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INTRODUCTION [X

. ::I"v:- ' \\‘u-'\\-'.ﬂ.\v_-\\m\\-\“-\\-.-_\.-‘m PR L R R L .\- {\,‘:m
SRUINTRODUCTION:S O

The fuzzy sets were introduced by zadeh {1965) as means of
representing and Manipulating data that was not precise but rather fuzzy.
Fuzzy logic provides an inference morphology that enables approximate
human reasoning capabilitics to be applied to knowledge-bascd systems.
The theory of fuzzy logic provides a mathematical strength te capture the
uncertainties associated with human cognitive processes such as thinking
and reasoning. The conventional approaches to knowledge representation
lack the nieans for representing the meaning of fuzzy concepts. As a
consequence, the approaches based on first order logic and classical
probability theory do not previde an appropriate conceptual framework
for dealing witli the representation of common sense knowledge, since
such knowledpe is by it's nature both lexically imprecise and non
categorical.

The develepment of fuzzy logic was motivated in large measure by the
need for a conceptual framework which can address the issue of
uncertainty and lexical imprecision. Some of the essential characteristics
of fuzzy logic relate 1o the following:-

* In furzy logic, exact reasoning is viewed as a limiting casc of
approximate reasoning.

* In fuzzy logic, every thing is matter of degree.

* in fuzzy logic, knowledge is interpreted a coilection of elastic or,
equivalently, fuzyy constraint on a collection of variables.

¢ Inferencc is viewed as a process of propagation of elastic
constraints.

» Any logical systcms can be fuzzified.
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There are two main characteristics of fuzzy systems that give them
bewer performance for specific applications:-

« luzzy systems are suitable for uncertain or approximate reasoning,
gspectally for the svstems with a mathematical model that is
difficult to derive.

e Fuzzy logic allows decision making with estimated values under
incomplete or uncertain information.

Artificial neural systems can be considered as simplified mathematical
models of brain-like systems and they function as parallel distributed
compuling networks. However, in contrast to conventional computers
which are programmed to perform speeitic task, most neural networks
must be taught or trained. The most important advantage of neural
network is their adaptively. Neural networks can automatically adjust
their weights to eptimize their behavior as pattern recognizes, decision
makers, system controllers, cte.

To enable a system 10 deal with cognitive uncerlainlies in a manner
more like humans, one may incorporate the concept of fuzzy logic into
the neural networks, the resulting hybrid system is called fuzzy neural,
neural fuzzy.

This work is divided and organizes into four chapters:

Chapter one: contains some basic concepts of fuzziness, and in this
chapler we give definition of fuzzy set, representation of fuzzy set, some
methods for determining membership functions. Manual and automatic
metheds consider as (wo options of determining membership functions.
Alse in this chapter we study the common mathematical operations which

dealing with fuzzy sets such as union, iniersection, etc.
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Chapler two: in this chapter we present new concept of basic tool for
doing operations in fuzzy scts which is call the extension principle and
gives its detinition, operations of applied it.

In this chapter we also discuss the level set which is very important to
determining the tuzzy set. In this chapier we also discuss the convex
fuzzy sets which is important to study the behaves of continuity, In this
chapter we explain the important idea of fuzzy sets; the fuzzy quantities
which is divided into fuzry number and furzzy interval. We give the
definitions and operations on it, we study the fuzzy arithmetics which is
give the better way to add, subtract, multiplied, divisicn and max -min of
[uzzy numbers. We have present some examples for doing it.

Chapter three: in chapter three we discuss the fuzzy logic which is

known as a part of fuzzy set theory, Fuzzy logic is regard as generalising
of ordinary logic. We discuss in this chapter furzy logic and it's
connective. Also we discuss the fuzzy relations and its delinitions:
operations: representation and classifications,

In this chapter also we explain the concept of fuzzy partition and we have
explain that it can be obtain by two way; the first one called equivalence
relation and the second one called alpha - cuts.

Chapter four: in this chupter we study the concept of approximaie

reasoning and its division (linguistic variable), its definitions and
operations on linguistic variables

Finally we give Application of fuzzy set in {Artificial neuron networks )
where we study the simple neural and how (o combined fuzzy logic
operatton with neural networks to introduce the hvbrid neural networks or

luzzy neural,
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The purpose of this Dissertation is to study and discuss the theory of
fuzzy set and how we can apply it in artificial neuron networks. Where
we combined the fuzzy Jogic and neuron nerworks to get a hybrid system
that hus two characteristics. The [irst onc is that the ability of fuzzy logic

to deal with uncertainties, and the second one it that ability of ncural

netwaorks 1o leam.
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1.1 The Concept of Fuzziness;-

In this chapter, we will discuss the intrinsic notion of fuzziness in natural
language. Following Lottt Zadeh) fuzzy concepts will be modeled as fuzzy
sets, which are generalizations of (crisp) scts. [n using our every day naturat
language to impart knowledge and information. there is a great deal of
imprecision and vagueness, or fuzziness such statements as "Ali is tall * and
"Salem is young" are simple examples

The materials in this chapter taken from the following references

(L3611 2812211021 [19], 14].[21 17§11 7),(41.{30]

Now We begin with some examples.

Example 1.1.1:-

‘The descriptien of a human characteristic such as healthy;

Example 1,1.2:-

The classification of patients as depressed:

Example 1.1.3:-

The classification of certain objects as large;

Example B.1.4:-

The classification of people by age such as old;

Example 1.1.5:-

A rule for driving such as "if an obstacle is close, then brake immediately™.
In the examples above, terms such as depressed und old are fuzzy in the
sense that they cannot be sharply defined. However, as humans, we do make
sense out of this kind of information, and use it in decision making.

These "fuzzy notions" are in sharp contrast to such terms ' married over 39
year's old, or under 6 feel tall. in ordinary mathematics we arc used to

dealing with collections of objects. say certain subsets of a given set such as
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the subsct of even integers in the set of all integers .but when we speak of
the subset of depressed peopie in a given set of people, it may be impossible
to decide whether a person is in that subset or nol. Forcing a yes-or-no
answer is possible and is usually done, but there may be information lost in
dong so because no account is taken of the degree of depression, Although
this sitvation has existed from time immemorial, the dominant context in
which scicnce is applied is that in which statements are precise (say cither is
true or false). no imprecision is present. But in this time of rapidly advancing
technology, the drcam of producing machines that mimic human reasoning
which is usually based on uncertain and imprecise information, has captured
lhe attention of many scientists .the theory and application of fuzzy concepts
arc central in this endeavor but remain to a large extent in the domain of
engineering and applied sciences. With the success of automatic control and
CKperl systems, we are now witnessing an endorsement of fuzzy concepts in
technology. The mathematical elements that from the basis of fuzzy
concepls have existed for along time but the cmergence of applications has
provided a motivation for anew focus for the underlying mathematics. Until
the emergence of fuzzy set theory as an imporlant tool in practical
applications, there was no compelling reason te study its mathematics .but
because of the practical significance of these developments; it has become
important to study the mathematical basis of this theory.

The primitive notion of fuzziness as illustrated in the examples above
needs to be represented in a mathematical way. This is a necessary step in
getting to the heart of the notion, in manipulating fuzzy statements. And in
applying them. "This is a [amiliar situation in science. A good example is that

of "chance”. The cutcome produced by many physical systems may be
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"random”, And to deal with such phenomena, the theory of probability came
inte being and has been highly developed and widely used, The
mathematical modeling of tuzzy concepts was presented by Zadeh in 1965
and we wili now describe his approach. His contention is that meaning in
natural language is a matter of depree. If we have a proposition such as "Ali
15 ¥oung”. Then it is not always possible to assert that it is either trug or
false. When we know thal "Ali's age is X then the "truth”, or more correctly,
the "compatibility” of x wilh "is young ", is a matter of degree. [t depends on
our understanding of concept "young". If the proposition is "Alj is under 22
years old” And we know Ali's age. then we can give a ves or no answer to
whether the proposition is true or not .this can be formalized a bit by
considering possible ages to the interval [0.).letting F be the
subset{x:x[0,): x <22 }, and then determining whether or not {Ali age) is
in F .13 “young™ cannot be defined as an ordinary subset of [o,) .Zadch
was led 1o the notion of fuzzy subsets. Clearly, 18 and 20 years old are
voung. but with different degrees, 18 is younger then 20, this suggests that
membership in a fuzzy subset should not be on a “@ or 1" basis, but rather on
“a 0 o 1 scale”, that js. the membership should be an clement of the
interval[0,1] .This is handled as follows. An ordinary subset A of a set X is
determined by, its indicator function or characteristic function x4 defined by
241X - 101
*"{‘]'{113 Iitf ii}
The indicator lunction of a subset A ol a set X specilies whether or not an
element is in A. There are only two possible values the indicator function
can take. This notion is generalized by allowing images of elements to be in

the interval [0.1] rather a being restricted 1o the two element set{0,1}. From
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the above introduction we will introduce some importunt definitions of fuzzy
sel.

Definition 1.1.1:-

Let ¥ be the {universe of discourse)
1. We shali call ¥ to be the {space ot objects).

2. If p, pieees, p,, are nmutually unrelated properties of a generic element x

of V', then we delined the property vector as the n- tuple vector

( p,,pswen p} and the property space denoted by p as the set of all possible
values which the vector ( p,, p,..... p, ) can assume. We denote each point in
the property space by x={p,.p. ... p).

Definition 1.1.2:-

Let ¥ be a space of objects and  x be generic element of X Thus
A= {x}. A fuzzy subset F of Y is characterized by a membership
(characleristic) function with respect to certain properties of xof interest,

PisPasen gy denoted by g (x=(p.py,eap,} ), which is a functional

mapping from the property space defined by the object space X into the

interval [0.1] . The value of gy (x=(p.puven p,)) 8t x tepresents the prade
of membership of x in F. For simplicity, we shall sometimes write 2. (x)
instead oz, (x= (p,, ... p,)). However, it is assumed to be understood
that when we are concemned with the n properties p,, p......p, of 1 in F,
xwill be considered as an n-wple vector in p whose components are
21+ Paveen p, 80 i {x} is a function of variubles p,, p,,..... p,. Thus we

can repeat the above definition of a fuzzy set as Following
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Definition 1.1.3:-

Let 4 be a space of ohjeets and  x be generic element of v
Thus ¥ = {x}. A fuzzy set F of X can be defined by its membership
function g (x)as follow: pp{x):X —>{0.1] .where
1 if xeF
,uF[x] =40 if xeF

O urinel if xis patly in ¥

So every clement x of ¥ has a membership degree

(or grade of membership) u,(x) &[0, 1] and F is completely determined by
the set of tuples 1°'={ {x.;:’l, {.xj}.r‘rx = A',;JF{J} e[0.1]}.

S0 we can redefine a fuzzy set as follows:-

Definition 1.1.4:-

Let X be universe of discourse. And let F be subsct of ¥ then F is said to
be Fuzzy subset of X 1l and only if F= {(x, g, o/ xe Xoptp (¥ X = [01]3.
Remark 1.1,1:-

s pplx) 1X —>[0.1) is called membership function of & fuzzy subset F
ul' ¥ and denoted by (MF).

* ‘The value u.(x) for xe X' is a number from the real closed interval
[0. 1] and it's called (grade of membership) of x
(or membership degree).
or fmembership value) of element x in F.

* A special case of fuzzy set is an (crisp) set, where we use
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Je X = {00} Instead of 4ty —>(01].
+ The universal set always has [# . (x)=1]forall xinX.
o The empty sctis deseribed by its membership tunction always zero
[ (x)=0forall xinXx].
e In fuzzy sets an element whose grade of membership is 1 will be said
to have (full membership). An element whose grade of membership is
0 will be said to have (non-membership).
* ‘The crisp se1 has a unique membership function .where a fuzzy set can
have an inlinite number of membership function to represent it,
« We vsually denote to any fizzy set by (F). Where F o the
membership function values of #.
»  We usnally denote the set of all fuzzy sets of Yas #{.X). or (the
tamily of all fuzzy subsets in Y ).
» Fuzzy sets are always (and only} functions from "a universe of
ohjects,” say X', into [0, 1] as delined every function g, (¥ —>[0.1] is
a fuzzy set.
While this is true in formul mathematical sense, many functions that qualify
on this ground cannol be suitably interpreted as realizations of a conceptual
fuzzy set. In other words, functions that map X into (0, 1] may be fuzzy sct,
but become fuzzy sets. when and only when they match some intvitively
plausible semantic description of imprecise properties of the objects in X

1.2 Representation of fuzzy set:-

Let X be the universe of discourse, of five elements such that

X= rl.xz.xj.,r‘,x" and let 4 be crisp subset of x .
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And assume that 4 consists of only two clements, 4= Lt!.xJ . Now by using
the characteristic function of crisp set 4 as ya(z}: X — {01}

We find that A={(x,,0},{x;.1).(x;.10,(x,,03,{x,,0)} now the question is how to
represent fuzzy set by using membership function. We begin with the
discussion of concept of [universe of discourse] as follows: we usually,
denole X as the (universe of discourse) as {zadeh suggested), It's the world
which talking aboul .or it's simply the universe, and it may consist of dis-

crete (ordered or non-ordered) objects or it can he a continuous space or
(finite or non-finite) objecis. Now let F = l"r":""“’x. Ibe a finite fuzzy
subsel of universe ¥ and let g, (x) be the membership function ,then we can
write # as follows:-

A O RN NN RPN
e Or F={{x;.,;.-F{,xi}} where « =l ton

or
. F= {(;:FU:I}fx,)-_.{#j.-{lefxz}, ........ EUJFLV,.J“,,}}-

Where we use the separating symbol / to associated the membership value
with it's coordinate on the horizontal axis, Also we described

F= {{x,;:F{x}} rxe X, () €[0]] } by

. F=;1F[x,].1’x,+ ......... + 5
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Where (+) satisfies a/w +b/u = mada.6)/u and the summation symbol is not
for algebraic summation but rather denotes the collection or aggregation of
each element.

= bor any countable or discrele universe Y allows annotation

F=ZFF|:-’:}II_
=R

e if ¥ is uncountable or continuous., we will write & = IE‘F(I)“

x

Hence the _[‘sign denotes an uncountable cnumetation.
Now we give some example 1o illustrate those ideas.

Example 1.2.1:-

Fuzzy sets with a discrele nen-ordered universe.,

Let v'= {Tripoli, Sebha, Benguzi, Al.zawya, Sirt, Darna} some cities in
Libya one may choose to live in. the furzy set £ (best city 10 live in) .May
he described as tollows:-

#={(Tripoli, 0.9). (Sabha, 0.4). (Bengazi, 0.6), (Sir.. 0.8), (ALzawva, 0.3},
(Darng, 0.7);. The universe of discourse X contains non-ordered objects.
And the membership grades listed above are quite subjective; Any one can
come up with different grades membership. but legitimate values to reflect

his or her preference.

Fuzzy sels with discrete ordered universe. Let X={0. 1,2, 3. 4, 5, 6} be
the set of numbers of children in a family may choose to have. Then the
fuzzy set F desirable number of children in a family may be described as
follows: F={{0,0.1),(1.0.3),(2,1.0},(3,0.8),{4,0.7),(5.0.3),(6,0.13}. Here we
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have discrete ordered universel. Again the membership grades of this
luzzy set are obviously subjective measures.

Fxample 1.2 3:-

Fuzzy sets wilh a continuous universe :Let = R*
(The set of positive real numbers) be the set of possible ages for human
beings. Then the fuzzy set £ = {about 50 years old} may be expressed as
1
x-50 4 o

1+ }
10

Feinpg@0)VxeX pu (0=

Remark 1,216

Sometime the vniverse of discourse containing which we call (finguistic
variable) as (Zadeh) say " by a linguistic variable we mean variable whose
values are words or senlences in natural or artificial language, for example
age is a linguistic variable if its value is {linguistic rather than numerical,

Le. . young \not young , very young . quite young ,old ,not very eld , and not
YOIy young , etc, rather than 20,21,22.23_.."

$0 like an algebraic variable takes numbers as values, a linguistic variable
takes words or sentences as values.

For example “"the statement {“Ali is tall man”} implies that the linguistic
variable Ali take the linguistic value or term ftall}.

The range of possible values of linguistic variable represents the universe of
discourse. For examples:

Fxample 1.2.4:-

‘The universe of discourse of the linguistic variable (speed)
might have the range between 0 and 220 km per hour, So the universe
X=1{0....., 126G} and may include such fuzzy subsets as: very slow, medium

tast, and very fast. and we can rewrite X'as X = {very slow, medium fast,
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very fasl,..., ete}, And cach {uzzy subset also represents a linguistic value of
the corresponding linguistic variable,

Example 1.2.5:-

the universe of discourse of the linguistic variable {body temperature} its
might have temperature in Fahrenheit degrees fomm 94 to 106.And also the
linguistic variable takes the linguistic values or terms. such as {low. normal.
subfebrile, high and very high ..., etc},
Remurk 1.2.2:-

In general, fuzzy sets cannot be represented by Venn diagrams.
Sometimes we can represent fuzzy subset of universe . on X and Y axis
We suppose that allows that the first element on the order pairs of the set

F={{xpu:(x))¥xe X} take the coordinate on the horizontal axis,

-

IR ES

W
o

Figure 1

And the second element takes the coordinate of the vertical axis,
S0 we can sometinies draw fuzzy subset on X and Y axis as follow.
To illustrate those ideas we give some example

Example 1.2.6:-

Suppose some one want 10 describe the class of cars having the property
of being expensive be considering cars such as Bmw, Buick, Ferrari, Fiat,

Lada, and Mercedes, Rolls-Royce, Some cars, like Ferrari or Rolls-Royee
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definitely belong Lo this class, which other cars, like Fiat or Lade do not
belong to it. But there is a third group of cars. Where it is difficult to state
whether they are expensive or not using a fuzzy set, the fuzzy set of
¢Xpensive cars is.

F ={{Femari,H)(rollsRoyce, | ).{Mercedes,0.8).(bmw,0.7).(butick,0.4 1)

l.e. Mercedes belong to degree 0.8, Bmw to 0.7 and Buick to 0.4 1o the class
of expensive cars. So the set of expensive cars can be described by £=

HFERRARI+1/ROLLSROYCEAD AMERCEDES+OL. /B MW+ 4/BUICK
Example 1.2.7:-

Suppose we want to model the notion of "high income” with a fuzzy set.
Let the set X be the positive real numbers representing the totality of
possible incomes. We survey a large number of people and find out that no

one thought that an income x between $ 20.000 and $75.000 was high was
approximately p =£;5E of course, every one thought that an income over

$75.000 was high. Measuring in thousands of dollars, one reasonable model

of the fuzzy set "high income" would be.

Q il x<2D
x=-20 .
,HF(x}z T it 20 x= 758
1 iff T5<a
up (o}
].—
0.8
06—
1.4
0.2
0 x
20 A0 o) 2 100

Figure 2
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Example 1,2.8:-

The class of all real numbers which are much great then 1. We usually
write this set as # = | x/xisreal number and x > | }, Such a set may be defined

subjectively by membership function such as:

0 it es5l
1
(F)=f—— if x>1
“F 1+(x-1)"
FfoJ\
1
(1A 0
05 =
0 In log scale
.
[ | -
! II{I ! 100 X
I‘:xamlﬂﬂ I.g-gi' F]gur{: 3

Suppose we want to define the set of natural numbers "close to 1”. This

can be expressed by F={{-2,0.0),{-1,0.3),(0.0.61.(1.1.0).{2,0.6).(3,0.3).(4.0.0)}.

