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INTRODUCTION

The great mathematician Leonhard Euler introduced Latin squares in 1783 as
a “Nouveau espeee de carres magiques”, a new kind of magic squares. He also
defined what he meant by orthogonal Latin squares, which led 1o a famous
conjecture of his that went unsolved for over 700 years. In /19080, G. Tarry proved a
particular case of the conjecture. it was shown in 1960 by Bose, Shrikhande. and
IParker, except for this one case, the conjecture was false.

So, the main aim of this thesis is 1o present some important information
about Latin square and projective plane which have an important role in some
applications as cxpenmental desigas, geometry, graph thcory, and grouped
multiplication 1ables.

Even though, the less availability of professional books for the subject. I had
to do a lot of search to find the litle available book containing details about the
subject .1 also had to search through the internct 10 excess to some journals for
papers and to obtain some more in formation up to dale concerning the subject |

To emphasize the idea of this thesis bricfly, we have divided the thesis to
three chapters:

Chapter !: contains some principle, delinmitions and thcorems of Lalin
squares, Quasigroup and Latin rectangle and how to exiend it to a Latin square.

Chapter 2: explain the meaning of orthothognality in set of muiually
orthogonal Latin squares and their countable numbers, Euler’s conjecture is
mentioned and Tarry result concerning the falsity of the Euler's conjectureis
glven.

Chapter 3: the meaniug of projective planes and some important theorems:
are discussed and some more conneet projective planes with set of mutuaily.

arthogonal Lutin squares are presented |

Iy



Throughout this thesis some examples are given to clarify the definitions
and theorems that arc usced .
A new result concerning Orthognality has been reach is given at the end of

the third chapter,



Chapter one
1.1 Latin Squire:
Definition (L1.1):[12] [10]
A Lalin square of order n is an n x n array in which »° symbols, 1aken from a

set A (A ={0, 1, 2, .., n-1} arc arranged so that cach svmbol occurs only once in

cach row and cxacily once in each celumn.

Example (1.1.2):

The following are Latin squares of order 2, 3, and 4

1 2 3 4
1 2 b2 2 1 4 3
&2 3 1|&
21 34 1 2
31 2
4 3 2 1

Theorem (1.1.3):] 10|

Forall # 2 7, there exist a Latin square of order n.

Proof:

Consider the »n x »n array A defined by az=( i +j)(medn) i j=0, I,

..., 1. We claim that A is a Latin square of order n.

Case (I):
Trivially: A is taken over an n-set of elements, namely the congruence

classes module n.

Case (I

Assume two entrics of the same row, say (7, /) and (7, j»), /; #/; are identical,
But



Ay =y,
=> {i+ j)m{i+ j; {modn)
=  j, = j,(modn)

= Ji=j. a5 0<£j,. j,=n-]

This contradiction gives that the row clements are unique.

Case 111:

Assume two entries of the same column, say (i, j) and (i, j), i; = i arc

identical. But

a,, =

= (i, + /)=, + j)Ymodn)

= i, mi,(modn)

= =i, a5 430, i,sn-1

This  contradiction  gives that the column  clements are  umique.

Having demonstrated these theee cases. A is a Latin square of order n,

Definition (1.1.4): [ 18]

A Latin square of order n (onthe set {4, 2, ..., nforontheset /0, 1 2, ..

E

J-13) is reduced | normalized or in standard form if in the first row and columa the

elements oceur in increasing order.

Example (1.1.5)

The (ollowing Latin square of order {ive is in standard form.

0123 4
I 34 20
2 41 0 3
320 4 1
40 3 1 2] ,




Remiark:[10]

The canonical construction of a Latin square of order n define by
ay =(F+j) (moed n) is in standard form. where Loj=123.. n-1

Observe that the rows, columns, and elements of a Latin square can be

penmuled so as te maintain a Latin square.

To this effect we can put any Latin square into standard form.

Example (1.1.6):

}
We can put the following Latin square of order four into standard form in

several ways:

1)

3)

210 3
1 0 3 2
12 1 0
003 2 1]
(2 1 0 7] 0 1 2 3] [o 1 2 3
1 0 3 2 30 1 2 1 2 3 0
32107 7l 23 023 01
0 3 2 1] 230 1] |3 01 2
2010 31 [o 1 2 37 [o 1 2 3
1 0 3 2 1 2 3 o 1 2 3 0
3 2 10 0|l s 0 ¢ 272 3 0 4
003 2 1] [2 30 1] [3 01 2
(2 1 0 37 fo 1 3 21 o 1 2 37
1 ¢ 3 2 b3 2 0 i3 0 2
32 10 0|7 2 0010 3172 0 5
0 3 2 0f |3 20 1] |3 21 0

Rd



Definition (1.1.7): [12]

Two Latin squares are said (o be isotopic if one can be obtained from the
other by permuling rows, columns and 5}'mbols‘,

The equivalence classes of Latin squares under the isotopy relation are called

1sotopy classes, Note that there will in general be more than one reduced Latin

square 1n an isolopy class.

Example (1.1.8):

The two Latin squarcs of order 4 are:

1 23 4] [1 23 3
341 2] [4 3 21
&

43 2 21 4 3
21 4 3] |3 41 2

Note that : the second Latin square can be obtained by permuting rows in the first

Latin square i.¢. the two Latin square are isotopic .



Defimition {1.1.7): [12]

Two Latin squares are said o be isotopic if one can be obtained from the
other by permuting rows, columns and symbols.

The equivalence classes of Latin squares under the isotopy relation are called

isolopy classes. Note that there will in gencral be more than one reduced Latin

sguare in an isotopy class,

Example (1.1.8):

‘The two Latin squarcs of order 4 are:

— L P
Lad
LIPS R 4

da = L b3

Lo N o R PV

b e W e
b L o

o
LT O R

- -""_'_-___-_'___'_'_"}
Note that : €an be obtaincd)the second Latin square by permuting rows in the first

Latin square ,1.c. the two Latin square are isotopic .



