {d} ) is a decision table then by /A; we
denote the decision table {lJ, A U {&} where =34 let us observe
that any decision rule 1=>3,=8 where 1eC{ AV ) and ¢=0 <V, valid

in /A; and having examples in /A, i.e. satistying 1.4 2 determines a

distribution of objects satislying © among elements of 8. this
distribution 1s defined by

lynx,|

foricl
Y

Llf (AT, 8)=
Where Y=Tu
Definition 2.5.3

Any decision rule T = du = 0 valid in /A; and having

examples in /A with |6 | >1 is called non-deterministic, otherwise it
is deterministic.
Definition 2.5.4

The number n{ /A,T,i ) = |Ta N X | is called number of

examples supporting 1 in the i-th decision class X; Let us chserve

that for any formula T over A and V with T, #¢ .

o9




CHAPTER TWO : INFORMATION SYSTEMS

there exists exactly ong subset 9, of € such that T=,, 8.=0.

and . (/AT 0.)> 0  for any ied, in the sequel we write [1.{ /A 1)

instead of LL, (/4,700 ).




Chapter Three
Data filtration

DBata filtration 3

The aim of this section is to present some ideas related to
data filtration based on rough set approach. We expect that by
developing the ideas presented here and some related algerithms

efficient tools for data filtration can be obtained.

A general searching scheme for decision tables

filtration based on rough set approach 3.1

The decision table /A" = (U, A'U {d} ) is compatible with
A=({UAU {d})iff A={a,...an A={a4 ... .a%"
And V., oV, fori=1,. ., m.
let /A= (U ,A U{d} ) and /A’ = ( U, A'U{d} ) be decision tables
and let & € {0,1]. We say that /A" is a & filtration of A iff ;
(i) /A'is compatible with /A,
() G =dm
ity [l (rda' € Zod | <8 1€ Tdn < Lo < Za} |
forany 8 c V, with ¢=2Z4= 0, (6)
One can also consider another version of definition with

condition (i) substituted by a weaker condition specifying that
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and dy , should be sufficiently close with respect to some distance
function.
let K be a real number from the interval (0,1], let /A ={U.A U{d})

be a decision table and et + be a formula over A and V. if
« = {{a,vi){a.va)... J(anvm)} then Aw denotes the formula
ay= Vi, a;= VoA Aan =V, if tis a formula over /A and V then by

fA. we denote the restriction of /A to the set of all objects from U,

satisfying T. l.e. 1A, = ( T, AU{d} ). by T(/A T.K) we denote the
conjunction of the following conditions
(I} Tra=g
(iiy  forany ae INF (fAT}:
(*} Max JL{IA A wat)> K

And

(*+) there exists exactly one iy with the following property

Flo (/A A uat) = Max Ly (1A A uAT).

Conditions (*) and (*+) denote that exactly cne of distribution

coefficient Li; (/A,1) (ieD) exceeds the threshold K.




reduction coefficient. We present a general procedure £ of

searching for a filtration of /4 when fixed threshold K and critical
level 1 are given.

Step 3.1.1

Forany acA'c A, where A', is a randomly chosen sample
of conditions, apply the methods for decision rules
synthesis  {see [10],[11]}). For the decision table
Ay, = (U, {A - AYU{a}) ( in particular apply also for
synthesis of rules the so called semi-reducts). The output

of this step Is a set of decision rules of the form:

T :5&_&' = e:

Where &, _ & is the generalized decision corresponding to the
condition a € A' and T s a formula over A- A" and V Now

some strategies should be applied to get from these decision
rules a "glebal” decision rule for a
To=> Ca_p =9

Such that T({A;, 15 K Y holds and Max n { fA,, A a,. Tp 0 ) > 1

for o eINF { {{A.)0] B) where B is the set of conditions




occuraing in 1o and (/Ag).. is the restriction of /A, to the set of

objects satisfying Tg
Step 3.1.2

From the global decisicn rules for conditions in A the

approximation functions are built. {n this way we obtain

a set { of approximation functions.