Mgyt

09 _|
LR
0.7 _|
(t173 » »
0.5
i+4
0.3 1
02
0.1 7
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Example 1.2, 10:-

Suppose some ene want 1o define the set of integer "Close to 6", This ¢an
be expressed by, & ={(3,0.10.(4.0.3),{5,0.6).(6,1.0)(7,0.6),{8,0,3),(9.0.1)]
Or F=1{0.1/3, 0,314, 0.6/5, 1.0/6, 0.6/7, 0.3/8, 0.1/9}

Now let v =R, and we fingd that membership function is

=5
3 Jor 3=x%59

1—
Helx)=

0 atherwisp

Then we can wrile F = ‘[ﬂ;' (e} x|
R

Is the fuzzy set representing the real nmbers approximately equal to 6.

Remark 1.2.3:-

In previous examples, we found that its some times that not casy o
represent a fuzzy sets on coordinates axis. And sometimes is tco difficult o
find refation between memberships functions. And alse sometimes we find
difficulty to get the right formula for membership. Thus the construction of a
fuzzy sct depends on two things:

* The identification of a suttable universe of discourse

+ And specification of an appropriate membership functions.

The specification of membership function is subjective. which means
that the membership functions specified for the same concept by
difterent persons may vary considerably. ‘This subjectivity comes from

individual differences in perceiving or expressing an abstract concept
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and has little 1o do with randomness. Therefore, the subjectivity and non-
randomness of fuzzy sets in the primary difference between the study of
fuzzy sets and probability theory,

1.3 Some Methods for Determining Membership Functions:-

In real world application of fuzzy sets. an important ask is (o determine
membership function of the fuzzy sets in question. Like the estimation of
probabililies in the probability theory, we can only obtain an approximate
membership funclion ef a fuzzy set because of our cognitive limitations .In
This section we discuss sume methods for determining a membership

function of a fuzzy set.

1.3.1 Manual methods

These methods falt into two broad categories
(1) Use of frequencics
(2} Use of direct estimation

The [requencies method, obtains a membership function by measuring the
percentage of people in a proup (typically experts in a particular domain).
Who answer yes 10 & guestion about whether an object belongs 10 a
particular set.

Direct estimation methods tzke a different approach by asking experts to
grade an evenl on a scale from 0 to 1, to determine the ratio of the
membership in particular set. All of these ways, in manual methods suffer
from the deficiency of relying on a very subjective interpretation of words,

1.3.2 Automatic Methods for Determining Membership:-

The automatic generation of membership functions covers a wide variety
of different approaches. What makes automatic generation different from the

Manual methods is that cither the expert is completely removed from the
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process or the membership functions are “fine tuned” based on an imtial
guess by the expert. The emphasis is on the use of modern sofl computing
techniques (in particular genetic algorithms and neural networks).

Now we will discuss some of 1erms or factors which interfere in when we
begin to determine the membership function for a particular fuzzy set.

namely: we take the first factor.

1. Surroundings circumstances :-

Consider, for example, the decision taken when analyzing a particular
problem about how to determining the membership functions of fuzzy sets
{i.e. fast cars). Let universe of cars speed be from 0 to 220 km/h. Where the
speed is linguistic variable and the linguistic value of a variable will take
{slow, very slow, fast, medial ... et¢.}. To determine whether the numbers of
the described cars consider as fast cars or not. we {ind that the judgment on
cars speed depends on the personal opinion. Bul no matter what the used
methods 1o expression on membership degree. Then there are a lot of factors
or terms must be considered. And these factors are completely controls of
Car speed. Such as {the weather, the road, the distance, the driver psycho
situation, and ecar realism speed} .For exampte if the car speed is 150km/h
and in the same time the weather was so bad then its speed will be less than
rezlity,

2. Time and Space:-

The other factor or term is that enters in this process .is the time and space,
for example il we decided to determine the membership function. For a
particular fuzzy set (tall man). And if tall for some one is 150cm and that
person fives in some space (place or country, Philippines for example). This
person will be described as a 1all man in Philippines .But may be described

as a short man in other country (like Germany}, Thus the time and space will
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change the expert views ubout an issue or in membership grade

determination in a particular fuzzy sct.

3. Personal Opinion:-

Sometimes the classification of an clement belonging. different from an
expert opinion lo another, For example, when we classify the best five
football players in the world, the classification will be based on the personal
opinion of the expert .

4. The Nature Of The Study:-

In the casc of classification of the membership functions an example, is the
body temperature. The classification will depend on the nature of the
problem that is to be studied. The matter of the temperature is connected
with human body. To understand the temperature, its variation and its
reflection on body health. So when we measure this temperature we must
calculate the ditTerence in the measurcment. Sometimes we measure (he
temperature in centigrade or Fahrenheit. And here, we should consider the
classification of temperature from a medical point of view more than
physical perspective. And the expert here is a doctor who is able to judge the
kind of' the lemperature.

5. The Accuracy in Dealing With a Particular Problem:-

The accuracy is very important in determining the membership degree.
Because the most used applications depend on fine results of classification
of a particular fuzzy sct. So we must observe the accuracy in dealing with

membership functions.
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1.4 Operations on Fuzey Sets:-

let X be a space of points {objects) and xbe a generic element of . Let
Pis Paseen P, D€ Nunrelated propertivs of x interest.

Dehnition 1.4.1;-

A fuzzy set is empty ifl its membership function is identically zero on X .
Thus if F is a fuzzy subsetof X, then ¥ =¢ iff 4 (x)=0,¥ xc X.

Definition 1.4.2:-

A fuzzy set is universal iff its membership functien is identically unity
onX. it & is a fuzzy subset of X then, Fis universal iff u, (0=1,v x € X.

Belinition 1.4.3:-

Two sets ¥ and F, are equal written asFo=F iff
pe ()= (x).¥ x € X for simplicity, we shall abbreviate the statement
1 3

"Hp Y4y (.Y X € XY T =y

Example 1.4.1:-

Let v be the set of all real numbers greater than 1 and let F be the set of
all real numbers greater than €. Then u.{x)=1 ,.vx€ Yand thus F is a
universal set in.y .

Example 1.4.2:-

Let Xbe the set of all real numbers great than |. Let # be the set of all

real number less than 1. Then g, (x)=0 for allx € X . Hence F is an empty

sctin .
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Definition 1.4,4;-

Let £ and F, be two sets. We say that F is contained in F, written as

FCF if g5 (x) S g (x).And we say that r is stricily contained in F.
2 1 2

denoted by F C F T pp (0)<up (0).
1 2 I k)

Example 1.4.3:-

Let .V be the set of all real numbers and let F be the set of all real numbers
which arc much greater than 1. And let F, be the sct of all integers which
arc much greater than 1. And let membership function of Foto b

0 if xx1
PRWT__ L i s

+{x-1)"
Membership function of E be

] if x<1 or x isnot aninleged
HF, {(x)= 1

— iy iy an inegerand x> 1
I+{x-1}

‘Then the set Fz is contained in the set F hucause;:‘,_. 2 g
1 X
Now if we defined g (x) as
2
! il x<1 or x iznot anintege

Mg ()= 09

— it'x s anintegerand x|
F+(x=1)

Than F, is strictly contained inf . Thus £, CF.

Definition 1.4.5:-

The absolute complement of the fuzzy set F is denoted hy #€

And is defined F€ is xS (x)=1- u, (x) .
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Example 1.4.4:-

Let Y be the set of all real numbers and let F be the set of all real
numbers which are much greater than 1 and the membership function of £

0 if xsl
SHET L s
I+(x—1)
The complement of F is

| if x<1
1 FC(xym I 1

——— i x=1
l+(x =1}

In other word the set 7%is the set of real numbers which are less than or
not much greater than 1.

Definition 1.4.6:-

The union of two sets F, and F, with respective membership functions
g () and g (x) s set F writtcn asg f—‘]=}~‘l U ¥, .whose membership
1 2 -
function is related 10 those of £ and F_ by 4 ¢xy=max[u o (x). prp (2}]
! 2 £ £ £y

¥ x & orin abbreviated form Hp=H g g

(‘This 18 equivalent to the smallest set contains both Fland !-'2}

Definition £.4.7:-
The intersection of two sets Fand F with respective membership

functions up(xyand up (x) is a fuzzy set F, Wwritten asF =FNF,
1 2 2
who membership function is related 10 those of F and F, by
Hp (0= min [,uF (D.4p {(x)].¥ x € X orin abbreviated form
k| 1 :

=t . (This is the largest sel contained in both £ and F ).
’”Fj #F: ﬁ-'lz;; ( E | 2)
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Bemark 1.4.1:-

We write (¥ U FIJ=[;:F. v sz}(x}=max [pﬂ{x}.pﬂ{r}]
=;:F.(x}v,uF1|:x}.v rE X,
And
(£0 P;Ffﬁpl N ,u,c,-:) (x)=

=min [,::F.[x),;:fr;(x}]=yﬂ{x} Fal ;:F:[_t},*d rEX,

Example 1.4.5:-

Let X be the set of real numbers and let FI be the set of real numbers

which are close to 1 and let the membership function of y be defined by
{xy l Yxe X
A WP TR .

Let F, be the set of real numbers which are ¢lose to 2 and let the

membershup function of F be detined by 4 ” (x}=l — xEX
H

I
+{x—2)"
The union of £ and F_is (FUE) Sep 0V HE (0
—
=max !-“F, (X}, g ()] = A

: |
1+ (x =2

xrsl.5

rzl5
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,U;:‘I{I} A4 #F_'{-"}

W

HE () A #inx]
Figure 5
Since the two curves pp and u - intersect at x=1.5 then intersection of F
1 1
and F: is ,uF.{x}A ,uF:{x]=

1

FEE—— xsl.5
. | 1+ix=2)
=imn [F‘J:;{I}J"Fz{-r}]_ 1
—!+{x—l}! xzl5

Definition 1.4.8:-

Let F and F be two sets. the relative complement of F with respect to

F, denoled by £/ F . Is defined by By F HpTEE

Provided tha[,uF ()2 pp{x).
H r
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Fxamnple 1.4.6:-

In (Example 1.4.3} , Since FCF then the relative complement of F with
respect to £ is defined as
i for x g1
|
A TP
0 for x ivan integerand x > 1

for xisnol aninteger and |

Definition 1.4.9:-
The symmetrical difference {or Boolean sum) of two sets F, and F, with

membership functions . and 4 denoted by £ A F, is a fuzzy set,
1 a

whose membership function g A # g is related 10 those of £ and F, by
| 2 =
Y | .
.F-"'FI .ﬂj,.z .-“‘;,1 FF:

Definition 1.4.1{):-

The algebraic product of two sets whose membership tunctions

H and z¢ F denoted by FeF 15 4 fuzzy set whose membership function
| H

) 1s related Lo those ol F and F, by ’UFL-F::#F. Hyo

4

Definition 1.4.11:~

The algebraic sum of two sets F and F, with membership functions

Hip and ;.-F

denoted by F+F is a fuzzy set whose membership function
I 1

#p 5, 18 related to those of F and F, by up, o =pp¥up.
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Provided the sum g . (x)+ #p () <1 for allx,
| 2

Definition 1.4,12:-

The direct sum of two sels F and F, with membership function F
1
and g, denoted by F @ F ,is a fuzzy set whose membership function
F)
‘”F,@F, is related to those of F;Emd F by ‘"EEEF; =‘”F}+Fz - ‘"F.F;

“ROFTHRAR, YRR IR T ER R By

Definition 1.4.12:-
The support of # is a sel that contains all elements of # with non-zero

membership grade  supp (F)={x € X/ u,(x)> 0}

Definition 1.4.13:-
A fuzzy set whose support is single point in X .or if support consists of

only one point .it is called a fuzzy singleton,

Definitian 1.4.14:-
If the membership grade of a fuzzy singleton (s one, then £ is called erisp

singleton.

Iefinition 1.4.15;-

The core (nucleus. center) of a set F is defined by
Core {F)={x€ X u.(x)=1L
Definition 1.4.16:-

The height of u set £ on Y is defined by height ( F) =sup Lppx)xe V)
Definition 1.4.17:-

The set £ is called normal if height { 7)) =1,
And it is called subnormal if height ( F) <1.

In other word the set /' is normal
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If its core is non-empty. so we can always find at least a point x € X
Such that g, (x)=1.

Definition 1.4.1K:-

A crossover point of a set F isapoinl x € X at which g, (x)=0.5.

Theorem 1.d4.1:-

The union and intersection operations of (wo fuzzy scts are idempotent,

commutative and associative.
Let £, K, F; be three sets and #ge s tge ot g be the membership functions of
1 1 b ]
F.Fand £ respectively,
L(F=REN A E=RUE) (idempotent)
2. (An A=KNR). (KU £=RKU F) (commutative)
3. (/U A FE=RU(RU R)) (associative union)
4. (AN RN B=FN{KN A)) associative intersection)
Praool:-
o Toprove that Fi=Fn f and f=FKy £
Since #p =mmin {yFI Mg )than f=FKn K.
And since pge =max (p 4y }then R=REUFR,
F) 3 2
« We will prove that AnFL=Fn K and FuFR”=FKyuF
Since min (;:FI Ay ) =min (,uFE B ) Thus FnE=Enf.
And since max (,uFl ,yﬂ] = mnax [;.-ﬂ,pﬁ ) Thus KuF=FKukK.

* We will prove that
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FulBEuf=(RuRU R

Since RU(FK U FK)=max {pg  max (#g s pp }} which is equal to
1 I 1
L o 1 + I, - F Fl F -
mﬂ{mﬂ‘i(ﬁh‘ﬂf,zl J”lr:'j} {fuf)uk
« We will prove that An(AnfH)=(FEnfynk

Fo(Fn#) =min {#tp »min(pgp . ap )} which is equal to

i i A . ={(FnfHinf.
min {min (ppl #Fj) s, P=Anfgn
Theorem 1.4.2:-
Let £, 5 and £ be sets then
(M AN(RUE=ERRU(EnE)
@: BuAn By =(Kuf) (KU k)
Proaof:-
I. Let.yp, s and g be membership functions of £, F and F |
| i ]
respectively. To prove (1) is simply 10 prove that
Mi . ma: . = i . ., mi . .
n {FF; max [P'F. #F!]} max {mm{FF! ‘”F.} mm(!—"ﬂ F"FI}:'
This can be verilied to be an identity by considering the six cases.
a} fip (x) 2 Hp (5) 2 pp (x)-
b} Hp () 2 p F,0) 2 a4 ().
c) ;:F‘(x} E;JF.‘{I} E;:F;[.r].

d) He, (x) 2 ;..rl,_;{x} z ,::Fll[x}.

&) ,uF]{x}P: ,HFI ()= #F..{r}‘
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D g @ zup@2zppx
2. KUMAN £y=(KUHNKUF)
Lot pip g and uip be membership functions of £, F and 5 respectively
1 I 3

10 prove (2) 1s simply to prove that

% Eib {;:F!,mlH(;I‘,|; .;;sz} =min {max (*”i*‘,‘ﬂir‘, }, max (,u‘,f,’.ng}}

This can be veritied 1o be an identity by considering the six cases.

a) HEGYSpp () S g ()
b) #y (x)s u J.-;!I[xlﬁﬂ o (x)
¢) FF!(I]SFE{I}SFE{I}
d) 3 (%) S 1 I3 (x) € g F (x)
e} ;r;,;(-r)ﬂﬂﬁtr}ﬁﬂpi{x}
0 pp ()8 e 5) S g ()

Thearem 1.4.3:-

Let A and £ be 1wo set then
- {E R =Ry Fe
(ENF) =F 0
Proof:-
1. {F,UFZ]"=1-max{yF;.;;F:]

And £~ Feo=min [{1- #p (2= apl

Thus it's similar to prove that

[-max [yﬁ.ﬂﬂ}ﬂmiﬂ [“' .-”Fl ) (1- P‘E " l®)
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Where g F and e the membership functions of Fand F, respectively.
Nowy if '“F; {x1z ;:Fz{x} hoth sides of equation {*)

become l—pF; {x}=l-,uFI(x] .than both sides are equal.

Now if g le[,r}-'-'" it Fl{xj then the both sides in equation (*)

]- pF: (x}=1-;.-Fz (x}. Then the both sides arc cqual,

2R AR =R O

FnF) =1-min M
(FinF) (Fﬁ.ﬂflj
And Fpu 2 =max (- Hipo 3 (1- H 1]
I 2

Thus 1-min . =max [(1- #,.7, (- e [

':F‘r.'; 'HF:) . [( .Fff,.]}( #FZJ] (**)
Now if,uF < then both sides of {**} arc cqual to l-pF.

1 F| 1
Now if Hp < g then both sides of equation (**) are equal to 1""F .In

1 1 H

Two cases the equation (**) arc equal.

Theorem 1.4.4:-

Let fand £ besets than F-F,C KN K AU R C Re RC F+F,.
Remark 1.4.2:-

The law of contradiction and the law of excluded middle in ordinary sct is

not valid in fuzzy sets. Then in crisp set A we have.
(iyal A=Y
(i) AN A“=d

Butina fuzey set Fwemay have FUF"# x FNIY 2§,
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Example 1.4.6:-

Let Hp be membership function of £ and ,:.-F{x}={l.5 vxER.
p (x3=1-0.5=0.5
And F) F=max {0.5.0.5} =0.5%

It is ¢asy 10 see that |-yF(x]|=,u

FN Fo=min {0.5, 0.5} =0.50. In general lei Hp(x)=a € R, 0<a<]
YXER FUF =mux {e. l-a} 2land FN #=min {w, l-a} #0,

Remark 1.4.3:-

There are other operations represent the union and interseetion

I. {Yeger union and intersection )

FUE=min{l. #,.-ix3+u,-
|U - mln{ ,.l'-ffr] {x} ‘u'f', [I}]
And AN F={(pp ()0 45 (9)

2. (Cheeseman 1986} says the intersection of two sets, £, Fyover the

universe .Y dJetined by £ F=min b (9) g2 e (x) 1 s ot always
| 2

true specially when no sufficient information about £ and 7, is

provided ,the Only conclusion about min { 7 (x) } should
L F)

be 0= (,HFI A;:Fz] {x)smin {Ff';{x}'ﬂf‘;(x]}'

3. Other operators on union and intersection by (I.dubois and H.prade)

which satisly excluded middle-laws are defined by:

e £ F=min 1, + fhan
1 e ! .-“11.'; (x) ﬂ‘p:{x} }
- ‘pl.ﬂ Fzzmux {[]“;;F{):H;JF [ﬂ'l}
| 1

e FOUs u gk 31 g ()
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4. {Drastic sum and Drastic product )
My, {x), whenpy 5 fxi=0
YrelX,u . ix1= iy, {x) ”’Ihm*”*i (x)=0

| athers

Hy, {x), whenp Ky {x)=1
Yre kX, _,uﬁnrz {x)= He, {xy when M, (x)=1

. 0 when iy, (x), fig, (x) <1

5. in general we use :-

U Fi=sup {,uj_.l (x],,uF:[x] Y. BN F=inf | fp (B g () }
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2.1 The Extension Principle:-

In order to usc fuzzy numbers and interval in any intelligent systems
when a fuzzy number is expressed in linguistic terms, we can compule
words rather than numbers .the extension principle gives the basic way
to define the operations on fuzzy quantities so we can add, subtract,
multiply and divide with fuzzy quantitics.

The materials in this chapter taken from the following references

[16].(26).[201[ 51,{25]).[353),[27N[ 1] [28).01 5).E10).[24],[ 190 [14],[21).[71,18].(29]
Definition 2.1.1:-

el R be amapping from X to¥,R: X = ¥ such that

FiX— [0] . And £ e F(X), then we have R(F)is a fuzzy set in

¥ defined by R( F| 6= SUP{#}:; (X:xek U‘]} it R7{y) =4,
0 it R()=p
Remark 2.1.1:-

Lei F e F(X). Fe F(Nsuchas F: X = [04],F,:¥ - [01] then
R (# )isaluzzy sctin X, defined by R“‘(Fz}[x}= F (R (x}y,
x e X .then we have R"(F;] =(R7'(F,))". for any fuzzy sct F,in¥.
« R {87 F )= F,, tor any fuzzy set Finy.