1.2 The number of Latin square of various size: [18], [28], 9] .|17], [16], [24]

For each 1 2 J the total number of Latin squares of arder n denoted by LS{n)

(Laywine and Muller, 1998) is given by:
LStn) = nlfn-1)! Tin)

Where 7{n) denotes the number of reduced Latin squares of order n. The number of
Latin squares of order » ( LS¢n) ) increases very quickly with n and is indeed great,
even for rather small 0. It should be noted that the number of reduced atin squares
18 exactly known for n < /0 (McKay and Rogovski, 1995) [scc table 1] for n =11,
12, ..., 15, T(q) is estimated in Table 2. '

For n > 13 the bounds of LS{i) can be calculated (Jacobson and Matthews,

1996) using the formula:

f[(m)% 2 LS(n) aﬂ

Ewl i!

In tables 1,2.3 and 4 some upper and lower bounds of 7{) and LS for several
values of n, most frequently used in practice are given,

Table 1: Number of reduced Latin square T

H T}

2 {
3 !
4 4
3 360
6 9048
7 16942080
g 535281401585
4 JTTI0T7570964258R16
10 FoR0721483160132811489280




Table 2: Estimates of T{n) for n= 11,12 13, 14, 15

" ftn)

T 536,107
12 162, 10%
13 2.51,10%°
14 2.33.107
15 1.50 . 10%

Table 3: Number of Latin square LSn).
1" L&) r

1

2

12

376

161280

312831200

61479119%904000
108776032459082936800
5524751496156892842331223600

WO sl Ol e L [ e

Table 4: Lstimates ol LS(MY forn=2* k=4, 5.6, 7. &
0.689. 10" > £5(16) =0.101.10"°

0.985.10™ > LS(32) 20414.10™¢

0.176.10" = L3(64) > 0.133 10"

0164108 > 15(128) = 0.337.102%66
0.753.10"9%%; 1 5(256) 20.304.10'17



1.3 Quasigronp:
Definttton (1.3.1): [12]. [27]. [23)

Aset S is called a quasigroup if there is a binary operation () defined on S and
if, when any two element @, & of S are siven. the equations a.x = & and ywa=b

each have exacuy one solution.

Theorem {1.3.2): 1]

The multiplication table of a quasigroup is a Latin square.

Proof:

Letay, ay ... @y be the element of the quasigroup and let its muliiplication
table be as shown in the figure below, where the entry a,, which OCeurs in the.
row and the 5™ column is the product g,a, of the elements g, and a,.

If the same entry oceurred twice in the ™ row, say in the s™ and ™ columns
so that a,; = @, = b say. we would have two solutions 1o the equation a.x = b in
contradiction to the guasigroup axioms. Similarly, if the same entry occurred twice
in the 5* column, we would have two solutiens 1o the equation ya; = ¢ for somec.
We conclude that cach clement of the quasigroup occurs exactly once in cach row

and once in cach column, and so the unbordered multiplication table is a Latin

square.
oy £ S a, dy &y
or | ¢y
a1z
ay Qs
dn (4P




Example (1.3.3): | §]
Consider the set of integers modulo 3 with respecl to the operation defined by
a*b=la+ b+ ]
The multiplication of this quasigroup is shown in the figure below and we

see at oncc that it is a Latin squarc.

. 0 ] 2
0 1 2 0
! 0 1 2
2 2" o I

More generally, the operation @ * 6 = ha +kb + I, where addition is modulo
nand h, k and | are fixed integers with h and k prime to n defines a quasigroup on
the sct M =0, £, .., n-1}.

Definition {1.3.4); [12]

A set S forms a groupold (8, ) with respect 1o a binary operation () if.with
cach ordered pair of clements a, b of § is associaied g unigquely determined element
a.bhol§.

A groupoid whose binary operation is associative is called semigroup.
iRemark:

The previous theorem shows that multiplication table of groupoid is a atin
square 1f and only if the groupoid is a quasi group. Thus. in particular, the
multiplication table of a semigroup is not a Latin square unless the semi-group is a

group.

Corollary (1.3.5): [ 12]
The cayley table of a finite group G it is a Latin square, 1n other words

a squire matrix fe/ each row and each column of which is a permutation of the

elements of G,



1.4 Latin Sub-squares and Sub-Quasigroups:
Definition: (1.4.1): {12]

Let the square matrix A shown in Fig. (f) be a Latin squarc. Then. if the
square sub-matrix B shown in Fig (2) { where I <ij,.....[p.g,....5s5n ) is again a

Latin square, B is called a Latin sub-square of A..

LTI a, dp 4y »
a, o a g, d
2 I raa I 1
A= : id n B= :J'F' a7 !
Uy Gy e o, @, a, .ty
*
Figure | Figure 2

Thus, the Latin square corresponding to the cayley table ol sub-quasigroup
Q' of any quasigroup Q is Latin sub-square of the Latin square defined by the

cayley table of Q.

Example (1.4.2):[12] ,[18]
In Fig. (3}, the cayley table of a quasigroup of order 10 is shawn which has a
subquasigroup of order 4 (consisting of the elements 1, 2, 3, 4) and also one of

order 3 {with clemenis 3, 4. 3, 6, 7) the interseetion of which is a subguasigroup of

order 2 (with clement 3, 4).

g & 9 ! 2 3 4 3 5 7
S|+ 92 2 & o0i6 7 4 5 3
o (e 2 1 0 97 5 3 4 6
124 09 843 6.7 3 4
316 8 91 213 4146 7 5
Ty 0 8v 2 14 305 67
rl1s 6 7413 4 1 2:i0 8 9
2|6 7 siq 3 2058 9 0
tly7 4 3 35 6 0 9 ! 2 8
§13 5 4+ 6 7 &8 0 9 t+ 2
S|4 3 6 7 3 9 & 2 0 |

Figure 3



1-

2-

-
J_

Theorems (1.4.3): [12].[27],] 8], [ 23]

For a given integer n and k. n arbitrary and k <'n/2, there exists a quasi group
of order n which conizins at least one sub-quasi group of order k.