Step 3.1.3
We apply to a some approximation functions from {
(using some strategies, see {3.1.4.3) and in this way

we obtain a new decision table /A",

Step 3.1.4

If /A" is a S-filtration of /A then stop else go to step 1
subsituting /A" for /A If fA' is a §'-filtration of /A
with &' < 1.
There are several problems to be solved when one would
like to implement the above method. Among them are:

1. SAMPLING PROPLEM 2.1.4.1

how to choose /A" in step 17
the random choice of /A’ (proposed in step 1) can be not

sufficient. some methods for the proper choice of /A' can be

developed basing on properties of reducts [14]. one can
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apply alsc some analogies fruﬁ mathemahcal ;'norpho1ogy
[12] which have been used in building to so called analytical
morphology. here we would like only to add, by analogy with
the mathematical morphology operations of erosions and
dilation, that one randomly choose a subset /A" of /A — /A
as a new subset of /A after entering again step 1 where /A’ is
the previously chosen subset of /A we shall now look for

decision rules

T= 0= BT

Where T is over /A" and V and dia is the generalized decision

cofresponding to a condition a € /A" .

b 5

GENERATION OF APPROYIMATION FUNCTIONS FOR
DECISION RULES 2.1.4.7

In the next section we will present a definition of the
approximation function.

CONFLICT PROPLEM 2.1.4.2

This problem arises when one would like to apply the
parallel strategy in step 3. we discuss this probfem later. in
particular here arises the composition of decision rules
problem. this problem is refated to the synthesis of the global

decision rule {see step 1).
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4. APPLICATION OF APPROXIMAYION FUNCTION PROBLEM
1144

The problem is related to the question how to choose a
proper subset of approximation functions from { and in what order

to apply them to get the best filtration of /A To solve this problem

we would like to apply genetic algorithms.
In the above procedure { one can distinguish two strategies.

The first one S procedure from an actual decision table A for any

a « /A’ a sequence of decision rules of the following form:

T = a,.q_[a]. =04 ..., v = GME,} = Up

satisfying T{/A,, T;, K) fori=1,...p.

These rules are used next to generate approximation functions by
the second strategy H. the strategy H produces from the above
scquence a new seqguence

&1, ... 30}
Where S; 15 a set of non-conflict decision rules of the form

T =Caqa = € for some acA, 0 ¢ V3 and formula 1 over A-{a}

and V.




The approximation function corresponding to the decision

rules from S, are chosen by H for simultaneous application at the

i-th step of transformation of the actual decision table /A.
In this way our procedure { has parameters S, H, /A, § (by

assumption 1 and K are fixed). The proper values for K and 1
should be chosen by making experiments with A,

Now we can formulate a general version of filiration problems,

Filtsation Prohlem 3.1.4.1
Input: A and & € [0,1] NQ , where Q is the set of rational

numbers,

Output: strategies S and H such that a 8-filtration of /A is

returned after calling { with parameters S, H, /A and 8

if such strategies exists.

Optimal filtration prablem 3.4.1.2
Input: A

Output: inf {5 € Q: there exists strategies S and H such that a

S-filteration of A is returned after calling f with

parameters S, H, /A and 6 }

ong can not expect that the solution S and H for above filtration

problems are of polynomial time complexity with respect to the size
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of A and & because the strategies S and H are based, e.g on
procedure for decision rules generation and these procedures are
based on the reduct set generation {9] .
nevertheless, one can build efficient heuristics for solving the
filtration problem for practical applications.
Appraximatien furclions for nen-tetermimistic decision rules 3.2

For any decision table /& = ( U, A |} {d} ), formula T over A

and V and a threshold K satisfying the condition T(A, T, K} one can

define a r - approximation function in A with threshold K .

[ (A, T.K):INF (A) |B = INF { {d}, V)

By { (A, T, K) () = {{d.ip)}  for anya e INF (A1)|B where

i (A, ANaat)=Max{lL{/A ANanrt)iel }and B is the

set of conditions occwring in T .