. FIER_'{R (F)), for any fuzzy set FinX.

Dehinition 2.1.2:-

Let F e F(X) and ~ & F(¥). Then by Fox F we denote the fuzzy set in

X =« ¥ forwhich [P} xFIII(x,y]=minb1pl[.r],y‘p2(y}}, V{x,y}E Xw ¥,
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Definition 2.1.3:-

l.et XX e X and ¥ be a family of sets and let R be

XA e X Respectively the extension principle allows for the
L]

evaluation of -

N , - \ A - ,
ROEF e Oy sup%mn{um{x]j..,.,.,...;fﬁ(xnj}.xe.‘E {_1}] it R4,
bz " 0 if B()=4
.For n=2 the extension principle reads

ROF.E(y)=sup {;:Fl{x,} A pig () R0} =y}

or RCFLEY ()= Vap 0} A pep () R(x.x) =y )

2.1.1 Operations By Using Extension Principle;-

Let Rbe a binary operationR: X x X — X and (a.h)e X x X

Thus we can define:-

o (Extended addition) let £:X « 3 — X be defined as Rlub)y=a+b

i.e. R is the addition operation, Suppose lhulFI, F, are fuzzy
subsct ol .Y . Then using the exiension principle we get:

R(F F)x)y= SUPmin{ gp, (a). p1, (b))

a+h=x
And we use the notation R(F.F )= F +F, Thus we can say that
FHF=V(AFE <)+ where +71= f(ab)a+b=x)

¢ {Extended subtraction) let X x ¥ —» X be defined as

Ra.b)=a-b.i.c. R 1s the subtraction operator .then subtraction

of two fuzzy sets given by -
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R(F;,Fz}{_r}: FI-. Fz= SUP minf g (o) g2z, (0}

1=hax

Remark 2.1.1.1:-

 F-FEE4( F_ ) holds. Since Irom definition ol addition and
subtract on two fuzzy sets we have

Sl:p min{ Hp (@) pp, (5= SUP mint dp (@) i, (=)},

a+h=v
o (Extended multiplication) let R: X x ¥ 5 X

be defined as R(a.b)=ae«4 .ie. R is the multiplication operation

Suppose thulf-‘l‘ F, are fuzzy subset of X . Then using the extension

principle wi get: F FZ-R(FI,F#}(::] = SUP min{ pz, (a), g, (9D}

ash=x

» (Extended division) let B: X x X = X
be defined as Ria,b) = % d.e. & 15 the division operation. Suppose

thatFl, F_are fuzzy subset of X', Then using the extension principle

we get. F/F, =R(FI,F2}(1}= sup min{pﬂ{a],yrz {5} -

4=
‘/Jb x bl

2.2 The Alpha —Cuts or {Level S¢t):-

We give one of the important ideas in fuzey sets theory. Since the
notation of "belonging” which plays a fundamental role in the case of
crisp sets, does not have the same role in the case of luzzy sets. We now
can introduce two levels o, fsuchthat (0<a<i, and0< F<l.a> M and
agree to say that:

1. "x belong o F " il pp(x)z e
2. "xdose not beleng to F " if u-{x}s g

3. has an indeterminate status relative to F™ iF g < 4 PREI Y4
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Definition 2.2.1:-

[.er A'be a set, and [0,]] be a complete lattice and g X ~ (0], the
a-cutof Fisgivenby: F*'(Ta)=F, m{xe X pp{x)2 a}, va € (0.1].

Definition 2,2.2:-

Let F be fuzzy subset of X then the strong « -cut of £ is given
by Fz={reX puelx}>a) vaefn)).

Remark 2.2, 1:-

* Notc that «-cut in general is not fuzzy seis
*  We can express the support and the core of fuzzy set by using the
notation of & -cut and strong alpha cut as following:-

L. Supp{ F ) =F; when a=0. thus we have supp( ) =F3

2. Core (F }=F, when a=L. Thus core { F ) =#

tym -
Delinition 2.2.3:-
Let F

er=l1

be the core of F and let F=be the support of £ then the
boundary of F is difference set *I"r}”'::-l

Remark 2.2.2:-

A fundamental fuct about the = -cut £, is that they determine # and
C
this is easy to see it from equation F'(a) = F, n(ﬁgﬂ Fﬂ)
this equalion just says that the left sides {x: 4, (x) = o) namely the set of

those elements that 4 1akes toa is the intersection of {x: u, (x) 2 a)

With the set {x: i, (x) # &} .but these two sets are given strictly in terms
of o -cut. So if we know all the @ -cuts of # is the same as knowing

F it self.
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Thearem 2,2.1:-

Let Fand F e F(.Y) be mapping trom X into complete lattice [0.1] if

F.=F, vaemﬂtMnF F.

heg

Prood:-

Since (£,,=F,, Vee{0l)=>(re ¥ i pp()2a)={xe X pp (x)2a)
| 2

vaedi]=F=F).

Theorem 2.2.2:-
Let# . F, be fuzzy ses such thau’-”l,.’f2 & F(X). And Letw, 8.y e[0.1].

Then e -cut and strong « -cut has the follewing properties:-
Lo (Mv Ry =R, VF,
2 (RAR)y=F,NFy,

3. (RvRlg=Fzuf-

4, (K AaFR)g =FznFs
3. F,cF,
6. il y= fthen F, < F, and o F, D F

™~

(#), = (._,.)
8, {P‘L =(A.,

0. .|Ir . F=g

YR VA )g =l e X ulF v )0 zay, Y ae(d]=

e X (g (vag(zal =2 ye X g0 2av u (x) 2 ab..(?)

And £ UF,, slxeX i pn(x)zaor u,(x)zal. (**)

From (*} since for each x either g, (x) S g, (xyor g, (x) < g, (x) and

this we have g (D zaoruy(vze thus (¥)=(**).
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2. (M AR, =lxe X u(F AR 2al =

fxed :yFI{J:JEan;.:ﬁ{x}zrx}....[‘}
A, r“ban == {reX: up ()2 a and Hp D) zat.(**) from {*)
I,uFI{x]I M ,HFI{x} L E-r] ,uFI(Jc} > o and I.E:leix} e Wi s {'[l._, 1]
Thus(*)=(**}
3.AR v K)g =txe X1 plF v F)x)>a) =
fxe X :’“Fn(x)} HV;IFJ{I] =aly... ()
Since ¥ ae0)) , g ()5 g1 (x)or #p,(0)S g (x)and

yFl{xjv,qu{x):;»cx:;;Fl{x]:»aur;:ﬁ{x)::-a:- F

1z “ oz

Thus (FvF)z = Fa Yz -

4, Proof is similar of 3

3. obvious from ([etinitions 2.2.1, 2.2.2).

0. since y=< 2 then {x g Lippeysficive ug(x)2 f)
F}r c f"ﬂ.

Now we proof that F? SF, o F}} sincey = 4 then

£
FF=ixeX:,uF[,r]}ySﬁ}:{xeA’:pF(I}zﬂ}.

{xEX:,uF(x}Z,(J‘}t:{xEX:yF{x]}y*_:ﬂ:—[hus FECF? urF;:-Fﬁ.

and also re X pp>flcireX up(x)2 f)

Thus FFCFﬂ and FF DF,BDFII‘

T e - ixe Xilepmaal = freX a0 $)-a . (0)
C
And (Fﬁ) -{xe,r:LuF{x]:-I—a)f}:{xEA—;;;F(x}gl_a}m_(..}

w0y thus (), = (=)

8. Proof 15 similar to 7.



Chapicrl 36

9. Iy = {xeX:ipup(x)2a sincea =0 then {xEX:;J‘,_,{x}E[:I},"E‘“.rE X

thus {xe Xipp(x)z0} = X {utmiversal set)

and also £ =i{xe X pup(x)> 1} since pup(x)elo].

lhani=¢.

10, (}") ={ved:il-pypvzal and(Fy,) ={re X (e, (x)= )Y,
Thus {F“Lﬂxe.l’:ppi{x}sl—a} and (Fu) =ire X ipp(xy<al,

L F ) = (R

Theorem 2.2.3:-

Lct F be fuzzy subset of a set v and let £, be the @ -cut of F , Then

lorxe X, pu ix)= {er A (x))
] f" V IF
ag0/1] a

1 D<o pup(xd
Where y £y {x)=

0 tpjca sl
We have

Hp (x) = a% I][a’ s XFa (x}} -[usas;ﬂ ] (@~ z}_a[,r}]) [J{’u};asl{a AXp, [x}j)

_[Dms Fix }{'M”) [#ﬁ'[xx;msl{anm]_ﬂﬂr sty TP )

- thus we have F = af, .
a0l

Remark 2.2.3:-

The above theorem is called the (first resolution theorem).

Theorem 2.2.4:-

Lot F e FLY) and let #=be strong ¢ -cut of F then for xe X
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Holx= (trn e (x) thus F= rf
T edu) oo

I 0% < ppix)
where XF, (x)=
] Hp(x)sa =1

Proul:-

i [00]— PLYY

Let F e F(X) we define the mapping (e
& —

such that H(e) satisfies va e [01] {F5 o 1l{@) < £ ) so we can defined

F by {H(z}:a e[0.1} then we can proofthat F = Ek[/ a Hier).
a ﬂ,l]

By definition o H(a), we have
(Fzcl{e)c kg = a Fz calila)cafy)

and from the {Theorem 2.2.3) we have F= Ek[é I]aFa .
agls,
s F= Fe -
F HEF”]H T C-:x%f.‘r,l]a”m}ca%l/ll]a}ra

SF = And F= Fe
Fi aqa,llrﬂlmj n a%{],l]a 7

2.3 The Images of Alpha —Cuts:-

Theorem 2.3.1:-
Let C be complcte lattice, and R:X¥ =Y. 4: ¥ - C then
l. R(Aa S ivdR™), forall weC

2. R{A4_)=(v AR )a for a>0ifand only if for cach member pof the

partition induced by R.v A(P)2 @ implies Ax)z=a for some xe P,
Proof:-

1. Since Aa =ire.X :A(x) 2 althen
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R{A Y={ROx: A zab={ve ¥ Alx) 2o, R(x) =) ...(*)
and (vAR g =lye Y vAR (M zal={ye ¥ vid(x): R(x)= y} 2 @)
={veYvidx)ze,Rixy= vt .. .(**).
. From (*) and (**) we have R(Au IC(vAR), YV aeC .
2. We prove that (R ( A_)= (v AR a for a> 0y {each member pof
the partition induced by 2t v A(P) 2 @ implics Ax)2z e« for somexep),
(=).let R(4_)=(vAR")ufor & >0 thus
R(A J=iyel dn)za fixy=yi=(vAR" )y ={ya ¥ vdx) Rix) =) 2 a}
thus {y: A(x)z a} ={y: vid(x)} za} ¥a then for cach member p
We have v{d{ P za=AP)za thus
vidiP)jzu=Ax)zaforsomexe P
(<=} . for cach member p of the partition induced by R vidlP)za
implies A{x)za lor some xe P.owe will prove that
R(4_)y=(vAR )afor « >0 now
(vAR)e={ye Y vid{x):R(x)=y}2a} and
{re¥iviaPhza= dix)zal=s yel A2 e, Rix) = v} = K{d,)

Thus R(Aa Y= (v AR ),

2.4 Convex Fuzzy Sets:-

In this section we shall discuses some important notion in fuzry set
theery is that convex furry set. This notion is very useful in neural
networks and patlern classification, so we begin a convex fuzzy sel as
follows.

Definition 2.4.1:-

Let Abe areal linearR" . A fuzzy set F is convex if x.x. e X for all

A€ (0] L el + (L= 2)x.) 2 minfaee () 21 ()]
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o FlAx, +{(1=A)x, 12 F(x A Fix,)

Delinition 2.4.2:-

A fuzzy set F is convex iff the scis Fp = {x e X: up(x) 2 e} are convex
for all @ in the interval{0,l].thus

Theorem 2.4.1:-

F is convex iff all its « -cuts are convex,
Now we show that the both definitions above are equivalence.
Now if F is convex by the (definition 2.4.2) and

tr= g (x )= ,Iu}.{xz} = pp(vy)ea then xe X and Ay +(1-A)v, 6 F, |

by the convexity of £, . Hence p{ix +(1-A)x) 2 = gie(n) = minfu(x). 41.(x)]

Soopt[A (= Adxg |2 ominf g ), pa(x,)]

[f # 15 convex in the sense of the (definition 2.4.1)

sl + (1= A)x; )2 min[g, (x4, (x;)] and let a = g (x,} then F, may be
regarded as the set of all points x, for which u,(x,) = u.(x,) cvery point
of the form Ax, + (1-A)x, . 05 A <] is also in £, and henee £, is convex
sct.
Remark 2.4.1:-

1. note that the definition of convexity does not imply that s, (x)

must be a cenvex function of x
4. The only set operation which preserves the convexity property

is the intersection.

Theorem 2.4.2:-

Let Fland F, be two convex fuzzy sets in v then the intersection of

Fand 7, is convex.



Chapter X 40

Proof:-

Let up, and u.,be the membership functions of FandF,

Since 1% convex then Hp (A, + (0= Adx, ) 2 minfe,, (x4, 00,)] and
since F, 15 convex then HE, (Ax +{1-2)x,) 2 ming g, (g2, 5 (x4)].
and the memberships function of the intersection £, of Fand F,
evaluated at x = Ax, +(1-A)ux,

fpe, (A +{1—E}x1]=min{yp1[/lx] +|[l—zl}x=]?;,¢F1[f?.x, +{1=A, |tz
min{minfz g, (x ). gt (x,)], min (g % Jptp (x )} 2

min{minfsp (%)), 4t (x )] min g (g (x N =minfg g (x hitg (x;)]
- J”Fl{lﬁ * “ - ‘”x:} 2 nlin[ﬂﬂ {-r] }1 .n“."1{x; }]
Thus the interseetion of two convex [uzzy sel is convex,

Definition 2.4.3:-

A fuzzy set F is strictly convex if the sets £, .0 <a <1, are strictly
convex (that is if the midpoint of any twoe distinct points in £, lies in
the interior of £, ).

Definition 2.4.4:-

A fuzzy se1 I is strongly convex if for any two distinet points

x,andx, | Ae(0,)} then RpQx +(=2)x,)> minf g (x, ) 2,.(x,)] .

Remark 2.4.2:-

= Strong convexity does not inply strict convexity or vice -versa,

v IF R, F ure strictly (strongly) convex their intersection is strictly

{strongly)convex.

Definition 2.4.5:-

A fuzzy sct is bounded if and only il'the set £y, = (xe V" fefx) 2 a}

are bounded forall 2> 0.
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En other words, for every e > 0 there exists a {inite number K(a)

such that the norm]¢] of every element xof £ is less than or equal
1K (e}, thus|d < Kia), vre 7, .

2.5 Fuzzv Quantitics:-

We study the class of fuzzy scts, namely those the real line R Fuzzy
quantities are fuzry subset of R generalizing ordinary subsets of R,
[n order to defing operations .among {uzzy quantities we will evoke the
exlension principle which was discussed. This principle provides a
means for extending operations on R to these ol #(R).
We will look at special fuzzy quantitics in particular fuzzy numbers and
fuzzy intervals.

Delinition 2.5.1:-

Let R denote the sct of real numbers, the elements of #(R) that is
fuzzy subscts of R are called fuzzy quantiiies,
2,5.1 Operations on fuzzv quantitics by using cxtension principle:-
1. (Addition) let¢: R xR - R,

be defined as O{a.b)=a+4 .i.e. O is the addition operation. Suppose

thatFl, F, are fuzzy quantities of R. Then using the extension principle
Wwe gel OUFLF (e = SUD min{ g, (@), g1, (0D}
Lshax

And we use the nelation O F)=F T, Thus we can say that

(F+FXx)= V(A(F x F2]|)+‘1 where +7'={(a.b):a+b=x

And {(a.b) e RxR, xeR

2. (Multiplication} let?:R xR - R
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Be defined as O(a.b)=a«b .i.c. @ is the multiplication operation

suppese that £, 7 are fuzzy quantities of X . Then using the extension

principle we get: F o F =O(F F }x}= SUP min{ uf (a), pFy (b)) .

ash=x
Thus (7 » F) (x)= V(A(F x Fz))-_l where «™'= {{a,m) ek =x)
3. (Subtraction) The mapping R — Rdefined such that (v —» -7)
induces a mapping F(R)-» F{R) and the image of F is denoted - F .

For xeR (-F) (x}=x-f-y{ﬂ”}= F{-x). Now if we view (-} as a

binary operation onR®. L.et?: R x R - R be defined as O(a.8)=a-b.i.c.
() is the subtraction operator .then subtraction of two fuzzy quantities

given by - GUF,F Xx) = £ - F,= SUP min{ g, (a), 11, ()}

© nebay
(F -F }x)= V(A(F x Fz))—'] where —'= {{a.6):a-b=1x}.
4. {Division)
It is not a binary operation on R since it is not defined for pairs {+,0)
but it 1s the relation {(r,5).1) & (Rx R)x R: 7 = st} by the exiension principle

this relation induces the binary operation on F{R) given hy:-

%(x}: valF «Fy+ owhere =7 = {(a,8) 0= xbY.
2

Remark 2.5.1:-

30 division of any fuzzy quantity by any other fuzzy quantity is
possible. In particular, a real number may be divided by 0{zero) in F(R).
Recall that R is viewed inside F(R) as the characteristic functions

¥(r) for elementsr of R,
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Theorem 2.5.1:-

For any fuzzy sct #, % is the constant function whose value is
X

Fo)-{or ey ).
Proof:-
The function % 15 given by the formula
X

F

(I{U}

Y= v (Fld Az M= v (Flaya X 1o {00y = F (0},
a=h.y N a=i.x

Thus £ s the constant function ¢ {zcro) &;{ﬂ I_F ' iﬂ}
{0} 2o |1 if r=0

Remark 2.8.2:-

l. The performing operation on R is the same as performing the
corresponding operation en R viewed as subset of #(R) for binary
operation O, this means that y{rjeyis} = yires}.

Theorem 2,5.2:-

Let Obe any binary operation on a set ¥ and let $,7e X then
XeoXy=xisot seS,ieT}
For reX

lzsﬂz-rlr)= v (¥¢(s)A rr (1)) The sup is either (zere) or | and is !

sol=x
exactly when there is an s § and 1 &7 with sor = » the result follows.

Remark 2.5.3:-

1. Thus if X is a set with a binary operation & then F(X) contains a
copy of X with this binary operation in particular if X= R then
R with its various binary operation is contained in F(R). We identify

r € Rwith its corresponding clement yir}.
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2. The characteristic function y 4 has some special properties where

¢ denotes the empty sct, From the lasi theorem
XguX o = Xiwtipedrel)

Xgoxp =Xy - but in fact X goF =2 for any tuzzy set £ . ({I1 is simply

the function that is zero every where))

3. A binary opcrations on a sct induce binary operations en its set of
subsets. For example if Sand T are subsets of R then
S+ T={s+t:seS.1aT} these operations on subscts §.T of R carry
over exactly to operations on the corresponding characteristic sets
Xs:-Xr 0 F(R).
Theorem 2.5.3:-

Let F.F, and #| be fuzzy quantitics. The following hold.
L 0+ F=F

2. 0sF, =0

3. F,+F.=F,+F

4. F+(FR+R)=(K+F)+F

5. Fef,=F,+F
6. 1eF =K

1. r(F,+F))=rF, +rF,
8. R+ FR)SFF, + FF,

9. (FeFy)eF, = F, o (F, s F)

10.-(-F)=1#
nhopl

nhE
[2. F-F #0

l3.£:tl
F
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Proof:-
1. U+F{I}— Y Ign.UMF(:-}- v X;ndﬂ]hﬁ[ﬂ=£;{I[1m“i{x}}=ﬁ(ﬂ

2. since n'f'l‘:r_l:;._zzﬁm(y}ﬂﬁ(:} =r'\6_xﬁq{mﬂﬁ‘{x} - A':U{IM (AF(xp=0

I AR +F:}(x}= AU RED= Y YR+ A=+
4 F 4 (F A B ={F +(F, + B)0) = 1_,+H{F|: ) A, + F)u)) =
hiatht EAF 4 wurs{rep)

L?riz}(” AL, [x‘_lnF(Jr}}—v:(z';_fx]+y{{ﬂ[:]nﬁ‘={x}}ﬁ FON=(F +F)+F,

5. e R = (R e Fia= v ROARON= v ROLRE) = (Fdi)e)

6. 1 v F =10 F(x) =_r_;f=:{.rm(-x)’\ﬁ{f}}=l f!_{rmﬂ}“ﬁ(.}’]}‘:ﬁ{:]
7 r(ﬁ T Fz} = (zirI{F; + Fz])('t] = u_,:;';x[.fm["}n[ﬂ + Fz}'{"]] =

.?"I-"‘J.'