No Latin squar’u which is the union of two disjoint Latin sub-squarcs exists.

For arbitrary nin & 4), there exists a Latin squarc of order n having a Latin

sub-square of order 2,



1.5 Latin Rectangle :
Definition (1.5.1):[12],[27]

Let m and n be integers with m < 1. An m - by —n is a Latin rectangle if

each of the integers 4, 2, ..., n occurs exactly once in each row and al most once in

cach column.

Example (1.5.2):

Anexample of 3 - by -5 Latin rectangle is:

o

n
e = L)
[
Lt LR D
[ L

[REE tY

We say that @i m - by - 1 Latin rectangle L can be extended to a Latin square

of order n provided it is possible to attach n-m rows to L and obtain a Latin square

of order n.
Thearem (1.5.3): [7]

An mr - by - i Lalin rectangle can always be extended to a Latin square of order

Exsmple (1.5.4):[31)

2
1

| B T =Y

. _ 1 5 3
'o add an extra row to the Latin rectangle [ 3 4]
To create a 3 x5 Latin reclangle with entries in $4,2,3,4,5} is equivalent to

finding distinct representatives of the sets shown below:



1 2 4 5 3
5 1 2 3 4
234} Bast (35) 2.4 po2s)

One such collection is shown in bold paint:
Those representatives could be used as the entries of the next row. We could
then continue in a similar way to extend the 3 x 5 Lalin rectangle to a 4 x 5 Latin

reetangle and finally to a 5 % 5 Latin square.

Example (1.5.5): [31]

The following can not be extended to 6 x6 Latin square

(6 + 2 3]
56 3 1
1 3 6 2
|3 2 4 6]

One way to sce this is note that in any cxlension to 6 x 6 Latin square as
shown we would need three 5, in the box, but they will not fit because there are

anly lwo columns for them.

Remark:

Assume that we arc given a g7 x ¢ Latin rectangle . with entries in 1, ..., »).
with Lfj) 2p + g - i lor § =i <n, and that we wish to extend L to an-i x » Latin
square. The moral of the above example is that when we add a column to L to give a-
P X {q -+ I} Latin rectangle L' we must do it in such a way that the process can then

he repeated,



So we require that L'(7)., the number of occurrences of i in L', must salisly:
L{zp+i{g+tl)-n

Therefore, if for some i we have L(i} = p + g - 1, then we must ensure that i is

included in the new column. So let

p=fi:1<i<nand L{)=p+q-n}

Then for the process to be continue the extra column must include the sct p,

for in that even cach i will occur in the new reclangle atleastp + (g + /) -»n
times.

Example (1.5.6): [31]

The example below, can be extended to 5 x 5 Latin square,

1 3 4
L= i
B

Herethe given Lispxg=2x3andsop =2, ¢ = 3 and 2 = 5. Thus
ptq-nisQandilisclear that L) 2p + g - n for cach i, (/5§ sn),

We shall start by extending L to a 2 x 4 Latin rectangle by the addition of an

cxtra calumn,

[1 3 4 -]<-e{2,5}

41 5 —|leef23}

This can be done in any one of the three ways; in cach way we can then v

to exlend toa 2 x 3 Latin rectansle.



13 4 2] 13425
__}

41 53] 7415 32
13 4 5] [1 3452
.—.}

4-1 5 2f "la 1 523

[n these two cases we now have a 2 x 5 Latin rectangle and. by the previous

theoremn. these can be extended to § x 5 Latin square.

1 3 4 5 _ :
—» impossible
[4 1 5 3]

Hence, the 2 x 4 Latin rectangle could not be extended because p = 2, g = 4
andp+g-n=0Butl2)=0uandsoL(2)<p+gq-n

Example (1.5.7): | 31]

By using the last technigues 1o extend

— I LN
| S I I TR ot o8
LFJ =1

To a6 x 6 Latin square, we shali fellow the process through in full because it shows

the significance of the sct p.

56 1 =Jeef23.4)
6 5 2 —je-e{134}
| 2 3 —|—efds56)

prtg-n=3+3-6=40

14



The new column must include the set

p={i:16)=0}={]

Once such transversal is shown in bold print and the process can continue

prg-n=3+4-6=1
The new column must include the set
p={i Ly =1}={3.4}

Once such transversal is shown in bold print and the process can continuc

6 I 4 3 “Neef2}
521 4 -leef3
1 23 5 6 ~|«ef4

The new calumn must include the set
p=li-iH=2)={34)

Once such transversal (f) is shown in bold print and it gives the 3 x 6 Latin

rectangle



> 61 4 3 2
6 5 2 1 4 3
1 2 3 5 6 4

By the previous theorem this can now be extended to a 6 x 6 Latin square,

ong such being

561 4 3 2
6 521 4 3
1 235 6 4
23461 53
4153 26
3 4 6 2 5 1]



Chapter two

2.1- Orthogonality:
Definition (Z.1.1): [ (8]
Given two Latin square A and B of order n, the join (4, 8) 15 the n x n array

defined by (4, By = (A, By, 0 <6, jsn- |

Example (2.1.2): {18]
The Joint of

L
O Rk Rl
— D b b
Bdo—
= kd D
=R R
fd = a3

are

0.0 1.3 22) (3.0
(1.2) (2.0 (3D {03
(200 (3.2} (0.3 (LD
(3.3} ©.0 (L) (2.2)]

(A, B)=

and

Oy @G (22) 03]
(2.) (0.2) (1.3 (3.0
G2y (2.3 (.0 0.1
(3.3) (LO) (0.1 (22)

(B, M) =

Definition (2.1.3): [18]
Two Latin squarces 4 = (o) and B = (&;) of order n are orthogonal if the »°

ordered pairs (@, b)), @ <i j <n - { are distinct.