We apply the above construction to decision tables derived

from a given decision table A = { U, A U{d} ). these decision tables

are of the form /8 = (J,Bl) {d} ) and they are constructed from

information system B = { J, BIUC), where B.C c Aand BiC=¢

by representing ¢ by means of decision attribute ¢. we denote by




codec ( or, code, In short) a fixed coding function for infoermation

vectors restricted to C in V. defining ¢ by .
c(x)=codec {{a,aly)):acC}) foranyy « U. foragiven

threshold K we consider decision tables /B = { U, BU {c} } with the

property that there exists a formula T over B and V such that

T (B, T, K) holds.

These tables correspond to near-to-functional relations of data
represented in A by which term we understand that only one
decision is pointed out with the strength exceeding the threshold K.

Let wus observe that by assumption we have

INF{/BT) | B=iNF (/AT)| B let 1 by a positive integer called the critical

level of example. we denote by fUA K 1) the family of all functions
of the form {(/BTK) such that T(BT,K)} holds and
Max n (B,T,i )>1. Byf (fA, 1) ( or t (/A), in short) we denote the

union of the family { f(/A, K, 1):0<K<1}.

Let us observe the function f (B, T, K) produces from

the decision table. A= (U | A U{d}) with A = {a,, ...an } @ new
decision table /A" = ( U, A'U {d}) with A = {a,, ,,,ém}
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defined by { (C , codec {(a, a(x) ) aeC} )= { (B, T. K) (infi (:0)}

and a'l{y)=aly)when a e C foranyy e Tjp;if ¥ & U-Tsp then

ai(yy=afy)foranyi.

The definition of approximation functions presented here can
be treated as of possible formalization of near-to-functiona
relations bhetween data; e.g an approximation function could
choose the mean value from the set of values exceeding a given
threshold. We plan to test on various data tables the properties of
different notions of approximation functions from the point of view
of application to data filiering.

Gonitict profiiem 3.3

Let us assume that a set { of approximation functions of A is
given. Now we would like to transform rows in decision table in
parallel i.e by simultaneous application of function chosen from f
on the basis of some strategies. In this case it is necessary to

solve the conflict problem created by functions from f

Let f be a given set of approximation function and let ¢ € A.

let f(C] be the set of all functions from f into INF{{c}, V ) . We say



that f(C) is conflicting in A. iff there exist y e Uand {, { e { (c)

such that

f(infa ()= {Cinfs ()
Where

f - INF (A1)| B — INF {{c}, V)
f:INF(AT)B > INF ({c}, V) forsomesz, T

We say that f is conflicting in A iff ({c} is conflicting in /A for
somec e A

If the value set of ¢ is ordered then one of the possibilities to

resolve the conflict (created by f{c] is to take as the new value of

c for a given ¥ € U a randomly chosen value from the interval [min,
max], where Min and Max are the minimum and maximum of the
values of function from f{(c) at y .

this 1s an analogy to morphological operation which in analytical
from modify geometrical objects according to min and max

functions. This will be explained in the sequel,

Anocther strategy to resolve the conflict created by f{c) is to

define as the new value of ¢ from a given ¥ € U the value of an
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[y =gy i == — i T —— e

approximation function corresponding to a formula T ¢ f , C)

representing in some sense the influence of all elements of [(c) on

¢ and built from some formulas defining conflict functions from

f(c}_ One can search for such a formula a mong disjunctions and

conjunctions of formulas defining conflicting functions from f(c),

The main constraints in searching for the conflict resolving
functions { : INF (JA1) |B — INF ({c} , V ) where B = (U, BU{c})
Are the necessities to maintain:

(1) Max n (/A AzaT,i)>1 for a e INF (/A) |B where B

is the set of condition occurring in T and 1 is the critical
level of examples;

(2) The classification of objects by /A and /A' where /A’ is

obtained from /A by applying f e, S = O
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Chapter Four

Mathcematical Morphology

Mathematical morphology 4

Introduction 4.1

Mathematical morphology started in 1964 with the work of
Georges Matheron on geometry of porous media and the
prediction of their permabilities and the work of Jean Serra on
petrography of iron ores and the prediction of their milling
properties. The theoretical and applied research in the field led to
the emergence of mathematical morphology as a mathematical
discipline in its own right, the first stage of development was
delineated with monographs[6][9]

The idea of mathematical morphology have been assimilated
and further developed by image and signal processing
communities. As a result the mathematical merphology  has been
extended to grayscale object and signals. Mathematical
morphology is an actively developed with main research directed
towards new efficient algorithms, analysis of complex filters, and
analysis of theoretical foundations of morphology.