(i (Fya(F + F }{V]]—H x{I:rJ(’}F:{S:'“X|r|(r}Fz(f}}=(rﬂ+"F:K-t}
S4I=v

B, I {F(F, + (0 > (4 F, + FF,)(x) then there exist o,v, p with
ya+vy=x such that F(a(Fa RN > Kip) A F(@ A F () a Fy (k).
for all p,q.hk with pg+ik=x butthisis notso for p=h=y,

g=u andv =k, Thus (£{F, + F,Mz) S(FF, + F,F,)Xx) for all x

and F{(F, + F) S FF,+FF, .

Vo (B e F)e F =il e ) R}y = ot R e EMu) n F(2)) =

= AFEEAFONAREN= v (FDAFaRic))=
vxiy.2)

H}'
vty (RUDALE, » F)N0O) = (F, = (F. = F)K0).
f=y.z
CAF sF)eF =K «(F o F)

10, —(-F)=={-F)x}} b= v F(X)} piha F(V}}i - F(—‘v}} Ax)

o

1. Fl }-[x}—- 2 AADNARED= v (R (AR )=

“r]



Chapter 2 46

r-\:!{{ﬁ (>} {I:t}“] nFdzni= F‘:z{ﬁ () :'_\:'Jarm“] AR =R "}'!'i'
12, (F-F)x= v (FOIAF()

(= F )= ;ﬂiﬁ{-r]h-"'[U'}}=r\=f},{ﬁ{x}hﬁ(x}}-}f{ F(x)}

_r--
and the other side 0=y (03=1 thusF -F =0,

13.

F i F, .
FO= N AR =2 0= v (ROIARED = v (ROAFRE)

L

=y§z(f*1(z}] = #(2)

and the other side 1= y (1) =1. thus Tf‘;'l_ 21

1

Definition 2.5.2:-

A fuzzy quantity F is convex ifits a -cuts are convex that is if its
@ -culs are intervals,

Remark 2.5.4:-

Since fizzy quantitics are fuzzy numbers and intervals then a subset
# ofthe plane that is of R = Rx & is convex if contains the straight
linc connceting any two of its points. This can be expressed by saying
that for t€[0,l] ex+(1-r)y isin F whenever, x,y are in 7 .

Theorem 2.5.d4:-

A fuzzy quantity # is convex if and only if
Fly)z{F(xyn F{z}. whenever x= y g s
Proof:-
a) let F be COMVeX ., xS y<=. and let @ = F(x)a F(z) then x,ze Fy
And since Fp, is an inlerval, v e F, there for #(p) 2 (F{x) A F(2)).
b) Suppose that #(v)= F(x) A F(z), whenever x<y <z to prove
Fisconvex, Let x<v<z, with x,ze ¥, . Then

F)z(Fx)aF(@) 2 a.where ye Fy, and £, is convex,
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Theorem 2.5.5:-

[f F.#, are convex fuzzy sets thenso F o+ F,,
a) We show that £ + 5, 1s convex,

Let x <y <z weneed that (F + £ 2[(F, + F,X0A(F + F,X2)]
Let e>0, there are numbers x,.x,,z,.and z,,with x, +x, = x
andz, +z; = z, satisfying F{x ) A F ()2 (F +F)ix)-e
Fiz)m iz, ) 2 (F + F)z)-€.
Now y=ax+{l1-a)z for somea[01]. Let x' = ax, + (1 - a)z, and
' =ox, +{1-u)z, then 3°+2" = p,x" lies betweenx,, -, and =" lies
between x,,z, thus we have (£ + B )Xy F(XIaF(z) 2
e F{xdafiz)nFyix)nFlz)
2Ry + F = €] al(F + FoHo- el 2[(F, + F R0 AL + F)i2)l-e.
It follews that F, + £, is convex.

Definition 2.5.3:-

A function f:R - R is upper semi continuous if {x: f(x)z ) is

closed. The following definition is consistent with this terminology.

Definttion 2.5.4:-

A fuzzy quantity is upper semt continuous if its & -cuts are ¢losed.
Theorem 2.5.6:-

A fuzzy quantity ¥ is upper semi continuous in R ifand only if
whenever x,y € R and e 0, there is 4 5 > 0 such that v~ 3| < § implies
that F{¥) < F{x)+e.

Proof:-

a)  Suppose that £, is close for allee . Let xe R and e>0.if

Flxye>1, Then F()) < F(x)+ e forany y if Fix)+e<! then
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fora= Fix)+e.x e F,. And so there is & > 0 such that
(x=8,x b)Y Fy =g thus Fiy)<a =F{x)r g forall y with [x-s<§
b) lLete»0 xeR3IS>0:x-y <8, F(3) < F(x)+e we show that ¥

15 upper semi continuous {thus we will show that & -cuts are closed)

take @ e01]. x¢ F, and E=a—_:_ﬂ, therc is & » 0 such that

=<8 = Py < F(x)+ & ';'{”

< and 50 (x-S, x+ 51N F, =¢.

Thus Fy is closed.
The following theorem is the crucial fact that enables us to use o -cuts
in computing with fuzzy quantitics.

Theorem 2.5.7:-

Let@?: R x R —+ R be a continuous binary operation on Rand let F,.F,
be fuzzy quantities with closed @ -cuts and bounded supports, Then for
each we R, (F o Fy)(u}= F(x)a F{3) for some v, p with w=xoy

By definition (F, nf;)(u}=x“r=u{ﬁ(,t}nﬂ(}'}}

the equality certainly holds if (7 o £)u) =0, suppose

@={F el )uy>0and F{x)aMyr<e forall xandy
such that xo y=u

then there is a sequence {F(x,)a Fy{y,)} " in the set
{F{x)~ Fy(y}:xe y=u} having the following properties.
1y {Fix)AB0n0)7 converges 1o
2} Either {F(x,)},, or {F,(»)}, convergesto
3) each x; is in the support of £, and

each y; is in the supporl ol 7, .

Suppose that it is {F,(x,)},, (hat converges 1o « since the support of F,
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is bounded. The set {x,}has a limit point x and hence a subsequence
converging W x

Since the support of £, is bounded the corresponding subsequence of
¥, has a limit point y and hence @ subsequence converging to y. the
corresponding subsequence of X, converging 1o x ,

thus we have a sequence {£(x,) A #0004, satislying the three
properties above and with {x,},, converging to x and {3,},, converging

10
. @+y - .
¥, [ F{x =y <, then for £=T and for sufticiently large
i.x;, € Fg L x is a limit point of those x. and singe all cuts are close |
xe Fy. Butitis not, so F(x)=« in asimilar F(y)z« and we have

(R e FyMuy= Fix)a F(y). Finally u=xey since u=x oy, forall ;.
And ¢ 1s continuous.

Corollary 2.5.1:-

if F, and F,are fuzzy quantities with bounded support all « -cuts
are closed and - is continuous binary operation on R then
(F1efidg =Ha o Fig
Proof:-
1) Applying the (Theorem 2.5.7), for u e (F, o £},
{F e Fy}u}y= F(x) ~ Fy(3) for some xand y with u=xep thus xe F,
ye fu, and therelore (F ¢ 7)), © Frre Foa.
2) Let ue FeoFu= xefa and ve Fa forsomex,yandu=xoy
thus e (Fuix)a Fa(y)) i =xey forsomeas,y

u E{Fl °Fz}a{”] = F;ﬂ’ﬂ Fzﬂ":{ﬁ °F1]{”L

Form (1) and (2)(F o £)y = £, o Fyy
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Corollary 2.5.2:-

i F and F, are furzzy quantities with bounded support and & -cuts

are closed then
L. (F+R)g =8, +F,
2. {(F—Fyo ='F;|‘.I _Fm

3. (FeF)g=F,F

1
Remarl 2.5.5:-

About division of set of real numbers, we have no obvious way to

divide a sct §by a sel 7 we cannot take ?i ® {“_i seStel)

(Since « may be 0.)But we can perform the operation £L therefore
#r

fuzzy arithmetic gives a natural way 1o divide scts of real one by the

other an in particulur to divide intervals. And note that if §and?' are

closed and bounded then (y, / y, ¥u) = X ux) A xp(x) for a suitable x

2.6 fuzzy numbers:-

in this seclion we disuses a special case of fuzzy quantities which is
known as fuzzy numbers and we shall show that because of its
important of convexily and normality in definition of fuzzy number and
also we defined the .operations on fuzzy quantities, type of luzzy
numbers also because fuzzy number is expressed in linguistic terms we
can compete words rather than numbers, Which is very important in
artificial intelligent.
Definition 2.6.1:-

A fuzzy numbers is o luzzy quantity # (hat satisfics the following

conditions:-
. F(x}=1 for exactly one x (F is normal fuzzy quantity)

2. the support of £ is bounded ,
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3. The « -cuts of F are closed intervals, For every o e (0.1].

Remark 2.6.1:-

1. Let { be a fuzzy number then fﬂ (e -cu1s of £) 15 a closed

conveX ( subsct of R) forall 2 <{0,1] , and {_from

typef =[a"f'.aaﬁ] closed and bounded interval {L-left. R-right)

0

2. We shall note 10 fuzzy number as / and .-'r(fami];nr of fuzzy

number). We know that the only convex sets in R are interval
.and when the membership function of the convex quantities is

upper Semi-continuous ,Then all these a -culs [ . Jfor & e (0,1],are

closed intervals. Since the basic requirement to define a fuzzy
number is that all it's « -cuts are closed and bounded intervals,
we may have the following

Proposition 2.6.1:-

The following hold:-
1. real numbers are fuzzy numbers ;
2. afuzzy number is convex fuzzy quantity ;
3. afuzzy number is upper semi continuous -
4. 1f f1sa fuzzy number with /{x)=1 where re R then f is
a non-decreasing on (-co,r] and non-increasing on [r,x} .
Proof:-
1. it should be clear that real numbers are fuzzy numbers,
2. A fuzzy number is convex since its & -cuts are intervals.
3. A fuzzy number is upper semi continuous since its « -cuts are
closed,
4, It 1 is fuzzy number with J(ry=1 and re R x< y <r since { is
convex. And /{(x) < /(y),so ]is monotone increasing on (-, #|

Similarly / is monotone decreasing on [r.c0) |
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2.6.1 Some Types of Fuzzy Numbers:-

2.6.1.1 Triangular Fuzzy Number:-

Among the various shapes of fuzzy number triangular fuzzy
number (TFN) is the most popular one such this type have shape
like triangular which can determined by a triple (a.b,c)of fuzzy
numbers with asb<c.

Definition 2.6.1.1.1:-

A triangular fuzzy number [ is a (uzzy quantity such that

0 if xem |
X= .
if PR s 5
@1 =a
I ={ataz.ay), Hy(x) =1 .
di=x ]
if = x < as
g1 =z
| O if X =
A
I — A A e = = = - =
| ' 2
a
1
& i

Figure 6
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S0 we use the notationf ={m,s243) used for a triangular fuzzy
number with center «2 is a fuzzy quantity which x is a proximatcly

equal to a2 Where the support of [ is (a1,.03)} .

2.7 Furry Intervals:-

A subsct § of R is identified with g, and in particuiar, intervals [u,5]
are identified with their characteristic functions. namely the fuzzy quan-
tities #fa,5] . The use of intervals with their arithmetic is appropriate in
some siluations involving imprecisencss, When the intervals themselves
are not sharply defined, we are driven 1o the concept of fuzzy interval.
Thus we want to generalize intervals to fuzzy intervals, and certainly a
fuzzy quantity generalizing the interval [a,5] .
should have value 1 on [a,8] .

Definition 2.7.1:-

A fuzzy nterval is fuzzy quantity F satisfying the following:
. #is normal
2. the support {x e X : p,,, 20} of F is bounded
3. The  -cuts of £ are closed intervals.

Remark 2.7.1:-

l. In fact fuzzy numbers are fuzzy intervals the only difference is
that a fuzzy number can atiain the value ! a1 only one place while
a fuzzy interval ¢an have an interval of such places.
. . *
2. We denote 1o lurzy intervals by /7 .

2.7.1 Some Tvpes of Fuzzey Interval:-

Drefinition 2.7.1.1;-

A luzzy quantity is called trapezoidal fuzzy interval such thal

* . . . .
I =(m.a.a1.04) and jis membership function is:-
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[0 if x<ar
X — .
if mEXs g
it —ch
My {xy=41 it B E Xy
dé— X ]
if ar % X 5
31— a1
| O if x>as |
- M
£y (%)
1 pu—
| | >
a, €y da, a,
Figure 7

Remark 2.7.1.1:-

A trapezoidal fuzzy interval may be seen as a fuzzy quantity, xis

approximately in the imtervalla, a, .

2.8 L-R representation of fuzzy number:-

Definition 2.8.1:-

An L-R fuzzy number [ denoted by (m.a. #)is a fuzzy set which has

membership lunction defined for all xe R by
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L{m—.x} ir xsm

pn=d »
REEE if  xzm

With « > 0,4 >0 .respeet to left and right spreads.
Thus , L. is monotonically increasing toward land R is monotonically
decreasing from | with £{0)= R(0)=1 and L{) = R{1) =0, and the highest

membership value 1 s al x =m as shown in the nexi figure

wix T

]

T m m+i

Figurc §
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If m <0 ., we have a left translation, and for m > 0 we have a right

translation. .

Remark 2.8.1:-

L-R fuzzy numbers allow one to wne the shape of membership

function.
1. if @ <1 and g <1.we have contraction ;
2. ifex>1and g>1.wehave a dilation ;
3. and for ™ ¥ <™ we have a flatting as shown in the next figure
J 7 il it xsm,
g {x) =11 if m<xgm,
R it xzm,
)
m
R
, T > X
ml m2
n-n m+i
Figure ¢

Dilation (L). contraction(R), and flatting (m)
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if both | and R are linear ,we have a triangular fuzzyv number

4. 1t a linear L-R fuzzy number has m 1, 5m; <m, then it become

a raperotdal fuzzy numbers.

2.9 Operations On Fuzzy Number:-

It f['fl are two fuzzy numbers we need (o add, subtract, multiply and

divide them. There arc two basic inethods to do their operations:-

1. the extension principle;

2, @ -cuis as interval arithmetic;
on fuzzy quantities in the section 2.5.1 by using the extension principle.
And because the & -cuts of any fuzzy number is closed interval and we
have bounded support .thus we can use the notion of interval arithmetic

as operations on fuzzy number |

2.9.1 Operations on Fuzzy Number by using alpha Cuts:-

Lel J’I,.-’E be two fuzzy numbers and Jet

o=l X =8 R

la L7a 2a “ ]hc o -cuts, z{0,1] of
f | ) , respectively. Let o denote any of the arithmetic operations
() (-3 £ )N (A). (v} on fuzzy numbers. Then by using
Theorern 2.5.7, corollary 2.5.2 and Theorem 2.2.3 to compute
fof = :Jcr(.’l of,) “"z:'a'_"ﬂa ° fza ,ze{0,l] , Thus
{!1 o .-'zju is closed inta:;wal and we can compule it by applying the
interval arithmetic as f;n]]nw:-

1. addition/,, +7,, =z *+5 *.a "+b *]
a @

2. subtraction {_ -7, =[a Loy B g Rop L]
- L3 i o o
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3. Mulaphcation. of two closed intervals .'1 .1, denoted by
& =L

II "“rz =[U jr'u:l' Ri|-|:b L-.!:u lll‘,]=
o bl i & Frd tE

[min(aaf'baL.a,"b_ﬂ.agRbﬂL,a,RbGR].ln&t(a"Lb"L,aﬂ‘Lb K a Rp L.aﬂ‘qbﬂﬂ]

In case these intervals are in R* the multiplication formula gets
simplified o /, -/, =[a ' a H:|-[b Loy RJ:[G Ly oo B H]
oo tf i [ o oo oo
4. scalar multiplication
Letf, =[aa‘~,aaﬂ] be closed interval in #*and & 2 .identifying
the scalar k as the closed interval[k, k], the scalar multiplication k. £, is
kol g =kot,, =Ko " h ¥
defined as (Ko )y =kt =| Ka " Ka

3. division :-

The division of twao closed intervals /,_and 7, of & .denoted by

of [a",,a"_ ]and

V] provid ]
L b}]l’ﬂ\lﬂdUE[ a .

I,
L I ] " I L A "
[ ] s | = min( 2oy G Fa Ba ) e o L Gy
e 5, b 8T8, R
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[n case these inlervals are in & and as before ﬂe[a L.bak],this
o

. R

. . . o f a0 a
termula for the division gets simplified to 2 =| - o
fz, b R P
Lr e

Remark 2.9.1.1:-

As in mntervals arithmetic .it can be verified that (+) and multiplication
(.} operations on closed intervals as defined above are
commutative and associative but subtraction (-) and division (/) are

neither commutative nor associative. Also image of a closed interval

[J f',u RJ i3 |i—r: R,—u I‘J thus
oo & ir

[a La R]Jr[—a R —a "]:[G.U].Incase [a *.a R}is in #* and
& o 4 o [} 4]

ﬂE[a ta R] , thus
a  a

6. max-min operalions

Let /, and [, be two closed interval in R .then the max(v) and

min(~) operations on [, and /, are defined as:-
."I vfl =|r;: L,:r R:|v|:.': r‘.b lJ'1.}=|:r:.r SV f’.u va': Rj|
a & o It tr o & & iy o

."l ad, =l:a L,a R:ln[h ‘r‘,b R]z[a Lﬂb L,u Rnb R]
B Lo o @ ¢} 4 a o [H a

2.10) Fuzzv arithmetic:-

In this section we use the both operations the extension principle and
a -cuts as interval anthmetic. And since fuzzy number have closed

e -cuts and bounded interval thus we have.



Chapter? i1

2.10.1 Fuzzy addition:-

J'rom extension principle and corollary 2.5.2 we have that

Delinition 2.10.1.1:-

Fuzzy addition of two fuzzy numbers /.1, is defined by L+l =1

Where g, ()= sup_ . {min{,u“{x;.y,z{yl}

If and only if 1h=;h+gu=Prhuha%ﬂ+%ﬂlvﬂemﬂ=

o

Theorem 2.10.1.1:-

Additien of two fuzzy numbers is a fuzzy number.
Proof;-

Let { .1, be two fuzzy numbers we need 1o proof that !+ = I

is fuzzy number.