17



Example (2.1.4):

The Latin squares of example (2.1.2) are not orthogonal as the (3,0 entry

and (3,1) entry of (4, B) arc both (0. 1)

Example (2.1.5):

The joint of
¢ 1 3 2 1 3 20
1 0 2 3 2 0 1 3|
A'= B:
32 0 1 ' 0 2 3 1
2 310 310 2
15

on 1.3 (32 2.0

1.2 . 2. .
py=| 0D OB @) 6y

(3.0) (2.2) (03) (L)
23 @G (00 ©2

So. A and B arc orthogonal.

2.2- Orthogonal Mates and Transversal:

We often refer to onc of a pair of orthogonal Latin squares as being an
orthogonal mate to the other,

Luler was originally interested in such pairs and in his wrilings he would
always use a Latin letters for the fiest square and Greek letters for the second. ‘Thus,
when he referred to the first of the squares be referred 1o the Lalin square.

When referring (0 both of the orthogonal squares he used the term Graco-

[atin squares, which is nenww call orthogonal Latin squares



Definition (2.2.1): [16]
A transversal Latin square of order n is a set of n positions, exactly one from

each row and each column, such that those positions contain each of the entrics 0,1,

... - 1 exacily once,

Example (2.2.2):

01 2 3
0
Consider A = ! 32
2 3 01 !
3210

The (8,0}, (1,3), 12,1), and (3,2) position constitute a transversal of A..

Theorem (2.2.3); |12]

If'a Latin square L. of order n has n-1 disjoint transversals, then it has n disjoint

rransyversal,

Proaf:

Each transversal of 1. consumes one cell in each row, one cell in cach
column, and one of cach of the n symbols, hence, # - disjoint {ransversal consume
n - { cells 1n cach row, s - f cells in each column, and # - f of cach of the g svinbols.

Thus. what remains in [ is one cell in each row, one cell in each column

and one of the n symbols, i.c. #™* disjoint iransversal.



Theorem (2.2.4):[12]
Let A be the Latin square of order 2k delined by ay =(7 + j) {nrod 2k),
{} <ij <2k), then A containg no transversal.

Proof:
Supposc that cells (f, jp) (2, fab ..., 2k Sy conlain Lau;'”h;"“”!*;:-.} = (] 2,
o 2K} and summing both sides yields o, +a, +..tay,, = &2k + 1) Now

a, =i+j fmod 2k}, so j,j,..f 18 2 reordcring of I 2

le

v Rk 50
A+ i)+ 2+ S+ F 2k + 4y =200+ L+ 2k) = 2k 2k + 1), Substituting we get:

0 =k {mod Ek)' a contradiction.

In the context of transversals we present an aliernative definition of

orthogonality,

Definition (2.2.5): [12]
Two Latin squares A and B of the same order arc orthogonal if for any

svinbol x in A, the position in which x resides in A constitute a transversal of B.

Theorem (2.2.6): [26]

A Latn square of order n possesses an orthogonal mate if and only if it has n

disjoint transversal.

2.3 Orthogonal Latin Square of Odd and Even Order:
(1) Odd Order: [10]

If the Lalin square in question is the multiplication table of a group ol odd
order n, then it can be shown that the existence of a single transversal imnplies the
cxistence of n digjoint transversals. So we conclude that the square has an

orthogonal mate.



Theorem [L-Kuler, (1 782)] (2.3.1):{10]

The muitiplication table of any group of odd order forms a Latin Syuare

which possesscs an orthogonal mate,

Corollary (2.3.2): [107[23]
There exist pairs of orthogonal Latin squares of cvery odd order.

Any Latin square of odd order has a transversal,

Theorem [Man. H. B, (1942) (2.3.3): [12]

No pair of orthogonal Latin square based on a group can exist when n is an

odd multiple of two.

(b} Even Order: [10]

The existence question for pairs of orthogonal Latin squares of cven order is
much more difficult to settle and has a long and famous history. To start with, there
are only two Latin squares of order 2 and they are not orthogonal (since, it has no
transversal). We have given an example of a pair of orthegonal squares of order 4.

The next case, that of order 6, is the problem that originally intcrested Fuler
in the subject, cailed the Problem of the 36 Officers. Euler stated it as follows in
F779: "Arrange 36 officers, 6 from each of regiments, of 6 different ranks, into 2 6

x 6 square. 50 that each row and each file contains one officer of each rank and one

offtcer of each regiment”.

2.4 Euler's Conjecture and Tarry’s Results:
Euler’s Conjecture (2.4,1): [2].[10]. f18] .[1]
As brilliant a mathemnatician as Euler was. he was unable to {ind such a pair of

squares and unable to prove that they did not exist. Based on his experience with Lhe



problem and some other picces of evidence (such as the corollary, which he was
aware of). Euler made a conjecture which included and weni beyond this problen.
Euler's Conjecture there does not exist an orthogonal mate for any Latin

square of order nif' n =2 (mod 4).

Tarry's Results(2.4.2): [9],10], [16] ,[1]

120 years after Euler first siated the problem, Tarry in 1900 settled (he problem
of the 36 officers in the negative. His method was straighi-forward, he listed out all
of the 812851200 Latin squarcs of order 6 and examined cach pair for
orthogonality and found none [a{:tua]]v by working with reduced squares he
simplificd the problem 1o checking only 9408 pairs, but of course th]_s was all donc
by hand]. It was heginning 1o look tike the old master who had pulled off a coupe,
but m 1960 Bose, Shrikhande and Parker shocked the mathematical community by
proving that for n > 6 Euler's conjecturc is false. Their original methed is long,

complicated and involved, looking al number of special cases, but has since been

simplified.