A morpholegical action on an object results in a gecmetrical

filtering of the object which permits to characterize it in terms of

73



CHAIMITR TOUR : MATREEMATICAL MORPHOLOGY

some qualitative attributes (Area, permits, nur-*nber of cﬁnnected
components....)

This aim requires recognizing the structure of the object
described by means of a Boolean algebra R of relations generated
by the two primitive relaticns of set inclusion and set intersection.
Experimental structure recognition is achieved for a relation in R by
means of model pattern (S) representing this relation {structural

elements {S)}. Moving a structural element B about an object X

defines the object § (x) of elements where the relation represented

by B is fulfilled. The operation ¢ is a morphological operation.

We begin with the binary case i.e. our objects will be subsets
of either an Euclidean E or a digital space Z°.
The bhinary case 4.2 [12]

Definition 4.2.1

Any subset A ¢ R® we will call it an image. Besides dealing

with the usual set-theoretic of union and intersection, morphology

depends extensively on the translation operation.
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T —

Definition 4.2.2

The translation of A by a point ¢ is denoted by A+ ¢ or (A),
and is defined as follows:

Aty ={a+y . forsomeacA}

Geometrically, A+y results by translating every point of A along the
vector y. Figure ( 4.2.1 ) llustrates A+y and B+y
where A, B = R? . Notice that if a point y of the input image A
coincides with the arigin, that this point in the translated image A+y

correspond to point .

B+y

L 4
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Definition 4.2.3

The reflection of A is denoted by-A or A® and is defined as
follows:
-A={-a:forsomeac A}
Note that the use of the notation —A = {-a: ae A } where -A is the
scalar multiple of the vector a by -1 . thus , -A is simply A rotated

180° around the origin .

F 3

Figure (4.2.2 )

Example 4

letA={(0,0),(10),(01),(1,1),{22)} and y= (3.1}

Then A+y ={(3,1), (41} (32] (42} (53}}
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Figure ( 4.2.3 ) Translation of a discrete image

Remark 4.2.1

Note that the peint z is in the translated set A+y if and only if
there exists some pointa'in A such thatz=a' +y
Also, because vector addition is commutative, we can write ¢+A
interchangeably with A+y .

Now we introduce the two fundamental operations which are
utilized in the morphological analysis of two valued images, which

are defined as follows:
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Definition { Minkowski addition ) 4.2.4

Given two images A and B in R® , we define the Minkowski
sum A @ B set-thearetically as :

Ao B= UA+b

tq 8
Where A ® 8 is constructed by translating A by each element
of B and then taking the union of all the resulting translates.

Example 4,2.4.1
Let A the unit disk centered at (2,2} and let B = {{4,1), (5.1),

(5,2)}. Then A ® B is the union of the sets A+ (4,1}, A+ {5,1) and

A+ (5,2}, A.B and A ® B are depicted,

ADB

Figure ( 4.2.4.1 ) minkowski addition

ABGB={A+HA+1)YJU { A+{51)} U { A+(52}}
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Definition { Minkowski Subtraction ) 4.2.5

Given images A and B in RZ * We define the Minkowski

difference

AOB = [14+5
ks

In this operation ,' A is translated by every element of B8 and
then the intersection is taken .

Example 4.2.5.1
Consider the 3 by 2 rectangle A infigure {( 4.2.5.1 ), let B={{ 4,0},

(5,1} 1.

There A (3 B is the intersection of the translates A+{4+0} and

A+(51).thatis, A O Bisthe 2 by 1 rectangle.