Thus we proof that f] + 12

1. 15 normal ;
2. @ -cuts are closed interval:
3. and have bounded suppon;

1. Assume Il +12 have the value 1 in exactly one place.

2. 3 from the corollary 2.5.2 and Theorem 2.3.7:

Coroltary 2.10.1.1:-

let 7,,1,,1, be fuzzy numbers, T'he addition of fuzzy numbers
sutisfies the following:-
1. (#} is commulative 2nd associative
"1 +1’2 =L+
{Il +}’2}—H3 = fl +t[f2 +.’3]
2. Nonsymmetric on image :
L )= (I =0
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3. Identity for fuzzy addition :
[ ro=o+f =1

Definition 2.110.1.2;-

Given a fuzzy number f, and a crisp number £, a hybrid addition of
two types of numbers is detined by [, =/ + K if and only if
#y, (3= gy (x = K) .therefore, this is simply a translation and J"I = I] +0

Delinition 2.10.1.3:-

l'uzzy addition for triangular fuzzy numbers:

I =(aaz,as and 1, = (bbab) defined by
II +f2 = (a4 g+ bza5+ b3)

DeNnition 2_10.1 4:-

FFuzzy addition for trapezoidal fuzzy numbers, 7 | = lawavas,a4)

.’2 = (#1,42.83.54) defined by 11 +.1’2 = (al + 41,02 + 82,07 + 53,04 + 54)

Definition 2.10.1.5:-

[uzzy addition for L-R fuzzy numbers. .’I = (x,a, )
Iz = (y.r.46} defined by Il +1 =(x+ ya+y p+d)

Delinition 2.10.1.6:-

Giving a fuzzy number /.7 is called fuzzy integer defined by
A=l+(F=-1)

2.10.2 Fuzzy Subtraction:-

Definition 2,.10.2.1:-

Let .’1,.’2 be fuzzy numbers, Then luzzy subtraction of I],Iz is
defined by .’] (—-}II = 13 Where ‘uh(.-:-= supx_y =:iq'nin(p“{x;1,ph{y:]

Ifandonlyif I, =1 -1 =[a Lep Rg Ry L]."E‘ae(ﬂ.l]
39' | o

) ir i
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Theorem 2.10.2.1:-

Subtraction of two fuzzy numbers is a fuzzy number.
Proof:-
Is similar to proof of Theorem 2.10.1.1

Definition 2.10.2.2:- .

FFuzzy subtraction for two triangular fuzy numbers.

II = {w,azaa) And 1, = {bb2.89) delined by
II - .:"1 = (m—b:,az—bz,m-—b])

Remark 2.10.2.1:-

The results from addition or subtraction between triangular fuzzy

numbers are also triangular fuzzy numbers.

I we have two triangular fuzzy numbers / (1, then
.’I —1'2 = fl[+)((—)1’2) and if !l = .-"2 then .-"l —II #0af fl 20

Definition 2,140.2.3:- _

Fuzzy subtraction for two trapezoidal fuzzy numbers.

fl ={alatosu1) And [, =(b,b263,84) defined by
jl _Iz ={a1-bs, a1 - 5,01 bz, a1 - b1)

Remark 2.101b.2.2:-

The results from addition or subtraction between trapezoidal fuzzy

numbers are also trapezoidal fuzzy numbers.
Curoltary 2,10.2.1:-

The subtraction of two fuzzy numbers in general is neither

commutative nor associative; it is defined in integer Z and real numbers

R butootin ¥ orR7 .
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2.10.3 Fuzzy Multiplication:-
Definition 2.140.3.}:-

Let f be a fuzzy number and X is a scalar inR . then

. K=0,Kef=0
2. K#0,K«f, =1, [Fand only if‘,uh{z}.eph(f} Nerel.

Definition 2.140.3.2:-

Let /.7, be twe positive fuzzy numbers. Then fuzzy muliiplication of
.-’I,fz 15 defined by !I{-)J’z = 13 where
‘”f.‘l[:} = Supx LI 4 !(nin[#ﬁ{x]”uhl:y}}
[Fand only if 7, =1+, =[ua"' b ta feb R}.Vae (0.1]

is called fuzzy multiplication in Rt orn

Deftnition 2.10.3.3:-

Let f | A , be two negative fuzzy numbers. Then fuzzy multiplication

of fl.fz is detined by [,(-)/, =/, [f'and only if

L.=1 =[a Rop Rat, ]‘?’ae (0.1]
o o

Iz o

(1s called fuzzy multiplication in R~ ory™)

Definition 2.10.3.4:-

l. Let 7, be positive and 7, is negative fuzzy numbers. Then fuzzy

multiplication of IIJE is Defined by [,(«)f, =1, If and only if

1, =1

& la

= [a Loy Ra Rop L] vae(0,1]
o a o &
2. li-‘:t."I 15 negative and fz s positive fuzzy numbers , then

&

I. = "'rzu= [u f‘-h R.ﬂ' Rtb L:| '?'GEE(EJ,]]
o ¥ o
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(1. 2 ts called fuzzy multiplication in R andz)
Corollary 2.10.3.1:-

1. {.}is commmutative and associative.

2. there is an 1dentity "1" for fuzzy multiplication :
!-l:f:]-!,‘v’fe.’r.
30 (=M =0 () = SOCIPSR
4. inverse ,in general , does not exist :
17l 2],
5, (=) is distributive if ’r:"’; with same sign. both positive , or
negative as below: !I(-](Iszj} = [II g-}!2)(+){fl(-]!3)
2.10.4 Fuzzy Division:-
Definition 2.10.4.1:-

Let / and 7, be two fuzzy numbers either have the same sign, both
negative, positive or have different sign one positive and the other

negative. Fuzzy division is defined b}f:."3 = ."I (I}IE Where

pp=sup o mine oo, o)

=sup_ z{min(,uhuql, #h%})} =sup . hin(y“{x;, ) I {_v:l)f
] ' _ - L K K L
[fand only if Isa = Ila ”2.:: = [au a’ha @ ;".!:{Jr ]"':?"-:xe (ﬂ,l]

2.10.5 Fuzzy Max and Fuzzv Min:-
Definition 2. 14.5.1:-

Let .r'l and 12 be two fuzzy numbers,

with/ =[a L oa R],I
iz a o oa da

=[¢a‘~,buﬂ] then fuzzy max is defined

I:-:.-':J’3 =max{fl.f2}=.’] v.fz Where
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'Hfjl::} =Sup, vym: hm(‘“."l (). FIEI‘P}JI

If and only if'f =[u Fyvb ba By R].
Iz i e

And for fuzzy min:
fj = min{!l,fz} = I] m"z , where

yh{:} = s.upw'r . i‘n:n{ﬂh-‘.x},,&th{yl}i

Ifand only if7, =[aa1hbﬂi',a R nb R:|.

o [F)

Corollary 2.10.5.1:-

1. (v) and(~) are commulative and associative.
2. disuibutive 4, (A)/,00),] = G (AL MK (A}
RO (A, 1= (L (W XA )Y
3. Absorption LM~ ])=1 LA (V)L ]=1,.
4. de Morgan's law 1= (f,(~), )= (=}, [(VI[I(=)4, ]
T=[A 0L 1= (=3 TA=H 4

3. ldempotence f,(vM, =1, =1,(~),
b, AUV = U (BN (HE)
1. 0D = {4 (+3)

Remark 2.10.5.1:-

Ihe results trom mulliplication er division of triangular fuzzy
numbers are not necessarily triangular fuzzy numbers. And also
multiplication or divisions for irapezoidal fuzzy numbers are not

necessarily trapezoidal fuzzy numbers.
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2.11 Examples on chapter 2:-

2.11.1 Example an_The extension principle

Let f{x)=x" and let { be a triangular {uzzy number with membership

I-la-x|/a if jox|<a
otherwise

function f{x)=
unction f{x} {{}

Then using the extension principle we get

1) ={”‘G} " r20 }

i} otherwise

atherwise

That is f(f}(_;:}:{l-|"_"ll;|/“ i |“'\E|5¢1’ ﬂnd}'aﬁ]
0

fxy=x

F (I}

L I

Figure 10

2.11.2 Example on ¢convex fuzzy sets:-

Let F be a fuzzy set whose membership function is defined by

0 . il x{ﬂ]

K

=
Hr () {e ,if xz0
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Assume x, x,.
Three possible cases are considered below:
1. for x.x, <0 trivially the condition of equation
fehAx, +{1= A, 2 min[g, (x4, (x, ] 18 salis{ied,
2. for x, <0 but x, > 0 two sub cases arisc:
) xSy +{-Ax, <0
i) 05dx, +{l=-A)x, sx,
Since x, < ix, +{1- A)x, < x,. for the (1) case equation
e[ Axy +{1 = Adx,] 2 minf . €0 ) p, (0,01 is satisfied as for the (i) is also
satislied ,since
gee[Ax, + (= Ay, 12 e % > 0 = minfue, (x), g5 (15)]
3. for x,x,20
#plAx, + (1= Ay 1 = expl=[Ax, + 0= A)x, [I2 expl- [Ax, + (1= Dyx, ]| =
e.w;p[— [xE]]=min[;:*.(x,],,uF{.r:}]
SINCE g, (X, ) 2 w4, (a0, Henee Fis convex fuzzy set,

2.11.2 Example on fuzzy number:-

Let f = (e1,42.03) be triangular fuzzy number where the membership
function given as following :-
[ O if x<al

i ir alZxsal

iy ={r-a |
if a2 s x<al
& — o
L0 if xr>al

We can obtained [, as follows :vae(0,1], from



{ hapter2

L £
a —a 1, -a

! log 222 =y wcgct-a,L ={a,~ax+a .
a, —4, a,~a,

g h
a, =—(a; —a)x+a, this

frr =[a] g ,a}R:| =[{u1 — e W+ et = (a, —ag a,_]

In case of the triangular fuzzy number }'] = {—5,—11) the membership

function value will be

[0 if ¥ <=5
"::‘ if —$ge<—|
M (xy=1 >
| |—x v
— it 1g5xsl
2
L0 it 1)

a -cut interval from this luzzy number is

¥+5
I: 4

=at=lx=4da-5) {I_sza]ﬂ(x:—ﬁaﬂ].

fla =[al‘,a3'q]=[4a -5-2a +1] ife =05, substituting 0.5, we get

Ilms} =[-3.0].

T 1 1 1T T 11 1
0 6-5-4-32-1 0! 2

\____

f9.5

Figure 11
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2.11.3 Example on fuzzy arithmetic:-

1 .addition

[Let /,=2 and /, = 8 be fuzzy numbers where

0 if x=0otx=>4d

,uz{.r}=<% if ox<2
2T i 2cxe4

2 J

0 if ysiory=1l
;:,{,1-}=4$ if  3<px8:
-y Byl |

L 3

Using a —cais . for « € (0.4

d=x
-

-

M)z w ::%Ea And o losysd-la .

Therefore 2, =[2e,4 - 2a] .
i 2a

I -y
=>T2cr a:\d“Tyz_cx=3~3+5a5ysH-3u .

Therefore 8, =[3+5a.11-3a] then, we have Z =7, +1, with

Zy =3+ Ta,]ﬁ-ja]s[ZLn,ZR,] Yo e (o]

L

£ -3

3+T|‘I=2La =

L]

R
15-5a=2%, :L’%q
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Therefore
0 it zE3orz>15
,{tz{x}=1$ if  3czglo b
1'"‘: if 10<z2s15

—
a2
]

248

L 4

| l ]
0 2 4 6 8 10 12 14 L6

Figure 12

2 subtraction :
For cach & e (0.t} we have 2, =[2a,4-20]. 8, =[3+5u11-32].
Therefore, the n-level atter subtraction is
Z, =[-1 i+sa,|-7a]-[zh.z”uj Neelo].

Z "4

erl
Ser— V=X u =3y m =X

Lon . 1=2." e :
because 1-7g=2," S a= T" the membership function of Z is

6 if zg-llorz>l
z+11
3
7

ir-1lezrs-6

e

Hp(2) =1

L2 i s6<rg
B

4
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2{-18 I 2 L]

Figure 13

3 .multiplication

Again, we first have 2, =[2a.4-2a], 8, =[3+50,11-34],
Then because 2, =2, .8, =l|0a-’- +6a,6a’ -3 +44] .

—-6++364407%,

Wehave 2t =10’ +6e > a =

20
, 34— x
And 2%, 260" —Jda+ M > a=" '“1”;242, )
U il vEtary =44
-6+ 36+ 402",

if 0<zgl1b

Therefore 4, (z) =+
Hz(2) 20

34-,J100+ 24z *
z if 16<zsd4

12

v
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IR T T R T T R T S A T % S

T A BN QR H RN NS N DT BBO0RY

Figurel4

4 .division ;

For 2, =[2ard - 2] and 8, =[3+5e,11-32] , we have

- ia 2 £
Zy=2,/8, = =t _ﬂ where 24, = il == _].]_Za_
11=3 3+ 5 11— 3ex 370 42

4-2a 4-3z% .
ZY= = a=—"""% therefore .we have
“ 3i35q 2+52%,
J if zsﬂmz>%
11z . |
ﬁz(-]—‘m il ﬂ{ZSE -
4-3z | 4
—_— if —czz—
|2+ 3z 4 3
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0 1/4
4/3

2

4

Figure 15

10

12
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3.1 Fuzzy logic:-

Formal language 1s a language in which the synlax is precisely given
and thus is different from informal Janguage like English and French. The
study of the formal languages is the content of mathematics known as
mathematical logic. The mathematical logic 1s called classical logic in
tis chapter. The classical logic considers the binary logic which consists
of truth and false. The fuzzy logic is gencralization of the classical logic
and deals with the ambiguity in the togic.

The material in this chapter taken from the following references
[3ULILSLI20L 331001 O 3L L0 240622 ) 11911421 L[7).[231.11 7].[6]
[29LI4LI5].

to develop an n-valued logic, with 2<ngew. Such that it is isomorphic
to the fuzzy set theory in the some way as the two-valued logic is
isomorphic to classical set theory.

Zadeh modified the lukasiewicz logic and established an infinite-valued
logic. By defining the follewing primary logic aperations:

~a=l-a

& Ah =minja, b}

avh=max{a,b}

d=b=min{ll + h—u}

aeb=]-|u-p

It has been shown, in logic theory that all (hese logical operations
become the same as those for the two -valued logic when n=2. And also
when 6=3. More importantly, when n=w, this logic dose not restrict the
truth values to be rational, They can be any real numbers in [0, 1]. It has
also been shown that this infinite —valued logic is isomorphic to the fuzzy
st theory that employs the min, max and {1-a) operations for fuzzy sct

intersection, union, and complement, respectively,
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Thus the fuzzy logic is allowing truth values (o be any number in the
interval [0, 1]. If p is atomic proposition, then will now et t (P) denoted
the truth of p. 50 t (p) € [0, 1]. For any proposition in fuzzy logic t {p) =1
means that p is absolutely true, t (P) =0 is that p is absolutely false and
t (') =0.65 just means that the truth of p is 0.65. Thus in real world
propasitions arc often only partly true, Tt is hard to charpcterize the truth
of "All 15 old" as unambiguously true or false, 1f Ali is 60 years old. In
some respect he 15 old; being eligible for senjor citizen benefits at many
establishments, but in other respects is not old since he is not cligible for
social security. So in fuzey logic we would allow t (Ali is old) 1o take
values in[0,1].

To describe fuzzy logic mathematically. We introduce the following
concepts and notation. Let X be universe set and F be fuzzy set associated
with a membership function, p.(x),xe X ,if ¥ = ,.(x,) isa pointin [0|]
representing the trith value of the proposition “x,is o *, or simply "a",
then the truth value of " not 2" is given by
~ ¥ =g (5 1SN0 AY=Y— 2, (X, 15 A)=1-p(x) =1y
Consequently, for #» members x,........x, 18 in X with s corresponding
truth values y, = . (x,} in [01] , i=),........nby applying the extension
principle. The truth values of "not a " is defined as~ y =1-y i=|,........ n.
Here, we note that when n=w is alowed to define the logical operations
and, or, not, implication, and equivalence as follow:
for anyabe X. u(aab) = pr(a) A g (B) =min fuay (a), o1, (D).

He(av b) = pe{adv g, (b) = max{u, (a), 4, (b))
Hpl~a)=1-u.(a)
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(@ =2 b)= pa) = g (B) = min{L1+ e (b)— e (@)}
He (@ € by = pty (@) & g1, (B) = =i {@) — 1 (b,

For multi-point cases, ¢.g. ai-.bj e X with yF[af},yF[bj] [0 i=1.n,

J= heum where 120, m S, wecan define
,uFl:a], ........... an}r\yF{bl.......“.,.bm]=max{min{pF{aj),pF[bj}} 1.
15ign.l<)<m

Remark 3.1.1:-

* Fuzzy propositional calculus generalizes classical propositional
calculus by vsing the truth set [0,1] instead of {0,1}
« The set al'building blocks is a set V of symbols representing
atomic or elementiry propositions.
e The set ol formulas F is built up from V using the logical
CONNECIIVES Av,~ .
* Asin the two ~valued and three-valued propositional caleulus, a
trutl evaluation is gotten by taking any function £:F —[0,1]
and extending it to a function +: ¥ - [0,1] by replacing each element
a el which appears in the formula by its value (o) which is an
element in[o,1].
« this give an ¢xpression in clements of [0.1] and the
CONNECHives av, ~
» this expression is evaluated by letting xv y = max{x, y}

xay=min{x,y},~x=l-x.
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« For elements x and v in[0,1]. We get an equivalence relation on
F by letting two formulas be equivalent if they have the same
truth cvaluation for ally.

o A formula is a 1awtelogy if it always has truth value 1.

* Two formulas p and q are logically equivalent when «p) = 1(g)
For all truth valuaions t.

¢ Asin three-valued logic the law of the excluded middle and the
law of contradiction fail.

3.1.1 Fuzzv Expression:-

In fuzzy expression (fermula), a fuzzy proposition can have its truth
value in the interval {0,1] the fuzzy expression function is a mapping
function from [0 10[o,1], F:[03]~>[0.1]

[f we generalize the domain in n-dimension, the function becomes as
Follows:
FIo0]" = [0,]
Therefore we can interpret the fuzzy expression as n-ray relation from
n fuzzy sets to[0,1]. In the fuzzy logic, the operations such as negation (~),
conjunction () and disjunction (v} are used as in the classical logic.

Definition 3.1.1.1:-

The fuzzy logic is a logic represented by the fuzzy expression (formula)
which satisfies the followings.
1. Truth values, 0 and |, and varinble X (E[00i=12,....,n) are
fuzzy expressions.

2. IfF 15 a fuzey expression, ~ I7 is also fuzzy expression.
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3. IfF and H are fuzzy expressions, FAH and Fv I are also

fuzzy expressions,

3.1.1.1 Operation on Fuzzy Expression:-
There are some operators in the fuzzy expression such as (~) negation,

{ ~} conjunction, (v ) disjunclion, and (=) implication, However the
meaning of operators may be different according to the literature, [f we
follow lukasiewicz's definition, the operators are defined as follows for
a5 0],

l. negation ~a=1-4

2. Conjunctionaaf=minfa, &) .

3. disjunction av b =max(a, b}

4. implication a=5b=min{l,1+b-a)

The propertics of fuzzy operators are following;-

{1} involution ~{~a}=a
(2} commuiativity a ab=b ra,a vb=b va
(3) associativity {a ab) ac=a A (ba ), {avh)

ve=a v {b ve)

(4) distributivity _ avibac)=(a vb} A {a ve)
a a{b vc)a ab) v {a ac)

(3) idempotency a A8Ta, a4 va=a

{6) Absorption avi{aab)=a, aaavbla

(7} Absorption by @ and 1 a al=0,a vi=|

(8) 1dentity aal=a,avl=a

{9) de Morgan's law ~(a ab)=a v~b. ~{a vb}=-1 a~b

Table 1
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Example 3.1.1.1.1:-

We can see that the two properties are not satisfied in the following
examples:-
1. law of contradiction
Assume {a) is in[0,1]}. aa~a=Min[a, ~a]=

Min [, 1-a] =[a if 0ga<0.5 ]

I-a if 05<a<]
Thus 0<an~as0.5 then aa~a=0
2. law of excluded middle
Suppose (a) is in [0,1] .

a if 052a<l
av ~a=max[0,l}= max[a,} -a) =

l-a ifG<casQs

Thus 0.5<av-gel

Then v ~a=1 if a=0orl
av-a<l otherwise

Example 3.1.1.1.2:-

Let a=1, b=0
—-g=0
anb=Min(l0y=0

avbi=max{li) =]

o ol R e

a=h=Mnrllll-l+M=0

3.1.2 Basic Connectives:-

Consider a picee of information of the form™ if (x is A and y is not B),
then (z is ¢ or z is d)". An approach to the translation of this type of

knowledge is model it as (uzzy sets. To translate completely the sentence
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above, we need to model the connectives "and ", "or", and "not", as well
as the conditional “if ..then ...".This combining of evidence, or "data
fusion”, is essential in building expert systems, or in synthesizing
controllers. But the connectives expens use are domain dependent they
very from field to field, The connectives used in data fusion in medical
scicnce are different from those in geophysics .so there are many ways to
model these connectives, The search for appropriate models for “and” has
led to a class of connectives called "T-norms". Similarly, for modeling
“or” there is a class called "t-conorms”. We will investigate ways for mo-
deling basic connectives used in combining knowledge that comes in the
form of fuzzy sets. These models may be viewed as extensions of the an-
alogous connectives in classical two-valued logic.A model is abtained for
each choice of such extensions, and one concern is with isomorphisms

between the algebraic systems that arise,

3.1.2.1 T-Norms:-

Consider first the connective "and”. When A and B are crisp subsets of

a set U, then the tahle

Al D i
B
\ 0
] 0 1

Table 2



Chapter 3 g1

Gives the truth evolution of "A and 3" in terms of the possible truth
values 0 and | of A and B. The table just specics a map
A0 {01} = {00} when A and B are fuzzy subsets of 1, truth values are
the members of the interval |0, ], And we need to extend this map to a
map A:[01]x[01]— [0,1] one such extension is given by x Ay = minjx. 3}
This mapping does agree with the table above when x and v belong to
{0, 1}. We make the following observations about x A y=min{x.yi:

1. 1 acts as an identity, That is, 1ax=x.