Theorem [Bose, Parker (1960)] (2.4.3):[6], [29]

There exist orthogonal mate for every order n except for 7 = 2 or # = 6 when they

cannot exist.

In [984 D. R. Stinson gave a clever 3 page proof that therc do not exist

orthogonal mate of order 6.

Sttowed by a counter example Bose, Parker (1960 }, there exist an orthogenal Latin

square of order 10,

[(4.6) (5.7} (65.8) (7.0) B0 (02} (13) (2.4) (3.5) {(9.9)]
(71} (94) (37) (6.5) {1,2) {4,0) (29) (0.6} (8,8) (3.3)
(93) (26) (5.4) (0,0) (38) (.9) (85) (7.7) (6,0) {4,2}] -
(L5) @3) ©0) 7) (09) 74) (66) (5.5) (9,2} (1)
(3.2) (7.8) (1.6) (89) (63) (55) {47 @) (0,4) (2.0
{6.7) {0,5) (7.9) (5.2) (44) () (0.0 (83 (21} (.8)
(84} (69) (1) (33) (2.5} (98) (7.2) (1.0) (5,6) (0,7}
(5.9 (3.0) (22) (.4) (9.7 (6.0 (0.8) (15) (7.3} (3,6)
(28) L1} (03) (5,6) (5.0) 8.7) (3.4) (62) (4.9) (7.5)
(0.0} (8.2) {u.5) (48) (7.6} {23} {5.) (3.9) (1.7) (6,4)] -




Theorem [Mann 11 B. (1951)] (2.4.4): [12]

If a L.atin square L. of order 44 + 2 represents the cayley 1able of a quasi gr{:-up1
which conlains a sub-quasigroup of order 2k + 1 then L has no orthogonal mate.
Remark
The converse of the theorem is not necessary true |
1.5 Set of Mutually Orthogonal Latin Squares:

Definition (2.5.1): [9] .| 10]. [16] . [26), [1]

A set of Latin squarcs of the s:am-:.:l order, cach of which is an orthogonal mate
of each of the other is called set of mutually crihogonal Latin square. This mouthful
is often shortened 1o its acronym "MOLS". -

Example (2.5.2):

The following Lutin square of order 4 are mutually orthogonal Latin square.

01 2 3 ] 0 2 3 3120
1o 3 2 3 2 0 20 31
& &

23 01 g1 3 2 0 2 1t 3
3210 2 3 1 0 1 3 0 2

2.6 Equivalents MOLS:
Definition (2.6.1): [26]

Two sets of MOLS wilh the same nember of Latin squares are said to be
* equivalent sets of MOLS if onc can be obtained from the other by anv combination
of simulianeously permuting the rows of all the Latin squares, sinultaneously

permuting the columns of ail the Latin squares and renaming the elements of any

Latin square.

k3
(Y]



Theorem (2.6.2): [10]

A set of m MOLS of order n is equivalent to an »#° x (m + 2) orthogonal

array.

Example (2.6.3): [10]

A pair of orthogonal Latin squares of order 4 is cquivalent o an

wxd =16 x4 orthogonal array,

(1L (22) (33) (4.4)] , [ 1111
(23) 0.4 @) 6.2 ' 1222
(34} (4.3 (1.2) (2.1 1333
(42} () (24) (1.3} 1444
2123
2214
2341
2432
Each row of the array consists of: 3134
() row 3243
3312
(i}  column 347
(i)  symbal in first square 4142
(v} symbal in second square 4231
4324
4413

Lemma (2.6.4): |26]
Any set of MOLS is equivalent (o a set where cach Latin square has the [ivst
row in natural order and one of the Latin squares (usually the first) is redueed for

standard form) (i.c. it also has its [irst eolumn in natural order).



Proof:

Given a set of MOLS, we can convert it to an equivatent set by renaming the
elements in cach Latin squarc. so that the first rows are all in natural order. Now
take any Latin square and simultancously permute the rows of all the Latin squares
so that the first column of this Latin square is in natural order {this will not affect
the first row since it is natural order and so starts with the smallest element).

‘The result is an equivalent sct with the required properties,

2.7 Number of MOLS and Complete set of Mols:
Theorem (2.7.1): [12},[10]. [26] :

™o more than n - { MOLS of order r can ¢xist.

Proof:

Any set of MOLS of order n is cquivalent to a set in standard form, which
has the same number of Latin square in it.

Consider the entries in first column and second row of all of the Latin
squares n standard (orm.

No two Latin squares can have the same entry in this cell. Suppose two I.atin
squares had an r, say, in this cell, then in the superimposed Latin square the ordered
pair r, r} would appear in this cell and also in the #* cell of the first row becausc
both Latin squares have the same Tirst row, and so the (wo Latin SQUILTes can not he
orthogonal contradiction.

Now we can not have a 1 in this cell, since it appears in the first colomn of
the first row, thus, there are only i - I possible eniries or (his cell and so there can

be at most #2-/ Latin squares.



Definition (2.7.2): | 12],[25]

A set of MOLS of order n containing #-7 Latin squares is called a complete set,
We now have an existence question, for which order do complete sets of MOLS
exist? .

We know by cxamples that compleie seis exist of order 2 (onlv one square),
3 and 4 and alse that no complete set exists for orders 6 and 10. Complete sets of
MOLS for any order, which is a prime or power of, prime can be constructed.

However, it's an open preblem of long standing.

Theorem (2.7.3): [12]

If n is primc or a power of a prime then there exist a set of »-/ mutually

arthogonal Latin square.

tn general we denote the maximum number of MOLS of order n by Nfi). lts

customary to define N() = N(l) = o

Corollary (2.7.4): [10]

{72 =1 (mod 2) then M) 2 2, for all n>1 exceptn= 6.