4 A - s

T I R U B R .
O T S S B R -

B={(4.0),(51)} AOB ={A+(4,03N{A(5,1)}

Figure { 4.2.5.1 ) Minkoaisk subtraction
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Theorem 4.2.5.1

If A and B are two images in R?, Then
AOB={y . -B+ycA)}

Proof

Since AOB= (A+y=[{r:xeA+y)
ya B

Ll

= (x:i-y+reA)={y:-B+ A}

yi B
Thane AGB={y:-B+yc A}
where A © B can be found by first rotating B 180° around the origin

and then all points y such that the translate by + of that rotated

image is a subimage (subset ) of A,




\ _ | 13

B

*
AN
LN
' ASB

Figure { 4.2.5.2 } Minkowski subtraction by fitting
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Remark 4.2.5.1

Note that the output image A O B is not necessarily a
subimage of the original image A , we are assured that A O Bis a

subimage of A only if B contains the origin .

Example 4.2.5.2
Consider the 3 hy 2 rectangle A in figure ( 4.2.5.3 ),

let B={{00), (1.1} }.
Then A & B is the intersection of the translates A+{0,0) and

A+ (1,1). Thatis, A © Bis the 2 by 1 rectangle depicted in figure

(4.2.5.3).

AOQ B={A+{(00}n{A+{11)}

Figure ( 4.2.5.3 ) Minkowski subtraction
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ThenAOB cA<(0,0)eB.
Erosion and Dilation 4.2.6

Now we introduce tow primitive operations which will be used
in many of the morphological algorithms that are discussed in this

chapter ,

Erosion 4.2.6.1

The fundamental operation of mathematical morphology is
erosion. All mathematical morphology depends to this notation.
The erosion of an input image A by a structuring element B8 | is
defined as follows:

ADB={y:B+ycA)} - O

This means that in order to perform the erosion of A by B we

translate B by y so that this lies inside A. the set of all points ¥

satisfying this condition constitutes A @ B

Figure (4.2.6.1) illustrates the erosion of a triangle by a disk

¥

N
NI

o :Ibf‘r ...-Eiﬁlt f?‘:

Figure( 4.2.6.1)A08 is the internal triangle according To
equation @&
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The erosion of an image can also be found by intersecting f
translates of the input image by the reflection of structuring
element.

AOB=N{A+h . bec-B}> O
An example of performing erosion using eguation @ s illustrated
in figure below

The arrows denote the origin and the shaded area represents the

points.
- [ A
S N
1 .Ij,": 3 ¥ s -
1 A LTl | B=H000(0)
- e R N T T : NS .
5 a"'f‘.dr.'.":‘ : 7 té *&;.F -
il e e L § c %s 10
Al SN 35 W
{ e
Ly N
A+{0,0 ) A+{0,-1)

5

a

AG B =N {A+{ 0,0 )A+0,-1)}

figure (4.2.6.2 ) AOB resuits from A+ { 0,0 )N A+{ 0,-1)
( the intersection of some translation of A ) according to
equation 12

85




Dilation 4.2.6.2

The dual operation to erosion is dilation. Dilation of an input
image A by a structuring element B , is defined as follows:
A®B={B+a:achA - ©
This means that in order to perform the dilation of A by B we first
translate B by all points of A. The union of these translations
constitutes A @ B.

Figure (4.2.6.3 ) illustrates the dilation of a triangle by a disk.

A=
.

¥

./

"y

Figure { 4.2.6.3 ) A @ B is the external triangle with rounded
corners , according to equation ©
Dilation is both commutative and associative

ABB=B®A and {(AGBD®C=ADBOC)> O

By commutatively A@B=U{A+B:beB}—> O

II
|
I.
1]
: |
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Pyl -ty

This means that dilation can also be formed by translating

the input image by all points in the structuring etement and then

taking the union. An application of equation (5) is illustrated in

example of figure (4.2.6.4)

L.

v

A+(0,0) t, 7+

| Fape

3
v
L

i
W

F'd.;ll
-+

3‘-;1: ,

A+(0, 1}

[ ]

L A®B=U{A+(00)A+(0,))
L-p K . Fasn !

Figure (4.2.6.4 ) A& B results from A + (0,0) UA + (0,1) according

to equation &
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—— e et o = I

The body of operation produced from erosions and dilation is
the morphological algebra of operations.
In particular, the composition : the erosion followed by the dilation
is the opening , and the composition. The dilation followed by

erosion Is the closing.