2. iscommutative. Thatis, ray=yax.

3. aisassociative. Thatis, xa{yazi=(xay)az

4. is increasing in each argument. that is if v<w and x < ythen

VAXS WA Y

3. note that A is idempotent that is xax=x

Any binary operation

T:[00N=(01] =01
satisfying these properties is a candidate for modeling the connective
"and" in the fuzzy setting, They were termed "triangular norms®, or
"F-norms" for short.

Remark 3.1.2.1.1:-

We will use these T-norms as a tamily of possible connectives for fuzzy
intersection, Now T-norns are binary operations on [0, 1] and a commeon
practice 1s (o denote them by 7'y, 3.

Definition 3.1.2.1.1:-

A binary operation T:[0,1]x{0,1) -+ [0,)] is a T-norm if it satisfies the
following:-
v y2,wel]]
l. T(x,0)=0Tix)=x boundary condition

2, T,v=T(y,x) commutativity
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3. T(T(x, )2y =1{x,T(}y.2)) associativity
4, if wsx and ys: then7(w,v) s F(x.2)
Monotonicity (is increasing in cach argument)
The first, second. and fourth conditions give 7(0.x)<T(0.1)=0

We have the follewing examples.

Example 3.1.2.1.1:-
xay it xvy=l
. Tix.ylI=
L Ttxy) {ﬂ othcm'isc}

2. T, y)=0v{x+y-I)

=X
> )= 2—(x+y-xp)

4. Tix.¥)=xv
5, T4{x1y)=—{}-l_
X+y—xy

6. N(x.y)=xAy

Propuosition 3.1.2.1.1:-

If T is a T-norm, then forx, p &|0,1], then T,(x, ) S T(x y) < T,(x,»)
Proof:-

xay il xwy=1
otherwise

We now from above that 7y(x, vi = {(}
And T,(x, py=0unless xv pul, Now Fix, = say il xvy=l 80T <7

Since T{x. p)Sxay, sof(x, rISTiiy,p)

Remark 3.1.2.1.2:-

The T-norm A is the only idempotent one, that is the only T-norm such
that T(x,x}=x forall x,
And for any T-norm F{x,x)=x is never great then x.

Thus we find that it's not necessary that 7= A

There will be an element x such that T{x, x) < ..
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Definition 3.1.2.1.2:-

A T-norm T is convex if when every 7(x,y)<e < Tix, ) then there is an
{r) between xand x, and an (s ) between yandy, such thate = 7(r,5).

Remark 3.1.2.1.3:-

For T-norms, the condition of convexity is equivalent to continuity. We
refer to the condition as convex.

Corollary 3.1.2.1.1:-

IfaT-norm T is convex and o <& then there is ¢ e [u,5] such
thata=T(b,c) .
Proof:-
Ta.p)=T(l,e)=a<T{14), so by convexity, there is such ¢.
Definition 3.1.2.1.3:-

A T-norm Tis Archimedean if it is convex, and for each 4,6 (0,1}, there

" =T{a,a,.....a}<d

n limes

1s apositive integer n such that

In general we will write T(a,a) =" and T(a.a.4) = ™., 50 on.
We use alinstead of 4" for this T-norm pawer 10 distinguish it from a
multiplied by uself n times.
The examples?, .7, , 7, and 7, are all Archimedean. For convex T-norms
the condition for Archimedean simplifies. as the corotlary to the
following proposition.

Proposition 3.1.2.1.2:-

[fa T-norm 7 Archimedean, then fora,be (0,1). T(a.b) < b.
Proof:-
If 7 Archimedean, ther forae (0.1}, cleatly that T(s,0) < a lest ¢ =g

for alla.
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ila<kb. then Tia by Thb) <h.

1. [f g»b, thenfla.b)sT(L.6) =6, thenT(a".5) = 5. For all», but
for sufficiently large n. @' <4 . and b=T(a"™.5) < T(5,5), an
impassivity,

Coroflary 3.1.2.1.2:-

The following are equivalent for a convex T-normT.

1. Tis Archimedean.
2. T(a,wycaforallae(0]).
Archimedean clearly implies the second condition. Assume that
Tla,m <a Jor alla e (0, .and leth ).
Thena, o™ = a o« =T(a,A,a'™), whencea, o =0, and the corollary
ollows.

Definition 3.1.2.1.4:-

I. A T-norm 7 is nilpotent if fora #1,4™ = 0 for some positive
integer n, the n depending on a.
2. A T-norm is strict if fora « 0,4 >0 for every positive integer n.
3. Anclement a2(0,1)is called a zero divisor of Tif there exit
some be(0,1) such that T(a.b)=0.
Example 3.1.2.1.2;-

1. for 7, cach @< (0,1}is both nilpotent element and zero divisor of T
As well as of the 7,

2. T,has neither nilpotent elements nor zere divisor .

3. Thas no nilpotent elements and no zero divisor also 7, is strict.

Remark 3.1.2.1.4:-

L. M ue[0,1] is an idempotent clement of a T-norm T then by

induction we also have ¢ =¢ forallne & . In particular, this
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means that no element of (1) can be both idempotent and
nilpotent.

2. Each nilpotent element ¢ of a T-norm Tis also a zero divisor of T
(ifn>1) is the smallest integer such that o™ =0 then
T{a,a"™ Ny =0witha"" > 0,but not conversely,

3. ita T-norm T bas a nilpotent element o then there is always an
element be(0]1)such that3¥ =0, indeed , if »>1 is the smallest
integer thatd™ =0 then b= " satisfies s = 0.

4. I a=(01) is a nilpotent element (a zero divisor) of a T-norny T then
each number & & (0,a) is also a nilpotent element (a zero divisor)
of 7.

Proposition 3.1.2.1.3:-

For each T-norm 7 the following are equivalent
). T has zero divisor
2. Thas nilpotent elements
Proof:-

If Thas a zero divisor, i.e. if T{a,b)=0 for some o> 0andé > 0, then for
c=min(a,b) >0 we obtain T{c,c}=0 showing that ¢ is a nilpotent element
of T . Conversely each nilpotent element a of T-norm 7 is alse a zero
divisor of T (if n>1 is the smallest integer such that o =0 then
Tla.a" M =0 withg!™"50).

3.1.2.2 Negations:- -

The complement of a fuzzy set F has been defined by £4(x) = 1 - #(x).
This the same as following: by the function 1°:[0,1]- 0,1

By x— 1-x. This latter function is an involution of the lattice L=((0.i].s}.
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That it is ordered reversing and appling it twice gives the identity map. In
fuzzy set theory, such a map [7:[0,1] = [0,]] is called a strong negation .A
strong negation 1° satisfics:

1. T{0)=1, T{(i)=0

2. I'is non increasing.

3 TIi(xn=x

A map satisfying only the first two conditions is a negation. [t is clear

that there are many of them, any non increasing map that starts at | and
gocs 1o 0. Such simple maps as C{x) =1 if x=1 and =0 otherwise, are
negations,

3.1.2.3 T-conorms:-

The notion of T-norm plays the role of interseetion, or in logical terms,"
and" .the dual of that notion is that of union, "or”. In the case of sets.
union and intersection are related via complements. The well-know de
Morgan formulas do that. they are A8 =(4n8°)"

AnB=(4"U B . But in fuzzy sctting we have many "complements”.
A negation plays such a role. For a binary operation 7'on[0,1],we can
define its dual with respect to any negation 1" namely
Clx,»)=T(T{T(x).I (¥} . Thus the last cquation holds if and only if
T(x, »)=T(C(I{x}, T{3)) 50 1f these equations hold , then we say that

T And C are dual with respect toT".in the case Tis T-norm then € is
calledT-conorm is the dual of some T-norm with respect to some

negation.
Definition 3.1.2.3.1:-

A binary operation Con [0,1] i.c. a function C:[0,1]* = [0.1) which for all
xy,zwel0]] . is al-conorm iCund only if satisfics the following

condition,
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1. Cix. ) =C{p,x) (commutalivity}

2. C(x,C(y,20) = C(Cx, ¥}, 2) { associativity)

3. if wsxand y<z then C(w.y)<C(x,2) (Monotonicity)
4. C(x0)=x , C(x1)=x (boundary condition)

Example 3.1.2.3.1:-

The following are the basic t-conorms

1. €y =max(x,y) {(maximum)
2. C,=x+y-xy (probabilistic sum)

3. C, =min{x+,)) (Lukasiewicz t-conorm,bounded sum)

4. Cy(x, ) --.4{l i (e !ﬁ’lr } (drastic sum)
max(x, )}  otherwise

The following proposition gives propesties characterizing t-conorms.

Proposition 3.1.2.3.1:-

A function C:[0.0)° —»[01) is aT-conorm if and only if there exists a T-
norm T such that for all (x, ) e[04]F €(x,x)= DT CA.LON
or E(x,3)=1-T(l-xl-p}... {*)
If 7 is a T-norm then obviously the operation ¢ defined by (*)
satisfies condition (1).(2),(3).(4} of T-norm and the condition (4)
of T-conorm.And therefore a T-conorm,
On the other hand if Cis aT-conorm then define the function
T:(0)F = [01] by T(x.»)=1-Cll-x]=1)... (**)
Again, it is trivial to check that 7'is a T-norm and that (**) holds.

Remark 3.1.2.3.1:-

1. TheT-cononn given by (*) is called the dual T-conorm of 7" .and the

T-norm given by (**) is said 10 be the dual T-norm of C.
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2. The proof of proposition (3.1.2.3.1) makes it clear that also each T-

norm is the dual ;‘.,‘Ir[}crﬂﬁml ot someT-conorm note that (7,,C,)
(7,C 1 {T.CYand (T,,C, ) are pairs of T-norm and 'T-conorms which are
mnutualiy dual to each other,

3. all T-conorms coincide on the boundary of[0,1F. as consequence of
these additional boundary conditions which hold for all xe(0,1]

Cllx)=Clzly=1C{0,x1=x.

4. The duality changes the order if. For some T-norms 7, and7, we
have T, <7, and i €,and C, are the dual T-conorms of 7; and
T;respectively. then we gelC, = C, .consequentiy, for cachT-conorm
C we haveC, <C5C, . i.e. the maximum C, is the

Weakest and drastic sum C, is the sirongest T-conorm. i.c.
C,<C,<C, <C

Delinition 3.1,2.3.2:-

AT-conorm is Archimedean if it is dual to a ‘t-nonn that is
Archimedean. is nilpotent if it is dual to a nilpotent T-norm. and is strict

if it is dual te a strict T-norm. Thus for nilpotentT-conorm ¢ if and only
if xe(0,1] . # =1 for somen, where #* means xconformed to itself
niimes. And for archimedean property, for cach {x,»)&(0,1)* there such
neN , sy

Definition 3.1.2.3,3:-

Let T be a T-norm and € be T-conorm, then we say that 7
is distributive over C if for allx, y,z €[0.1]
FixCiyz))=C(T{x, 0.7 {x 20 And that € is distributive over 7 il for

allx. y,z€[01]. Clx, T{y, 23 = T{C{x, ) Clx. 2).
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Remark 3.1.2.3.2:

If T 1s distributive over € and ¢ is distributive over 7 then (7 ,C ) is

called a distributive patr (of T-norm and T-conerms).

Proposition 3.1.2.3.2:-

Let T be a T-nporm and € aT-conorm then we have
1. C is distributive over T if and only if T=T,
2. Tisdisiributive over C if and only if C = C,
3. (7.C} is a distributive pair iff 7=7, and ¢ = ¢,

Let 7= 7, obviously, cachT-conorm is distributive over T, because
1. of Monotonicity condition (3) of the T-conorm. Conversely . if
C is distributive over T then for all xe]0,1]we have
x=C(x,T(0,0)) = T(C(x,0),C(x.0)) = T(x,x} .then for all(x,3) [0,
with y <x the Monotonicity condition (4) of T-norm implies
y=T(r¥)<T(x,y) s (x y)= ywhich, together with condition (2) . means
T=T,. Proofof (2) and (3) is just the combination of (1} and ¢2).

Remark 3.1.2.3.3:-

If Tis aT-norm, ¢ the dualT-conorm and if T is distributive over ¢
(or € 1s distributive overT ) then we necessarily have 7= 1, and
C=c,.

3.1.2.4 Fuzzy implications:-

In classical two ~valued logie, the implication may be expressed on
{0, 1} by the formula (e = b ) is binary operation on the truth values
{0, 1}.In fuzzy logic, our set of truth values is [0. 1] and so material
implication(= } should be binary on [0, 1] such operations should agree

with the classical case for {0, 1},
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A fuzzy implication is a map =:[0,]]x[0,1] — [0,1] . Satislying

= { 1
0 1 1
1 0 |
Tahle 3
Example 3.1.2.4.1:-

Here some examples of a tuzzy implicalion.

| (x:.ﬂz{l .if xs_p}

0 if x>y
2 (x= = (l-x+¥ial)
3. (x5 3)=((1-x)v y)

The class of all possible fuzzy implications consists of all functions (=)
defined on the unit squarc with the given values on the four comers.
There are three basic constructions of fuzzy implications, They arise from
three ways to express implication in the classical case. The following are
equivalent for that case.

8 (y=>¥)i=v{zr:xazgy)
* {x=p)=xvy
¢ {(x>¥)I=Svixay)
These three conditions make sense on [0,1] when a T-norm is used fora,

aT-conorm forv, and a negation for {(complement) .We can give the
[ollowing casa:-

Definition 3.1.2.4.1:-

An R-implication is a map =:[0,1]x[0,1] - [0.I] of the form
(x=yi=wvlze[0l]:T(x,2) =yt Where T is T-norm .
Thus (R-implication : x = y=sup{z e [01): T(x,2) < ¥}) . ypical examples

of R-implication are the { Gddel and Gaines) implications
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Definition 3.1.2.4.2:-

A T-norm implication is a nrap =:[0,1]x[0,1] — [0,1]

(x= y)=T(x,y). I'ypical example of T-nonn implication are the

(Mamdani) (x = y = min{x,3}) ;and (Larsen) ({ x => y) = xy ) implications.

Definition 3.1.2.4.3:-

C-implications 1s a map =:[0,1]x[0,1]—[0,]] of the {orm

x= y=CT(x),¥), Where € isT-conorm and T is a negation on[0.1].

Typical examples of C-implication are the (Lukasicwicz and

Kleen-Dienes Implications.).

The most oficn used [uzzy implication operations are listed in the

tfollowing table.

Name Definition
Early zadeh (x = y) = max{l — x,min{x, )}
Lukasiewicz (x=> ) =mmn{li-x+y

Mamdani {x= y)=min{x, y}

Larsen {(x=y)=xy

Standard sirict lif x<y
{x=>yl= _

0 otherwise
odel 1 if x<y

Go (x=y)= ’

¥ otherwise
(Giatnes

I if x=y
(x=y)=1,
% otherwise

Kleen-Dienes

(x=yi=max{l—x1

Kleen-Dienes-lukasiewicz

=) =1—x+zxv

Yager

===y

Table 4
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Remark 3.1.2.4.1:-

If T is any T-nonn then the following calculations show that an
R-implication is an implication.
Letl T be any T-nerm.
* (=20=vlze|0]]:T{Lz)sM=0sinceT{l,2) =z
* =20 =v{ze[0I]:T{0.2}<0} =1 since T(0,2) =10
o (0=1)=vi{ze[l]:T{0,z)=1}=1 since T{0,2) = ]
* (=2 =vize[0I):T(L2)< 1} =1 since T(1,z) < |

For R-implications=s..it is always the case that (x =y} =1 for x<y since

TixN=xsay

3.2 Fuzzy Relations:-

Relations, or  associntions among  objects, are of fundamental
mportance in the analysis of real-world systens. Mathematically ,ihe
concept is a very general. There are many kinds of relations: order
relations, equivalence relations and other relation with various important
properties .rclations are a  ubiquitous in mathematics and their
generalizations of fuzzy theory arc important .in this section we present
some of these gencralizations  with an  emphasis on  binary
relations.especially  fuzzy equivalence relations which generalize
ordinary equivalence relations To generalizing relations to fuzzy
relations is easy .An n-ary relation is a subset R of the Cartesian

product X, x X x.....x X, of (n) sets. The generalizing to fuzzy case is the

naturzl one.
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Definition 3.2.1:-

A crisp relation R represents that ol from sets Xio Fior xe X and
ye ¥, its membership function #y(x, yythis membership function maps
AxF 1oset 00} | rp: Xx¥ {0},

1 iff (x,)1e R}

2l y) = {n HE (x. ) e R

We can extend the above definition to define the fuzzy relation.

Definition 3,2.2:-

Let xand ¥be two universes. A binary fuzzy relation g, (x, ) or for
short R(X,13 on X «Y is defined as
R(X.Y)= a2 a3 (5,0 € X F), where g - X x ¥ =5 (0] is a
grade of membership function, If X = ¥. Then R(X,Y) is called binary
fuzzy relation on x|

Although an n-ary fuzzy relation on a product space
X=X X, %o = X, may be defined by an n-variant membership
function wy(x,,.....x,) in the similar way,

Remark 3.2.1:-

In the definition 3.2.1 if the universes v and ¥ are uncountable

(continuous) we may have R(X,¥)= [H “‘% y ~{*}is a binary

Iny
fuzzy relation on X x ¥ .if ¥ and ¥ are countable (discrete) universes,

then R(X,¥) =3 pylx.0)f(x,¥) . Also the integral symbol denotes the set

Rap

of all tples '”!':I*J":'(x py on X x¥. Il is possible to express (*) with

— [ [#Hr(x:¥)
RED Y-
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Example 3.2.1:-

Let X ={1,2.3}then "approximately equal” is the binary fuzzy relation

Jan* {12}*%3.3}*0%.21""%2.3}*&%2.1:-*ﬂ%.m*ﬂ%,n*ﬂ%.n

‘The membership function i, (x,y) of this relation can be described by

| whenx=y
Halx.3)=<08 thn|_r—_|r'|=1
0.3 when|x—){=2

Example 3.2.2:-
Let X =[0,250] be the interval of height of persons, and suppose that

g (x, yyrepresents the "much taller man”, Where
o forx—3 <20
X=F .