Proof:

Consider two Latin square A and B of order n = | (mod 2} defined by
a; ={i+j) (mod n} and b, w{i- ;) (mod n) we claim that these are orthogonal
Latin squares. We must first verify that A and B are Latin square. We have shown

A to be a Latin square in proving that for any n, a Latin squares of order n exists.

the argumcnt that B is Latin square is analogous.

We must also confirm that A and B are orthogonal. Assume that two distinet
position of the join (4. B) have identical entries; that is, there exist 7,4, j, and j»

such that

A



(fl A ) * {flz?j;} {as position).
(A’R)Ju-iu = (4. 8),, (asentrics)

Mo

(4.8),,, =(4,8)

iz

= (A"u'l * B‘:h )= (A":J': ’ B‘ziz J

=, +j.i - j )= (f;+ 7.5, = f,)  [all considered Modulon]

= (i, + ) =(, + j;) (mod n)

= (i, = j;) =, - j; J(mod n)

= 2i =2i; (modn), 2j, =27, (mod n)[by adding and sehtracting]
=i, =i, (mod n), 1, = j; {(mod n)

=1 =i, I =jylas 0i iy fi.jy Sn-1]

=00 =00, 7;)

This contradiction gives thal entries of the join arc unique.

(Note: it suffices to show either 1 =% or j1 = j2, since A is a Latin squarg, 4=y
,-I..:A . . . .. I | =.-'i‘

and "%~ “wh would imply that j1 =j2 and similarly, j1 =32 and " ~ “ex would

imply that {‘] =h ). Having demonstrated these propertics, A and B arc a pair of

orthogonal Latin squares of order n. ‘Ihercfore [f 5 = / (mod n) then N} 2 2.



Corollary (2.7.5): 18]

N{n)=2foralln 23, exceptn=6

The following table gives the best known lower bounds for N{n) for 0 < n £ 499.

Add the row and column indices to ebtain the order.

01 2 3% 4 66 TS 9 1011 12 13 14 15 16 17 18 1u
Do 0 1 2 3 4 1 6 7 & 210 5 12 3 4 15 163 13
2004 5 % 22 5 2442 5 28 4 3031 5 45 5 46 A
A0 {7 40 5 42 5 6 446 6 43 B 5 5 52 5 5 .7 T B L%
604 60 4 & 63 7T 566 5 6 6 70 7 72 535 6 G G 78
S0 |u 8D 8 82 6 6 6 6 7 S5 6 T 6 6 656 7 9 0 &
100 | B 100 8 102 7 T 6106 6 1056 6 13112 6 7 6 & 0 6
120 | 7120 6 6 6 1246 196 127 T 6 13006 T 6 T T 136 6 18
MO [ 6 T G 1010 T 6 7 6 S G 1807 & & 7 G I56 7T 6
160 [9 7 61626 7 G166 7 1656 & 6 172 6 6 11 0 6 17s
150 16 150 6 6 T 8 6 10 6 & 6 190 7 192 G T & {06 § 108
2007 & 6 T 6 % 6 5 1 11102106 7 6 7 7 5 & {4
20 |6 12 6 22213 5 62 6 286 7 T ME T 6 T 6 2
210 | 7 210 6 242 6 T 6 12 T T 6 230 6 12 9 T 953 56 6 12
W0 |6 5 8 2W T H 61 6 Ws 6 27015 16 6 13 10 276 6 0
290 | 7 WU G 2826 126 T 15 22I 6 6 6 WA G 6710 10 12
0|6 7 6 6 15 15 6306 6 7 6 310 7 312 6 10 7 A6 G 1n
320|315 6 16 6 126 7 T O 636 & 66 & 3366 7
B [ 6 10 1032 7 T G 36 8 348 % 12 15352 6 O & U G LR
360 | 8360 6 T G IDG36 15 15 6 15 6 372 G 16 T 13 © 376
350 {6 12 6 35215 1506 15 6 388 6 18 T & 6 7 6 3066 7
00 (15000 7 16 11 T 6 15 & 108 6 12 & 12 10 U 18 15 6 118
20 [ 6 420 6 15 T W6 T 6 10 B 430 15 432 6 15 6 18 6 Q08
48 | T 1 G 2 6 1M 6 11 15 LIS 6 13 6 T 6 1h T OABh 616
A6 | 6 A6 6 QB2 16 1N G406 6 T 6 15 T 15 1018 0 13 6 4TS
50 (15 15 6 16 G T Gd4%6 T 15 6 100 6 18 6 T 10 15 6 0%
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Chapter three
3.1 Projective Plane:
Definition (3.1.1): [9]
Consider incidence structurcs (whose elements are called points and lines)
having the fotlowing propertics:
(F1) Any 1wo points are incident with a uniquc line.
(F2) Any two lines are incident with a unique point.

This class of structures contains some degenerate ones (containing a line
ineident with no, one or all peints, or dually) which we do net want 1o consider.
Shightly less degenerate is the following type: one line 7 is incident with all the
points except onc; cach remaining line is incident with the point not on / and one
other. (This includes a triangle, where any line can play the role of /). An axiom
which excludes all of these s
(3} There exist four points, no three incident with a common line.

Astructure satislying (21}, (P2) and (£3) is called a projective plane
Remark:

[f' the clements are finite then the projective plane is cailed a finite projective
plane.

Any projective plane must contain at least 7 points.

We can define the finite projective plane as the following definition.
Definition (3.1.2): [22]
A finite projective plane of order n, with # > Lis a collection of ¥ + 5 + ¢
lines and w* + 1 + { points such that:
every line contains # + { points,
CVCTY point1s on 1 + [ lines,
any two distinet lings interseet at exactly one point, and

any two distinct points lic on exactly one line.