Opening 4.2.6.3

A secondary operation of great importance in mathematical
morphaology is the opening operation. Opening of an input image A
by a structuring element B is defined as follows:

ofAB=AcB=(AOB)Y®B-» 0O
An equivalent definition for opening is :
o(A . B)=AoB=U{B+y1: B+ycA}-> @

This means that in order to open A by 8 we first translate 8 by y so
that this lies inside A. the union of these translations constitutes
A o B for instance , the opening of a triangle A by a disk B ( the
origin coingides with the centre of the disk ) is the triangle A with
rounded corners. In general opening by disk round or eliminates all

peaks extending into the tmage background.




Closing 4.2.6.4

The other important secondary operation is closing. Closing
of an input image A by a structuring element B is defined as
follows:

C(AB)=A«B=(A0)0B-> O
For instance | closing a triangle A by a disk 8 (the origin is on the
centre of the disk ) yields the same triangle A. in general, closing
by a disk rounded or eliminates all cavities extending into image
foreground.
Proposition 4.2.6.1
Ze0{A, B) if and only if [(-BY+ZIN[AB(-B)]= @

Proof

Ze(O{A BYifandonlyif ze I [A & (- B)] +y

ya
If and only if there exists beB withZe [A & (- B)] +b
If and only if there exists beBand we [ A 8 (- B)]
Where become Z =w + b, or equivalently , with w = -b + Z But
this means precisely that \we[(-8) +Z] N [ A6 (-B)]

Which means that intersection in the proposition is nonempty,
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The binary case 4.3

Let us assume that B is & given subset of E called a
structuring object we denote by + the vector additicn in E .
Morphological operations are defined by means of two set
operations on subset of E called the Minkowski sum and the
Minkowski difference. For simplicity sake, in presenting
Morphological operations we assume from now on that the set B is
symmetrici.e. B=-8
The Minkowski sum @ is defined for subset A, B E by
. A®B={yty: v cA and y € B}

And the Minkowski difference 0 is defined for A, B c E by
I. ASB={;ecE:{y}]®BcA}

The Minkowski sum and the Minkowski difference operations

are employed in the definition of two basic morphological

operations vis versa . The dilation by B and the erosion by B.

the dilation of X c E by 8, denoted by dg (X) is defined by
. dg(X)=X3B

The erosion of X by B | denoted by ¢g (X) is defined by
V. ¢p (X)=XoB

Morphological operations can be composed and new

operations can bhe generated by means of set — theoretical

S0
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pperations. The body of operations produced from ercsions and
dilation is the morgphological algebra of aperations.

In particular, the composition : the erosion by B followed by the
dilation by B is the opening by B, denoted by Qg ., and , the
compaosition ; the dilation by B followed by the erosion by B | is the
closing by B denoted by Cg .

Formally
V. Op(x)=dg 0 €5 (x)

VI, Cgi(x)=¢€go dg{x forany x c E

The meaning of the opening by B and the closing by 5 can be

best understood from the following characterization.

Proposition 4.3.1
a. Op(X)={yzeE:3y(re{y}l®@BcX}.

b. Cg (X)= { zeE - ¥y (ze{y} ® B = ({y} ®B) NX+0 } }
proof { a)
Ca(X)={zxekB:3y(xe{yt@®BcX}
This formula is similarto O{ A B Y= { B+y: Bty < A}
That we wiil to proof O{ A8 )
By proposition ( 4.2.6.1)}, Z € O( AB ) if and only if there
exists a point y such thatye[(-8)+Z )N [A B (-B)) thatis, if

and only iIf there is a point y such that ZeB+y and B+y c A.

P —~
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But this last statemént means precisely that Z is in the union
specified in the statement of the proposition.
proof{ b))
Ceg(X)= { yeE :Vy (yely} @B = ({y} ®B) NX=& } } This
formulation similar to C (A.B} =N {(B+y)": B+y c A%}
Then we will to proof C{AB) We apply duality to the
proposition (a)
CABF=0 (A% B)=U {B+y B+ycAY
Application of De Morgans's law gives:
C(A B =N{(B+y)°: B+yc A
Let us observe the parallelism between the description of X
provided by the opening of X by B and the closing of X by B and
the description of X provided by the B-lower and the B-upper
approximaticn of X in the rough set theory.