Halx, )= T lor0<x—ya2

] forx=—p 220

Then KA, V)= “‘[ _uk{x,_%_.”
Remark 3.2.2:-

A crisp relation R represents the relation from crisp set X to¥ its domain
and range can be defined as dom(R) = {x/xc X.ve¥, falx,yy=1}
ran(Ky={yfre X . ye¥ pix1)=1}

Definition 3.2.3:-

A fuzzy relation R defined on crisp set X and ¥ .the domain and range

of this relation are defined as  u(x) = ma xpy (x. ¥) and p(y) = ma xp,(x,y).
dom( Ry Ye¥ ramfy TEX

Definition 3.2.4:-
The inverse of a binary fuzzy relation R(Y,¥)on X x ¥ denoted by

R7(Y.X) isarelation on ¥x X' given by o (03) = (%, y) for

allxe X.yeY.
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Remark 3.2.3:-

® Indefinition 3.2.3 a set X becomes the supporl of dom(8)and
dom{ Ry g X . Set ¥is the support of run{R)yand ran(R) & ¥
* Because fuzzy relations in general are fuzzy sets we can define the

Cartesian product to be a relation between two or more fuzzy set,
Definition 3.2.5:-

Let F be a fuzzy sct on universe.¥ and F,be fuzzy set on ¥ then the
Cartesian product between fuzzy sets Fand & will result in a fuzzy
relation Rwhich is contained with in the full Cantesian product space or
Fyx F, = Rc X'xt., Where the fuzzy relation R has membership function
Ay (% ¥) = g g, (3 ) = min{pg (0 g, ) (5, 9) € F % Fy

Remark 3.2.4:-

¢ In the above definition g, (x, )< #e{x) and
Hp (X, Y) S pig (x) Y(x.y)eXx¥.
* Ff,Aand gy, together define a fuzzy relation. For two fuzzy

relations &, R, defined on the same product sct £, = £,. Then we

can dcfine operation on two fuzzy relations as follows,

Definition 3.2.6:-

The intersection of B, R, is defined by
(B ARNX Y= fty iy (3. 5) = Minfpzg (0 W)ty (2,00, ()} 6 Fy x F

For n relations, we extend it to the following

Definition 3.2.7:-

The union of £ , &, is defined by
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(R UR)x, ¥ = ‘uﬁuﬂz{x‘y}= max [‘”'ﬁ {x‘y]l,luh{_x,y}:. JAnpre Fxk,
Haoryo..._ur 0))= ¥ A, {x,»)

Definition 3.2.8:-

The complement relation #¢ for fuzzy relation £ shall be defined by the

following membership function.

V(e X xY ‘ﬂﬂr(,r‘y;.=1-y,(x.y}-

Definition 3.2.9:-

Wc say that &, c R, if g2y S Hy

3.2.1 Matrix representation of fuzzy relation:-
Denition 3.2,1.1:-

Given a certain vector, if an element of this vector has its value between
0 and 1, we call this vector a fuzzy vector.

Definition 3.2.1.2:-

[ a fuzzy relation Ris given in the form of fuzzy matrix, its elements
represent the membership values of this relation. This matrix is denoted
by M, , and membership values by 4,6, /) . Then M, = (g1, (5, 1)) .

Remark 3.2.1.1;:-

Fuzzy matrix is a gathering of such veetors. Given a fuzzy matrix

My =(a,) And M, =5 ywe can perform operations on these fuzzy

matrices as follow:-

¢ sum M, +M, =max|y,.h ]

*  max product i/, « M, = max{min{a, b,
! L]

« scalar product for A, by A+, where 0221
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For example a fuzzy set (vector) # that has four clement hence column
vector of size 4x1, and for fuzzy sct(vector) Fythat has five elements,
henee a row vector of size 1x5 the resulting fuzzy relation Rwill be
represented by a matrix of size 4x5 i.e. ® will have four rows and five
columns.

Example 3.2.1.1:-

Suppose we have two fuzzy sets, £, defined on a universc of three
discrete temperatures, X ={x.x,.x)and £ defined on a universe of two
discrete pressurcs ¥ ={p,»,) and we want to find the fuzzy cartesian
product between them. Fuzzy set Fcould represent the "ambient”
temperature and fuzzy set Fthe" near optimum” pressure for a certain

heat exchanger and the canesian product might represent the conditions
(tempcerature-pressure pairs) of the exchanger that are associated with

" efficient” operations. For ¢xample, le1 £ --E+E+l .5 ) +ElE

S h =
note that ¥ can be represented as a column veetor of size 3x1 and F,can
represented by a row vector of1x2 . The fuzzy Cartesian product vsing
M55, (3, 1) = min(ge, (1), 41, ()) the resets in a fuzzy relation R (of size3x2)
representing “cfficient” conditions of R
Remark 3.2.1.2:-

* For fuzzy matrices A o =lu)and M, =(b) il o, 25 holds for all

f,i . then we say that malrix Af,, is bigger than a7, thus

a,8b, > M, <M, .
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* Also we note that for all clements of any fuzzy matrix 0ga, <1
and it's denote as the grade of membership of cartesian product of
(FxK). _

» [fexpressing the fuzzy relation by matrices i.c. the union of

MKI a.nd ""’fl, gi\’En b}? ."lfn.lu!i =J‘f" + "l"fR,‘

« We define 0=| LEmp and for a fuzzy
0] 1o

matrix M, then0< M, < £.

* A fuzzy matrix M,is called constant if all its rows are cqual.

* Let M, =(a,}is fuzzy matrix .we can define the complement of a
fuzzy matrix as(af,) ={l-a,).

* For M, =(a,)and M, =(4,)then 4, = M, iff (a,)=(b,) for all
fandj.

if i=j

|
¢ LetOand /=[44,) where A, ={ iy
ifi=z]

} denote the zero and

identity matrices respectively.
Thend,™ =M™ M, M°=1 where My o M, oo M, (m-times). and
also M, 0=0. M, =0, My Jal M =M, ,
o Lot M, M, and M, be any [uzzy matrices

thenas, (M s My Y (M oMM,
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3.2.2 Operation of fuzzy relation on {different product sets):-

For two fuzzy relation®and &, we cannot perform their union and
intersection by the same rule because they are defined on different
product sets X x¥ and¥ x Z, respectively .however, we can perform their
compaositions, since they have a common set ¥in between Yand Z,
Among some other important compositions the {max-min and max-
product).

In classical sel theory the composition of two relations 7: X — ¥ and
g:¥Y—>Z in Xx¥and ¥x2Z respectively
gof={rz)eXxZ:g(f(x})==}=

Wx2)eXxZ:(x,y)e f and(y,z) e g, forsome ye ¥},

To generalizing this idea to fuzzy composition of fuzzy relation. we may
deline R o R, by the following definition.
Definition 3.2.2.1:-

Let R be fuzry relation on X x ¥ and R,be fuzzy relation on¥ « Z.
The composition of R and R, is defined by R, = R » &,, where
HMEop, (4,2} = Téi@i{min{#ﬁ (2 ¥)stp (ra)) (%)
Where(x,2)s X xZ, and(x, ) e X x¥ ,{y,2)e ¥ x Z . And note that
RcXx¥ R cYxZ .alsowe can write (*) as follows.
Hromy (5:3) = v {utg (X, 3} A g (1))

RBemark 3.2.2.1:-

The above definition is called (max-min composition}



Chupter 3 1 B0

Example 3.2.2.1:-

Let ¥.¥,Z be three universes .such that X = {x,x,},¥ ={3, 3} and

Z={z.23,2,}. let R, be fuzzy relation for X < ¥ and let R,be relation on

.r| _]"'; ZI Z: z‘!
Y xZ ,such that % [0.7 05]. »[09 06 0.2
a'r.f = .‘I’f = .
A x,|08 04 By l00 0.7 05

Then max-min composition R, of&,, &, can be defined on cartesian space

Z|_ zl zt
Xx2Z. x, [u,? 0.6 u.s]

JHR =
o ]0d 06 04
Where Fty, (20,20} = max[min{0.7,0.9), min(0.5,0.1)] = 0.7

Definition 3.2.2.2:-

The fuzzy max-product composition of two fuzzy relations R, R, such
that & =&, = &,, can be defined by i, =yxérriyﬂl (X, ) * g, (7.2)1
Remark 3.2.2.2:-

* It should be noted that neither crisp nor fuzzy compositions are

commutative in general, that is& R, = R,o R, .
* {RE N B2 =R y)e R7(5ux)
* (Rlxpye Ry 2N e R(z,w) =R (5, 5)e (R (¥, 2)e Ri(z,w)

3.2.3 Alpha-cuts of fuzzy relation:-

We know about o -cut for [uzzy sets, and we know a fuzzy relation is
one kind of fuzzy sets. Therefore, we can apply the «-cut to the fuzzy

relation,
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Definition 3,2.3.1;-

We can obtain «-cut relation from a fuzzy relation by taking the pairs
which have membership degrees on Iess thane . Assume&c ¥ =¥, and
R, isae-cut relation, then R, = {(x. )/ i (x. 2 a.xe X, vel} .

Note that &, 1s a crisp relation.

Dcflinition 3.2,3.2:-

Fuzzy relation can be said to be composed of several R 's as
foltowing: R = waR, Here « is a value in the level set R,is a @ -cut
relation, a R, 18 a fuzzy relation. The membership function of @ R, is
defined as s, (x,3)=a. #y (x,3), Jor (x,pre X« ¥
Then we can te compose a fuzzy relation R into several « R_ .

Example 3.2.3.1:-

09 04 0.0
02 10 04

0.7 1.0
04 02 00

Assume we have a tuzzy relation R such that, s, =

Now the level set with degree of membership function s
A=1{0,0.2,04,0.7,09,1.0} then we can have some o —cir relations in the

following Manner:

Ryq = R =

—_— T R e
L= B
£

[

|
= =]
Lo B . [ -
= 0 - D
L= -~
== = B - T ]
L= = =

So we can obtain the relation & can be decomposed as following,
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Mﬂ=ﬂ.4x w7 x 09« w0

— £ -
[ S
L I B = ]
oo o
= -]
- B = |
o oo —
L= = R ]
LR =
- R e R |
oo - o
L= o R

3.2.4 Projection and cylindrical extension:-

Definition 3.2.4.1:-

We can project a fuzzy relation R ¢ ¥ x¥ with respect 10 Xor Y as in
the [ollowing manner, For all xe X, ye¥

Ha, () =max s, {x, ¥}: projectionto X

¥

HR, {¥}=max .U; (x.¥): profectionto Y

Herg the projected relation of R 1o X is denoted by &, and to ¥is by R,.

Example 3.2.4.1:-

There is a relation R € X' Y. The projection with respectto X or Y

b b &
el 02 1.0
shallbe  af, = “
06 08 0.0,
0.0 18 03]a
o 1.0
M -ul 0.8 : bbb
O M, = [06 1.0 1.0]
oy 10 '

Definition 3.2.4.2:-

The extending of the projection in 2-dimensions relation to n-
dimensional fuzzy set, assume relation R is defined in the space of

Ay x Xyxe..x A, . Projecting this relation to subspace of

X, x X, %....x X, gives a projected relation: By vk,
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" L x, )= max [ S
H]’..nr,’h_-.\'.[ FILEdy L s l_u_*_,-:_'_.ﬁ‘ul 1+ -

Here x,.x,,.......x, represent the omitted dimensions, and x,.x.........x, the

remnained dimensions, and thus ix,,x,.......x_} St FS FRNE S TUT5 U6 S

Definition 3.2.4.3:-

As the opposite concepl of projection, cylindrical extension is possible.
Ha fuzzy sct or fuzzy relation Ris defined in space X x¥ this relation
can be extended (o X x ¥ xZ and we can obtain a new fuzzy sct, this fuzzy

set is written as CY(&), i (abc)=pla M aeX,beY.ce s .

CYiRY
Example 3.2.4.2:-

In the previous cxample, relation R, is the projection of R1o
direction.t . If we extend it again to direction¥, we can have an cxtended

relation CY(R ) . For exampie:

Hern, l[al'bs} =iy (q)=10
Prron,1(8.0:) = iy (@) =10
Ferer, liind ) = pg (a,)=10.8

b b b

allt L0 10
Moylnd=a,|0.8 08 0.8
| 10 1.0 1.0

The new relation criz Yisnowin ¥ =¥ .
¥

Remark 3.2.4.1:-

Let two fuzzy relations be defined as follows: R ¢ X, x X,, R, ¢ Xyx X,.
Even though we want 1o apply the intersection operation between R and
R, . it is not possible because the dominos of R and R, are different from

cach Other, if we obtain cylindrical extensions c:-f{nljand CH{r) 10 space
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Xyx X, x X, , and then r:':'(nljand cr(s,) have the same domain . We can
now apply operations on the two extended c¥(r )andc¥(a,}. Therefore
Join( R, R,)=CF(R)ACF(R,).

Then projection and eylindrical extension are often used to make domains

same for more than ong.

3.2.5 Classification of fuzzy relation:-

We assume that fuzzy relation & is definedon X' x X .
Definition 3.2.5.1:-
We call #is reflexive fuzzy relation if for allx e ¥, Halx,xy=1,

Definition 3.2.8.2:-

IF 3x & X, g2, (x, py 2 1, then the relation is (irreflexive).

Definition 3.2.5.3:-

I wx e X (5.0 # L then it is called (antireflexive) .

Definition 3.2.5,.4:-

fuzzy relation & is called symmetric if it satisfies the following
conditton,
V{x,p)e X=X, pplr.y)= Hely.x).
Definition 3.2.5.5:-

A relation R is called (antisymmetric) if for x« v either
Hplx. y) = g (. x)0r, Hpley)=pig{y.x)=0¥s,ye X, oOr
[f trg(x.p)> 0 and jty {p.x)> 0 implyx=y.
Delinition 3.2.5.6:-
A relanon Ris called (perfectly antisymmetric) if x = v whenever

Hp(xy)>0then ug (y.x)=0,¥x,ve X.
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Example 3.2.5.1:-

Foraset ¥ ={234,5} there is arelation such that for
x,yeX,"xisclosc1o y* . Concerning this relation when x=v, the relation
is perfectly satisfied and thus g (x. ») = 1. Let's denote this reflexive one in

2 34 5
2130 09 08 07
a matrix as in the following: 3[(09 1.0 0% 0.8

4|08 0% |0 09
307 08 09 10

Alsa the relation "x is close 10 ¥" is a symmetric relation.

Dehinition 3,2,5.7:-

A relation Ris called transitive relation if ¥ x, p.ze X
Hplxz)2 mﬁm{min{;:R{x,_y}.pR{y, 41

And it we replace min () by any T-norm, we pet a generalization of
transitive relation,

Delinition 3.2.5.8:-

Ifa fuzzy relation & | Satisfies the following condition, we call it a

"fuzzy equivalence relation” or " similarity relation.™:
L. reflexive relation
xelX pplx,x)=1
Z. symmetric relation

Vit yle A xX, ppl{r )= Heiy.X)
3. transitive refation
VoxpzelX, tigix)2 mfx{min{yn{x,}'],yn{y,;)] .

A fuzzy relation R on Y is 7 -fuzzy equivalence relation for the

T-norm7, If Ris refiexive, symmetric, and T -transitive.[f T = & then we

say that Ris a fuzzy equivalence relation.
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Definition 3.2.5.9:-

Tt fuzzy relation R satisfies the following conditions, we call it "fuzzy
compatibility relation” or  resemblance relation™:-
1. reflexive relation .
2. symmetric relation ,

Definition 3.2.5.10:-

Given fuzzy relation R, if the following are well kept for all x,y,ze ¥,
this relation is called "pre-order relation.”
1. reflexive relation |
2. transitive relaton |

Remark 3.2.5.1:-

* Also if certain relation is transitive but not reflexive, this relation is
calied “semi-pre-order” or "nonreflexive fuzzy pre-order”,
*» Ifthe membership function follows the relation z p(x,x)=0

for all xwe use the term "antireflexive fuzzy pre-order”.
Definition 3.2.5.11:-

If relation R satisfics the following for all x,y,ze X .
It's called " fuzzy pantial order relation”;
1. reflexive relation .
2. antisymmetric relation |
3. transitive relation |
Remark 3.2.5.2:-

We can get a corresponding crisp relation R, from given fuzzy order
relation R by arranging the value of membership function as follows.

Lol p(x.3)2 g (v.x)then He {x,9)1=1
.nuﬂ [.F!'I} = ﬂ
i

2 If #y(x, ¥} = py (3, x)then Hy (x. )= pg (1 x}=0
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Remark 3.2.5.3:-

» Ifthe corresponding order relation of a fuzzy order relation is total
order or linear order, this fuzzy relation is named as "fuzzy lotal
order” and if not it's called “partial order",

» When the second condition of the fuzzy order relation is transformed
to" pertect antisymmetric", the fuzzy order relation becomes a
perfect fuzzy order.

(2) Perfect antisymmetric ifv(x, y)e ¥ x X ,x 2 y, Hg(x, >0, then
.luIR [_}"1 x] = ﬂ M

» When the first condition (reflexivity) does not exist, the fuzzy
order relation 1s called "fuzzy strict order.”
Definition 3.2.5.12:-

Let R and R,be fuzzy relations in X «¥, ¥ x Z respectively and Jet The a
T-norm the composition g, = R < &, of gand R, with respect to 7 is the
fuzzy relation on X xZ ,with membership function

Hr.p (5.2)= v IT(HG (5, 9), g, (3,2)] -

. WhenT(x,y)=xay. R &, is referred 1o as a max-min
compaosition.
2. WhenT(x,y}=x.y, R =R, is 2 max-product composition.

3.3 Fuzzy partition:-

Deflinition 3.3.1:-
Let F be a fuzzy sel on X satisfying F = ¢ andF # X . The pair ( #. Fe)

15 defined as fuzzy partition. usually. 1f m subsets are defined in
X, m-tuple(f,,....F,) holding the following conditions is called a fuzzy
partiion.

l. Yi.F =4

2. FEnF, =g forizj
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3. ¥xeX, Z,uﬁ_(x}=1

3.3.1 Fuzzy partition by an equivalence relation:-

An equivalence relation on a set gives a partition of that set and vice
versa. The analogy for fuzzy equivalence relations suggests properties for
the notion of fuzzy paﬁitinxl, IfR: Xx X —»[0,], if fuzzy relation on a sct
X, there Is associated the family {R :X —[0,1]: y = R(x,v)} of fuzzy

subsets of X . If R were an equivalence relation, then R. would be the

equivalence containingx, so this is an cxact analog to the CHSp case.
When Ris a fuzzy equivalence relation, we have

1. B(x)=1 foreachxe X .

2. R(¥)=R(x) forxyelX,

3. R(MzR(NIAR (V) forxyzelX.
This suggests that a fuzzy partition of x could be defined as a tamily
P={R :xeX}of fuzz:,; subsets of X satisfying these three properties.
3.3.2 Fuzzy partition by g-cuts:-
Theorem 3.3.2.1:-

if ®is a fuzzy relation then & is a fuzzy equivalence relation if and only
if each @ -cut, is an equivalence relation on X .
Let Rbe a fuzzy equivalence relation by definition of
R, =Hx,y):Rix. Nz a,¥Yae[0,1]} then {x,x)e R_since R(z,x)=l>a.
Thus R, is reflexive.
If (x.y)e R, .then R(x.y)za 50 R(y.x)=«a from symmetry, whence
(v»x)eR,.
If (x.y) and (y,z)e R, .thenR(x,z)z Rix. YA R{v.2)2 &, 50

(x,2)e R, ,thus R, is an equivalence relation.
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Conversely:-

Let for cach «-cut, R, is an equivalence relation on v thus
Let (x,x)e R, since Rix,x)zalet &ix.x)=1 thus Ris reflexive
Let {(x,y)e R,and (y.x) e &, then Rix,y)zaand R(p,x)z.
Thus R(x, y) = R{y, x}.
Let ¢x.») and (y,2)e &, and let R(x,y)and R(p, 2) = & thus
Rix,¥) A R(y,zy=cand since &, is an equivalence relation and (x.2)& R,
Thus R(x.z)>a=R(x.y)a R(p,z).
* 3o with each fuzzy equivalence relation Ron a set X there js
associated a family of equivalence relations of ¥, namely the « -
cut &, .one for each a e[0.).
¢ Each of these equivalence relations induces a partition p_ of v,
so we also have the associated family (£, :a e(0,1)) of partitions

of X . Since the a-cut of a fuzzy set determine that fuzry set.
Theorem 3.3.2.2:-

Let E(X) be the set of all equivalence relations on the sty . Then
E(X}1s compicte lattice, and each R, is an clement of E(Y'Y,

Proof

See [3]

Remark 3.3.2,1:-

In E(x)ycomplete lattice, we have for any subset 8¢ |0,1)

AR, = R o =l(n ) R zaforalle g 81 ={{x)}; R[.x,y}zﬂkéfﬂu} =8 v

el ol = el

Thus H;:HRJ :Huglxﬂ.*i.'gr ={x ) Rx, vz lorsomea e 8 2 H”?er.