Example (3.1.3): [9]

lad

The smallest non-trivial example is of order 2, there are seven points

P = {1.23.4.5.6.7}), and there are seven lines labeled £, 10-.{? such that L

consist of the following sets:

Ly={123} Ly={345} Ly= {156} L,={14.7)
Ls={25.7} Ls={3.6.7}. L, = {2.4.6}

And that they have the following properties:
[- every line contains three points,
2- every point is on three lines,

-

3- uny two distinet lines intersect at exactly onc point, and
4

any 1wo distinet point lic on exactly one line,



Definition (3.1.4): [15]

A finite projective plane having # + J points on every linc is said to be of

order n.

Theorem (3.1.5): [12] ,[25]
There exists a finite projective plane of order n if and only if there exists a coimplete
sct ol mutually orthogonal Latin squares of order n.

Prool:

L)

The construction of the projective planc of order »# from a complete set of
MOLS of order n.

Let & be a finite projective plane of order n, select any line 7 of 7 and
arbitrarily label with the digits J, . n each lne which passes through a point of 7,
for each point of /. Now seleet owo points of 7. "The lines which pass through these
points will be used 1o index rows and columns of the Latin squares, so label onc of .
the points R and he other C, the # points of intersection of the lines through R and
€ arc associnted with pairs of numbers, the number of the line through R and the
number of the line through C. Now, for each point oi' { other than R or C, we will
form a Lalin square in the following way. If £ is the point on {, we have already
labeled all the lines through £ other than {, the ' points of intersection of the R and
C lines must all lie on the » label through P. In the cell of the square corresponding
o one of the intersection points we place the {abel of the line through 7 which
passes through this point. It is casy 1o see thal the square produced this way is a
Latin square of order ». This procedure is repeated for cach of the points of /, giving
# - 1 Lalin squares,

To see that they are mulually orthogonal, consider two such squares and
suppose that when superimposed there arc two cells containing fa, 5. Since the two
cells of the first square received the label a, the two points which corrcspond to the

cells must have been on the same line (labeled a) going through a point of /. since



these same cells have the label b in the second square, the two points must also be
on the line labeled b passing through a different pint of /. This is impossible (by
definition projective plane (a)), so we note that these squares must he mutuatly

orthogonai.

o An Example explain the proof of the theorem (3.1.5)

Consider the set of 2 MOLS of order 3.

(«<=) Start with two orthogonal 3 x 3 Latin squares:
1

j
I"I= 2 3
1 2

Lap =t o

21 3
Ly=|1 3 2
3021

Then write themn as one combined matrix as we did carlier:

1 1 3 2
1 2 1 1
1 3 2 3
21 2 1
M=|2 2 3 3|«cgthe(l 3 eniry of L, is 2 and ol 1y18 3
2 31 2
311 3
3 2 2 2
13 3 3 1]

Now imtroduce a set of 13 points

{C|,L3,L3,L4,Tl,1‘g-1”3-I.;,l‘s,r{,,lplg,qu



{which can be thought of as a referring to the column 1-4 and the rows 1-9),
Consider lines formed by the foliowing subsets of four of those points:
{EIEEIFCE.CJJ

and any of the form:

#‘;?rs-‘rl"rl}

where the three entries in M in the 7" column and rows 5, t and u are the

same,
For example, one of these sets will be {cz,r3,r5,rg} because the entries in

rows 3, 6 and 9 of column 2 are all the same (namely 3). Over all this gives

the following 13 (lines);

{“l-cz-‘&a:%} {“hrisfzﬁl'a} {Clsf4>f5="s} {c]?r?,rs,rg}
{C2~":~r4-rv} {Cznrzsfsﬁra} {C2~1'3s"5-.1'9} {Cssfzﬁrasf?}*
{‘-"3~r3.-1*4-"3} {c3,r|+r5,r9} {‘3-“1"2-1'4:%} {¢4~1"1s1‘f,>'"a}

{"-"mraefi.-r?}

It is now straight forward o check that these 13 points and scls satisfy the

axioms ol a finite projective plane in the case 7 = 3. In general the p - /

13



MOLS of order n will give an »” x (7 + f) matrix M with entrics in fi..,n!

and with no rectangle of entrics of the form:

X ..y

- . . . ? .
I'he above construction will then give #° + n + 1 poinls {e;, c; ey ..., c1s

Fio o Papand n? 4 n + I lines each containing # + J points and such that

euch pair of points lies in just one line.
|
In general the non-rectangle property of M will ensure that these points and
lines satisfy the axioms of a finite projective plane. For example how many points

will be in both the lines:
{cj.r,.,,,.]and {tj,,r'.,.,.} ?

Ifj = j"then the ¢; is clearly the only point in common. And if j # j' then the first
line will have resulted from all the rows containing a (1) say in the / column, and

the second line will have resulted from all the rows containing a (2} say the j the

column,

2]




The non-rectangle property of M ensures that the pair (1.2) oceurs precisely onee
across the columns j and § (in the i" row, say as shown) and henee that the two

given lines intersect in the one point r

(=+) Converscly assume that we are given a finite projective plane of order 3. 1t
will consists of 13 points and 13 lines, with cach line consisting of 4 points.
Label the points of one of the lines as ¢, 3. ¢3, ¢4 and label the remaining

points as ry, ry, ry, Ty, Os, Ts, Iq, tg and ry. Then, for example, the lines are;

{c,,cz,ca,c,} {Ch"hfz-f]} {¢1!T4~l's~ra} {Clsf?!fs!ra}
{'32-1]:"4!"?} {':z~fz>rs»rs} {'1“2«"3*?&:"9} {C3~"z~“ml’1}
{‘-"3~T|!"511‘9} {C4.~1’2-"4!“9} {“-“4~"|>rﬁ-ra} {c4,r3.r5,r?}
{c3,r3.r4_.r3}
The fact that any two of the lines meet in a single point means that, a part

from the line {cy, ¢;. ¢3, ¢3}. The remaining 12 lines are bound to fall into

four groups of the three as follows: i

Comaining ¢;: {c;.n, 1y, 1, {er.n. Ts, T ) {Clsf:!fsﬁ-;}
Containing ¢ {cj,r,,q r-,} {C;.rz,rj ra} { +T3. T T 9}
Containing ¢3: {¢3,15.15.17} {e5. 5. 0.1} {5,175, fo}

j }

Containing cy: {c,.15, 10,5 {c4,r,,r6,r3} fe.. [y, b5, 15

Call the first set in each row (1), the second set (2) and the third set (3) as
shown.