The operations in the binary case based on the additive
structure of E and set theoretical notation of inclusion and
intersection have been extended for needs of image and signal
processing to grayscale, respectively, we present below the most

essential points of grayscale morphology.

The grayscale case 4.4

The objects of grayscale morpheology are functions,

representing e.g. grayscale visual objects or signals.
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An object £ is a function F:A — E where A < E" for some n.

the coperation of mathematical morphology are performed on

functions indirectly by means of associated objects called umbrae.
A subset Xc E'sE is called an umbrae if the following holds
() (y)eXaz<y = (z2)e X,
for a function F2A — E, the umbrae of F, denoted by U[F] is
theset{{x,y)e A,E . y< F(x}}.
The objects are recovered from operations on umbrae by means of

the envelop operation. Suppose the X is an umbrae. The envelop

of X, denoted by E (X), is defined as follows
(i) E(X){z)=sup{yeE:(zy)ext foryek"
Let F:A — E be an object and K:C — E be a fixed

object called a structuring object. We denote again by @
2, the Minkowski sum, difference operators, respectively in
the space E"" induced by the vector addition +.

The operation of dilation by K, dencted by d. and of erosion

by K, denoted by ¢, are defined F by
(i) d(F}=E (U[Fl® U[K] ).

tv) e (F)=E(UIF1 © UK] ).
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Th;'-:: ﬁcrphnlcg]caf algebra is defined in the grayscale case
in the manner analogous to the case of binary morphology. in
particular, the opening by K, denoted by O,, and the closing by K,
dencted by C, are defined as
(v} QR =E(Qun(UI[F)

(viy G (F}=E (Cypw { U[F])
It will be convenient for our purposes to present the above

operations In binary as well as grayscale in an analytical form.

Mathematical morphology in analytical form 4.5

we will present morphological operations in an analytical
form i.e as operations on vector representations of objects. we will

. restrict our selfes in the binary case .

The binary case 4.5.1

we will represent the binary objects X < Eas binary vectors

of the form
V=«V ye Ex> (V=1iffx € X }.
The function M, N.£2 and u on Z? into 7% which represent,

respectively, the dilation by B, the erosion by B, the opening by B,

and closing by B are defined as follows
(i) M{V) =V where V', = max {V, . ye {x} ® B}.

(i) N(V)=V where V', = min {V, : xe {y} ® B}.
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(iii)

(iv)

A V)=V whereVi=max{min{V/,:ze ¢y} @B} x ¢
{y}®B.
u (V) =V where V', = min { max {V, : ye {2} @ B} y

c{xt®B}

We call X a centre of {x} © B and we call the set {x} @ B

the influence set of x. Let us observe the following:

(a)

(o)

The operations M and N can be regarded as
analytical representation of some strategies for
negotiating among conflicting influences on X of
elements of the influence set of X and among
conflicting influences on X of centers of influence sets
containing X, respectively.

The operations 2 and u can be similarly regarded as
analytical representations of some strategies for
expressing a common influence on an element X of

influence sets containing X (first we erode {x}® B to y
for ye {X} @ B next we dilate these y's to x) and of

influence sets intersecting the influence set of X,

respectively {first we dilate centers of influence sets
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{z} © B containing y to y for ye {x} @ B next {x} @
B to x).

Analytical morphology 4.6

The scheme of mathematical morphology presented in the
last has been based on two assumptions.

(a) Morphological objects are subset of a space E with the

underlying hnear structure, therefore elements at E can
be translated one intc another by means of this
structure.

(b) Objects are represented as vectors in a space of
states with a given algebraic structure. e.g. < 22,
max, min > in the binary case and <« E |, + » in the
grayscale case, therefore a new state.s of X e E can be
found as a function of staies of some other

elements of E .
Analytical morphology as formulated below can be regarded as an
attempt to develop a version of mathematical morphology sluitabre
for contexts in which either assumption {a) or (b) may not be

fulfilled.