This last inequality is equality if 2is finite.
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Definition 3.3.2.1:-
A partition tree on a sct X is a family {2, :a €[0,1]} of partitions of

Y suchthat p, = X, for any subset 2 of[0.1], Pugﬁcx = APy
On should note that when B=g,then v «=0 and A B =X,
weld ach

Theorem 3.3.2.3:-

Let &be a fuzzy relation on a set .k, and lot {R, :e €[0,1]1be its sct of
@-culs. Then Ris a fuzzy partial order on ¥ if and only if each &, isa

partial order on X .
Proof:-

Suppose Ris a fuzzy partial order on ¢, we will prove R, is partial order
onX . For reflexive, sinccR(r,.x) =12 a = (x,x) e R, for antisymmetric
R{x, )z a.and Ry, x) 2 a., and since R(x, 3) = R(y,x), x= y.

Thus (x,y)e R and(y.x)eR,, = x=y.

For transitivily suppose that (x, v} and (y,2) are In R, then

Rix,y}zaand Riy,z} =, whence R(x,y)n R{r,z}2 a and so (x.z)e R, .
Converscly:-

Suppose that each R, is partial order we proof that 7 is partial order on ¥ .
We Just prove transitive, which means that Rix,z) =z R(x, ¥y A Ry, 2).

If R{x,y)A R{y,z¥=er then(x, y)and (».z)e R, , since R, i3

lransitive(y,z) R, , 50 Rix.z) 2 = Rix,y) A Ry, 2)

thus Rix,z) = R(x, v) A Ry, z2).

Remark 3.3.2.2:-

S0 with each fuzzy partial order on a set x|
There is assoctated a family of partial ordering namely the & -cw of this

relation . Those & - culs determine the fuzzy partial order.
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4.1 Approximate Reasoning:-

One of basic tools for fuzzy logic and approximate reasoning is the
notion of a linguistic variable that in [1973 by zadeh] was called variable
of higher order rather than a fuzzy variable , Where the linguistic
variables, that is, variables whose values are not numbers bul words or

sentences rather than numbers .All material in this chapter taken from
[3LHII6LI20 A5 125 [330[27 LU L2813 143 | LLSLL U023 1019300400 2010710201601 291 [25 0,017 .
we can deflined linguistic variable as follows :-

Definition 4,1.1:-

The linguistic variable is defined by the following quintuple.
Linguistic variable =(x,7{x), X, 6, M), where
x : Name of variable

A set of universe of discourse which defined the characteristics of the

variable.
T(x): sct of linguistic terms which can be a value of the variable.
G : Syntactic grammar which produces terms in7(x).
M : Semantic rules which map terms in 7ix) to fuzzy setsin X' .

Example 4.1.1.:-

Let's consider a linguistic variable "A" whose name is "Age".
A=1{age,Tlage), X, G M)

Age: name of the variable A

Flage): {young, very young, very very young, ...}

Set of terms used in the discussion of age

X :]6,100] universe of discourse

G(Age}:?'”l = {young}uw {very 7'}

M{young) = {(x, ) g (XD 1 x £ [0,100]}
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t if x 2 [0,25]

K g (X = ﬂ+x—25

Y iF x €]25,100]

In the above example, the term "young” is used as a basis in the Tluwe),
and thus this kind of term is called a "primary term". When we add
medifiers to the primar}: terms, we can define new terms (fuzzy terms). In
many cases, when the modifier "very" is added, the membership is
obtained by square operation. For example, the membership function of
term “very young" is obtained from that of "young",
very young (%) = (t young (X))7.

The fuzzy linguistic terms often consist of two parts:
1. Fuzzy predicate (primary term): expensive. old, rare. dan gerous,
good, etc.
2. Fuzzy medifier: very, likely, almost impossible, extremely
unlikely, ete.
The modifier is used to change the meaning of predicate and it can be
grouped into the following two ¢lasses:
I. Fuzzy truth qualifier or fuzzy truth value: quite true, very true,
more or less true, mostly false, efc.
2. Fuzzy quantifier: many, few, almost, all, usually, etc.
In the following sections, we will introduce the fuzzy predicate, fuzzy

modifier, and fuzzy quantifier.

4.1.1 Fuzzy Predicate:-

As we know now, a predicate proposition in the classicat logic has the
fellowing form.
"X i1s a man”

u}, is pr-
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X and y are variables, and "man" and "p" are crisp sets. The ses of
individuals satisfying the predicates are written by "man{x)" and "p(y)".
Definition 4.1.1.1:-

If the sel defining the predicates of individual is a fuzzy set, the
predicate 1s called a fuzzy predicate.

Example 4.1.1.1:-

Let consider the following statement

"z is expensive”.
"w is young".
The terms "expensive" and "young" are fuzzy terms. Thercfore the sets
"expensive (z)" and "young (w)"are fuzzy sets.

When a fuzzy predicate "x is p" is given, we can interprel it in two
ways.

1. P(x) is a fuzzy set. The membership degree of x in the sct P is

defined by the membership funcrinnyﬂx}

2. Hpry s the satisfactory degree of x for the property P.
therefore, the truth value of the fuzzy predicate is defined by

the membership function, truth value =4 Pl -

4.1.2 Fuzzry Modifier {hedges):-
As we know, a new term can be obtained when we add the modifier

“very" to a primary term, In this section we will see how semantic of the
new term and membership function can be defined.

Example 4.1.2.1:-

Let’s consider a linguistic variable "age”, linguistic terms "young" and
"very young" arc defined in the universal sety, X ={x/xe[0,100)) The
variable age takes a value in the set T(age)

T(age) = {Young, very young, very very young...}
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The term "young" is represented by a membership  function
Hyoung (x)When we represent the term "very young", we can uvse the
square of po,.. () as follows, g oum (2} = (Hyoyng (N7

There s other modifier like very, low, slight, mere or less, fairly.
slightly, almost, barely, mostly, roughly, approximately, these modifier

have the effect of modifying the membership function u, (x) such as

"Very" up(x)= (p (0 “mare or less” u, (x)™ (g, ()"
"Very very” u, (x)=(g2, (x))* "somewhat” u, ()= (G, (1)
"Plus” g (x)=(py (' ®

¥ .
vindeed" s, {I}z{:[u,. (x)] if0su < u.s}

I=1=pre (O] iF 0524 51
“Slightly" ue (x}= (e (X'

“A Tittle” gy (x)= (ap ()

"Minus" g, (0= (up (x)°

"Extremely” g {x)=(p (x))’

4.1.3 Fuzzy Qualifier;-

4.1.3.1 Fuzzy truth values:-

Baldwin defined fuzzy truth qualifier in the universal set
X=i{x/xel01)} as follows. T= {irue, very true, fairly true, absolutely
true,..., absolutely false, fairly false .false). The qualifiers in T define
“fuzzy truth valves ™: and they can be defined by the membership

functions. If we take Baldwin's membership function Ko (x). the truth

qualitiers are represented in the following membership functions

My (X)=x , xe[0,]]
Huery true (x}= {ﬁ;m{x]}i , XE [ﬂ,l]
H ity e () = (i GD - x€[01)

#ﬂu(x}= l_.l”m:{'r] v X E[U,I]
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Ly e () =t N L x&(0,1]

I~ e [ X) = (22 e {x]]m . xg|01]

(x) = | farx=I
Hibwasyms \ X =00 herwise

I for.r:ﬂ}

oy (5 ={n otherwise

Example 4.1.3.1:-

Let's consider o predicate using the primary term "young" and fuzzy
truth qualifier “very false”
P="Ali is young is very false”.

Suppose the term “young” is defined by the function Hyoung

| x€[0,25]

Hyou =101, "'5251'1 <€ (25.100]

The term "very false™ can be defined by the lollowing.
0 x €[0.25]

Hreryrtse, = (= e () = (1= 1y mg (0))" = (1 -{l+£'—25}_3)2 x €[25,100]
5 k]

Therefore, it All has age less than 25, the truth value of the predicate p is

0. 1f'he is in [25,100], the wruth value is calcwated from Hoery falsc -

Example 4.1,3.2:-

Let's consider a predicate p in the following. P="20 is young."Assume
the terms “"young" and "very young" are defined as shown in figurer 16
we sce the membership degree of 20 in "young" is 0.9. Therefore, the
truth value of the predicate p is 0.9, Now we can modify the predicate D
by using fuzzy truth qu;iliﬁcrs as follows,

p, ="20 is young is truth”,

p, ="20 is yeung is fairly true."

p, ="20 is young is very true."
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p, ="20 is yvoung is false,"

The truth values are changed according ta the qualifiers as in fig 17.

L4

oh 70

Figure 16

Hy U‘H )

t

0,95 \.-._._._._._._._,..-.-.-...-...,.-.-.-... j
0,
u.s? N\ Fairly rue_~" /'

frue

alse
Yerydrue

T ErE Al et -

- A R LA e e RS R R

0.1

¥

Figure |7
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We know already 42,,,,,,(20) is 0.9, That is, the (ruth value of p is 0.9. For
the predicate p,,we use the membership function "true” in the figure and
obtain the truth valuc 0.9. For p, the membership function "fairly true” is

used and 0.95 is obtained. In the same way, we can calculate for

p;andp,, summarize the truth values in the following.
For p,:0.9

For p,:0.95

For p,:0.81

For p,:0.1.

4.2 Application of fuzzy sct in {Artificial Neuron Network):

Neuwral network theory grew out of artificial intelligence research, or the
rescarch in designing machines with cognitive ability, A neural network
is a computer program or hardwired machine that is designed to leamn in
manner similar to the human brain.

The basic building ol a brain and the neural network is the neuron. The
hasic human neuron adapted from Beale and Jackson (1990} is shown
below 1n ligure 18 = (biological neuron), As described by Jackson .
(1990), all inputs 1o the cell body ol the neuron arrive along (dendrites),
Dendrites can also act as oulpuls intergonnecting internevrons. Mathema-
tically, the dendrite’s [unction can be approximated as a summation.
Axons, on the other hand. are found only on output cells. The axon has an
clectrical potential. If excited past a threshold it will transmit an elecirical
Signal. Axons t::nn@nah: at {synapses) that connect it to the dendrite of
another neuron. When the clectrical input to a synapse reaches a
threshold, it will pass the signal through to the dendrite to which it is
connected. The human’brain contains approximately 10" interconnected

neurons creating i1s massively parallel computational capability,
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synapse

s¥napse

-
synapse

Figure 18

The anifictal neuron was developed in an effort 1o model the human
neuron. The artificial neuron was adapted from Karalopoulos (1996) and
Haykin (1994). Inputs enter the heuron and are multiplied by their
TESpEClive synaptic,

4.2.1 Basic Network Componcents:-

A neural network s general mathematica) computing paradigm that
models the operations of biological neura) systems. In 1943 McCulloch,
ncurobiologist, and Pirts, Astatistician published a seminal paper title "3
logical calculus of idcas imminent in neurons activity" in bulletin of
mathematica) biophysics. This paper inspired the development of the
modern digital computer or the eleetronic brain, as John vonNeumann
called it. At approximately the same time, Frank Rosenbiatt was also

motivated by this paper to investigate the computation of the cye, which
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eventually led to the first generation of neural network, known as the

perceptron.

4.2.1.1 MeCulloch and Pitts' Neuron Model:-

Among numerous neural network modcls that have been proposed over
the years, all share a common building block known as a neuron and

networked interconnection stricture. The most widely vsed neuron model

—

is bascd on McCulloch and Pitts' work as in Figure 19

Figure 19

Each newron consists of mwo parts: the net function and activation

function. Determines how the network put {x,:1< j <nbare combined

inside the neuron. In above figure, a weighied linear combination is
Lis

adopted: » =2 w,x, +8 tw, 1< f<n}are parameters known as synaptic
£=1

weights. The quantity e is called the (bias or threshold) and is used to
model the threshold. In the literature, other types of network input
combinaiion methods have been proposed as well. They are summarized

in the following rable
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—th {unctions Formula

Linear

L]
u:ZH'}X'; +8
L

"
Higj‘jfr order {2"’ u=zz Wﬂ.l';.t‘-i-ﬂ

order formula A=
exhibited)
Delta(y-m) w=[[ W,x,
J=l
Table 5

The output of neuron, denoted by Y. is related to the network input u, via
a linear or nonlinear transformation called the activation function:
Y=/f(u)
In various newral network models, different activation functions have
been proposed the most commonly used activation functions are

summarized in the following table,
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Activation function

Formmula

Sigmoid

Hyperbolic tangent

nverse langent

Threshald

Gaussian radial basis

Lin¢ar

HOE

— where T =temperature parameter

l+ef
fl)m lunh{;—i}

2 L]
f(ﬂ*;tdﬂ (T}

f{”}={| 40 }

-1 =D

Siuy= cxp{— Iu - m||2/o':}

Flt=un+ b

4.2.1.2 Perceptron Model:-

Table 6

The originat perceptron model proposed by Rosenblatt in the 1950,

[n the perceptron model, a single neuron with a linear welghted net

function and threshold activation function js employed the input to this

neuron x={y,x,,...,5, 115 4 feature vector inR",

The net function u(x} =, + > w,x, and the output ¥(x} are obtained from

. . . 1
u(x} via a threshold activation function:- ¥y = {

wfe) =0
0 i< 0
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Wi

Figure 20

Remark 4.2.1.2.1:-

We can write Hx)=w, + flewxz)=w, + f{i: wox,) and

< HL,X b= w;x SWA L +uw,x

4.2.2 Characteristics of ANN:-

1. computational model of the brain

B

. learning capability

Lad

. learning by updating weights
4.2.3 Structure of ANN:-

Neural networks can be categorized into
[. teed forward
2. fecdback
The leed forward neural networks have only fecd forward links, i.e
neural networks which do not have feed back cyele. The output of anode
will not directly or indirectly be used as input of thal node. To the cont-
rary, the feedback neural networks have feedback cycle. The output of a

node may be used as an input of a node. Figure 21(a) and (b) show the
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feed forward and feedback neural network, there is no guarantee that the
networks become stable because of point; some may have limit-cyvele, or
become chaotic or divergent. These are common characteristics of non-

lincar systems which have feedback,

Cutputs
Outputs
b
(a) (b}
Inputs Inputs

Figure 21
4.2.4 Learning Algorithms:-

There are two types of learning algorithms in the neural nerworks. The
first type is (supervised learning) it uses asset of training data which
consist of pairs of input and output. During learning, the weights of a
neural network are changed so that input-oulput mapping becomes more
and more close ta the training data.

The second type is (unsupervised lcarning), While the supcrvised
leaming presents target answers for each input 10 a neural nenwork, the
unsupervised learning has the target answers. It adjusts the weights of a
neural network in response to only input palterns without the target
answers. In the unsupervised learning. The network usually classifies the

input patterns into similarity categories,
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4.3 Fuzzy Neural Networks (FNN):-

In the ncarly three decades since it publication the pioncering work of
McCulloch and Pitts has had a profound influence on the development of
the theory of newral nets, although the MeClloch-pitts madel of a neuron
has contributed a great deal 10 the understanding of the behavior of neural
-like systems, il fails to reflect the fact that the behavior of even the
simplest type of nerve cell exhibits not only randomness but, more
importantly, a type of imprecision which is associated with the lock of
sharp transition from the occurrence of an event to its non-occurrence it is
possible that a better model for the behavior of an nerve cell may be
provided by what might be called a fuzzy neuron, which is generalization
of the McCulloch-Pitts model. The concept of a fuzzy neuren employs

some of the concepts and techniques of the theory of fuzzy sets.

4.3.1 Classification of Fuzzy Neural Networks:-

We may classify all FNN models as (hree main types as follow:-
L. type that based on fuzey opcrators:
(i} Feed forward neural networks (1980)
(1) Feed back neural networks (1990)
2. Fuzzified neural networks .
Where inputs and connecting weight are fuzzy set, and internal operations
ar¢ based on extension principle and fuzzy arithmetic.
3. luzzy inference networks
(1) Mamdani type {1990}
(ii) Takagi-Sugeno type (1990)
(iii) Generalized tvpe {1990}
We will be only concerned with the type (1) that based on fuzzy
operators and her we don't discuss a learn problem but we just concerned

the sirictures of fuzzy neural network.
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4.3.2 Simple Fuzzy Neurons:-

Consider a simple neural net in figure 22 all singles and weights are real
numbers. The two input neurons do not change the input signals so their

output is the same as their input, The signal x, interacts with the weight
w,te product the product p =wx, ,i=12

The mput information p, is aggregated, by addition, to produce the
input net =p, + p, =wx, + w,x,, to the neuren the nevron uses it's transfer
function s ,which could be a sigmoid function. fix)=(+e")" 1o
compute the output y = f{ret) = f{wx, +w,x,),
This simple peural net, which employs multiplication, addition, and

sigmodal ¢ will be called (standard} neural net.

X1

Y= {wlixl+wix2)

X2

Figure 22

It we employ other operations like a t-norm, or a t-conorm to combine
the incoming data to a neuron we obtain what we call hybrid ncural nei.

These modifications Icad to a fuzzy neural architecture based on fuzzy
arithmetic operations. Let us express the inputs (which are usually
membership depree of a fuzzy concept} x1, x2 and the weights w1, w2

over the unit interval [0, 1],
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A bybrid neural nert may not use multiplication, addition, or a sigmoidal
function {because the results of these operation are not necessarily are in
the unit interval).

Definition 4,3.2.1:-

A hybrid neural net is a neural net with erisp signals and weights and
crisp transfer function. However,
1. we can combine xi and wi using a t-norm, t-conorm
2. we can aggregate pl and p2 with a t-norm, I-conotrm, or any other
continuous function.
3. I can be any continnous function from input to ouiput.
In the following we present some fuzzy neurons.
Definition 4.3.2.2:-

{AND fuzzy ncuron) the signal xi and wi are combined by a triangular
conorm C to produce pi=C(w,.x,),f =12 the input information p, is
aggregated by a triangular norm 7 to produce the output
¥ =AND p,, p) = T(pr. ) = T(C(#,.%,).C(w,.x, )

Of the neuron. So, ifT =minand € = max then the (AND) ncuron realizes
the min-max composition y = min{w, v x,,w, v x,}

Delinition 4.3,2.3:-

{OR fuzzy necuron) the signal xi and wi are combined by a triangular
norm T to produce pi=T{w,x)i=12 , the input information piois
aggregated by a triangular conorm C (o produce the output
ORGP p )= Clpnpy) = CT06,x),T00, 2,0 OF the neuron, 8o if
F=min and Cemax then the (OR) neuron realizes the max-min

CoOmposition v = max{mw, Ax w, Ax,).
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