Define a 9 x 4 matrix M by the rule that the (i, j)™ entry is k il the pair {cy, ;}

lies in a set labeled k. In our example this gives rise to the malrix



1 | 3 2
I 2 1 1
1 3 2 3
2 1 21
M=12 2 31 3|« 2.8 {Cy, 15} lies in the set pumber 3,
2 31 2
LT B
3 2 2 2
E 3 1

We can then use this matrix 1o read off, 1n the usval way, the two orthogonal 3 x 3

L.atin squares.

| WS )

2
L2=I
3

B2 Ll
b L

This process will work in gencral: the finjte plan will consists of 72+ n + 7
points and lines and will give rise to an #? Xt + 1) matrix M with entries in fi
#}. the finite projective plane axioms will ensure that the matrix M has the usyal
non-rectangle property because entries of the form

F=rx..y

= x.
would mcan tha {ri,ri.} lics in two of the lines. Hence M will give rise to i - |

mutually orthegonal n x n Latin squares as required.



Corollary (3.1.8): [2]
For every inicger n that is power of prime number, there exists at least one

projective plane of order n, {and consequenlly at least one complete set of MOLS of

order n}.

Remarks:
Why does Bose's result explain the non-cxisience of a finite projective plance
of order 67
It states that such a finite projective plane exists if and only if there cxist a
complete set of five mulually unhnglcmal Latin square of order six.
The possible existence of even a pair of orthogonal Latin square of order six
was found older problem,
Euler found no solution te this particular problem. He then conjectured that no
solution exists if the order of the latin square is of the form » =2 (mod 4).
This is the famous Euler's conjecture. The first case n = 2 is trivially impossible. » -
Tarry around 1900 verified by a systematic cnumeration that Euler's
conjecture holds for n = 6. Since there docs not exist even a pair of orthogenal
Latin squares, Bose's resull implies the non-existence of a projective plane of

order 6. Yet, there is something unpleasant about systematic hand enumeration,

It is messy and it is an error planc.

Mathematicians did find a better explanation in the celebrated Bruck-Ryser

theorem, which was published in 1949,

7



Theorem (3.1.7): [9]. |10]. [29]
If 13 & ! or 2 (mod 4} then a finite projective plane of arder n docs not exist

unless n is the sum of two integral squares.

Proof:
Since n? + 1 + [ is always odd, by them implies a necessary condition for

the existence ola projective plane of arder n is that the equalion
x2 - ?I_]r"z ¥ (_l)ﬂ{nll}."lz]

has a solution in integers x, v and z not all which are 4.
[fn =0 or 3 (mod 4} then nfin+1)/2 is even and the equation has the solution
x=fyv=0z=]

For n =t or 2 (mod 4}, nfn + 1)/2 is odd and we may rewrite.the equation

is
2t = nyz

Wow, 1f n is sum of lwo integral squares, say n = a’ + h", then there are solution
x=ay and z = by, for any intcger y. On the other hand, il 0 is not the sum of ovo

squares, then it can be shown that this equation has no integral solution (this

- requires some heavy duty number theory so it is omitted).



3.2 Facts on finife projective plunes : [9], [10], §29].[1]

t- The Bruck-Ryser theorem shows that are ne projective plans of arder 6, 14,

21,22, ...

2- The last theorem implies that there does not exist a finite projective plane of

order 6. As a result we could have inferred since no pair, let alone a complete

sel, of MOLS of order 6 exists,

Now that we have a good explanation of the non-existence of a finite projective

planc ol order 6.

1
What is the next eunknown case? It's »

10, since 16 = 14+ 32, a finite

projective plane of order 10 would exist if the necessary condition of the Bruek-

Ryser theorem is also sufficient. On the other hand, 10 =2 (mc-:d 4}, and so if

onc believes Euler's conjecture then it does not exists.

3- In 1989 Lam, Thicl and Swiercz proved thal there is no projective plane of

order 10 which involved great amounts of computers power and time,

4- The following table summarizes the known fact about the existence and

number of projecuve planes of order n for 1 <7n <20 which was cstablished by a

large computer search.

Order 3|45 b T I I 5 I S (™ B (IS ST 1 i7 18| Y20
Nutnber of
projective oy ! Gl |2 2 |02 222|207 |2t]|7?

Flancs

39



3.3 Final result

The result of Tarry [10] [6] 5] [29) [1] ,in which he tested a huge
number of Latin squares of § in order 10 conclude the falsity of Euler's
conjecture.
Bose ,shrikhand [6] and stinson [29] gives tow a different proof s for the non-
existence of arthogonal mate of arder 6, the proof was very complicated and
lcngthy.
Finally .Appa,Magos and mourtos [1] provide the same result for n = 6 and their
method of proof was algebraic rather than enumerative .they applied lincar
programming tn order to obtain the appr::-priatc result.
The strong correlation between orthogonal Latin squares and finite projective planes

up to isomorphism guide us to the following theorem.

Theorem(3.2,1}
There exist orthogonal mate for every Latin square of order n except
for n=2 or n=6
Proof
For n=2 there exist no orthogonal mate since it has no transversal
While in the case #n=6 . there exist no finite projective plane of order & , because

there are no integers x and y such that ¥ +3%=6 [by theorem (3.1.7)] . "The resull is

reachcd by theorem (3.1.5) .
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