(1) The geneeal scheme <061
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[a) objects, structuring obhjects 4.6.11
we assume that objects of analytical morphelogy from a

set of. A structuring object is a collection y of objects
y cof together with an action J.y. of — p (of } the
function 3.y can be regarded as a generalization of the

translation in binary or grayscale morphology.

bl influence sets, reciprocal influence sets 4.6.1.2

the set J.y(y) will be denoted by S{y). for an object 3, we
will say that ¥ is a centre of S(x), let us observe that a set
of the form S(x) may have more than cne centre. the set
S(y) will be called the influence set of y. the set
Ri{x) = {yeof : yes{y) } will be called the reciprocal
influence set of ¢
(c] dilations, erosions 4.6.1.3

We assume that for any reof a set 'V, of states over X is
given,

for each yeof, the dilation at ¢, denoted by d,, is mapping

d, 1T {V, vy e R{x)}— Vi

and the erosion at x , dencted by ¢, is a mapping

e, 11{V,:yeS{z)} >V,

(d ]' [IIIEI'III.'IEIS and [.‘.|I]SII'I!| 4614
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for yeof , we lat N{z) = U {S (v) :yeR(y) }; the opening at
X, denoted by O,, is a mapping
Qu: TV, ZeN(x)} -V,
given by

O, {(«<V; : Ze N{X)>)=d, (< ey (<« V;: ZeS {y) > yeR (x) >}

Similarly
Mix}=U Ryl y e S{1)}
and
Gy TH{V,: ZeMi(x)}} —» V,
defined by
C, (VoZeM{z)=e,(<d,{<V, ZeR {y)> yeS (y)>)

Define the closing C, at y.
Now we present an interpretation of these general operations in

the case of case of decision tables.

(2) analytical morphology for decision tables £.6,2
[a) ebjects, structuring obiects 4.6.2.1
Let /A = (U, A U {d}) be a decision table. Objects of

analytical morphology for /A are non-empty subsets of

INF(C, V) Where C c A. A structuring object ‘' is defined
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by a given family I of approximation function in the

following way:
VYe={S{B.r.K):F{BrK)eF}
Where  Sp(B.r,K)=INF{/A, j BUC and
F(B,r . K)=INF{ A, }[B-HNF(C,V)
The influence set S{y} for a given ® = y c INFIC V) is
equal to
(S B,7.K):F(B,7,K):INF(/A, )|B>INF(@CV)
where C1C' # @)

(b} dilatations, erosions 4.6.2.2

One can consider any approximation function

F{B,r K V:INF (/A }

B — INF (C,V ) as a partial
function from INF{A.V) into INF(C,V) with the domain
INF{ /A, },B on which the partial function equals to
F{ B, r K).We assume that

V, = INF(C,V} if ®=ycINF{C, V).

We define for the family I' the sets N{C) and M (B) where
N(C)={Bc A:3F e I'(F: INFIA)| B = INF(C' V) and C N C' # &) }
MB)={CcA:dF e l'{F: INF(B'V) > INF(C'V) , CNC =¥ and

B=R"UCY}.
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treated as a component of the influence set of X. the set N(c)

corresponds to all such components. similarly , M (B) correspands

to the family of all objects S¢ associated with approximation

function influencing C and hence also X.

For each xe of the erosion at X c V, = INF(C, V), denoted by e, is

a mapping.

¢, IT{INF(BV)Y B e N{C)}— INFIC,V)

Which can be defined by choosing a strategy for conflict resolving

among different influences of approximaticn functions on y.

The dilation of X gV, = INF {B, V), denocted by d, , is a mapping
d,: IT{ INF(C,V): C e M (B)}— INF{B,V}

Which can be also defined by choosing for conflict resolving

among different influences of approximation functions on 7.




Conclusions

The method presanted her is an approach to data filtering.
The approach called analytical morphology combines the rough
set theoretical ideas with the ideas of mathematical morphology.
We expect that implementations hased on ideas of analytical
morphology will give effective tools for filtering of data encoded in

decision tables especially when no inherent geometrical structure '

of the attribute set 15 assumed.
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