User Interface Modelling Using UML for a library

System

BY:
Zahra Ben-Jammaha Abu-"Trife

Supervisor: Dr. Mohammed A. Khlaif

A thesis submtitted to the Department of Computer Science
In partial fulfillment of the requirements for the degree of

Master of Science

Al-Tahaddi University, Faculty of science
Depanment of Computer science

Sirit, G. S. P. L. A.]

Academic Year 2007/2008

Ay

By

2Bz
lr__..---.\--
: -

Zr—
3 R
Y

R—
Y=

¢5gd
:

G o Shar Y i, i gl i Gy By i e L Y
Y G Ghas ¥y G W8 g gt T 400A G815l W s 7 1 dlleal o
Qo i il o il s e ey 6 ey G Loty 4 B

g r
Lagn

D oo

L,

¢

(481 dygu0)

Faculty ﬂfSci&nce
flepartment of Compuler Science

Title af Thesis

Uﬁ'e::jffgq‘érﬁrcé-Mmfe!fng Using UML-for A library System

By

Zahra Ben-Yammaha Ahu-lT rife

“Appraved by: . '

" Dr. Mohammed A. Khiaif
{(Supervisor)

. "

Dy, Faraf 4. El-Mouadib |
(External examiner)

Dr LiFis STEICFeghi
(Internal examiner)

OuntersLg __’____9_:?’-:-—
L
mied Farag Mheonb ¢ :;'

n ol laculty of science)

I

I. Dedication

I wish to express my gratitude to my Father for his encouragement
during my ivestigation, Really, I .can not forget all his efforts, so as not
to give up, and being capable to continue nty research,

To my hushand, for his relief, remark and Jor ell fus concessions. Truly, |
am so proud to be his wife,

And finally, most gratefully, fo my supervisor, who was indispensable to

my o personal research,

I

. Acknowledgments

First, I would hke to express my thankfulness to Dr. Mohamned A.
Kitlaif, my honorable and respectful aduvisor for his extensive support and
assistanices throughout this project. Truly, e squandered expensive
momietits in order to help me fo finish this researclt.

I'want to thank wmy family, my husband and my friends for their
ENCOUTAZEIMNCRLS.

In couclusion, I promise my supervisor Dr. Moliamnmed A. Khlaif, that |
will do my best so as to present better and more interesting these, So as

to.

Zahra

I11. Abstract

IV

Although user interfaces represent an essential pan of software systems, the Unified
Modeling Language (ML} is a visual language for modeling soltware application.
We can use standard UML to modcel important aspects of user interfaces.

This thesis presents two ideas. the first is user interface modelling using UML and the
second is generating user interface protolypes from scenarios using UML. The case
study of this thesis is Library System. This case study ideniifies a set of UML
constructors that may be used to model and generate Uls, and identilies some aspecis

of Uls that cannot be medelled using UM, notation.

IV. Table of Contents

Liat of Tables and Fipurcs

Abbreviations and Definitions
Chapter 1 lntroduction

1.1
1.2
1.3
i4
1.5
1.6
1.7
1.8

1.9

Reasons for choosing research area

The aim

Related work

What is UML

Why UML

What is a user interface

Types of Users

User interface programming methods
1.8.1 Low-level Programming
1.8.2 High-l.evel Programming
I.8.3 Scripting Languages
I.8.4 Toclkit Programming
1.8.5 Visual Programming
1.8.6 Moarkup Languages
1.8.7 Hybrid Programming

Specification Formats
1.9.1 Application Framewuorks
1.9.2 Model-Based Generation
1.9.3 Interactive Specification
1.9.4 User Interface Language Based Specification

Chapter 2 User Interface Modelling with UMIL

2.1
22
2.3
24
2,5
2.6
2.7

2.8

2.9

Chapter 3 Gencraling User Toterface Prototypes from Scenarios

3.1

Case Study: The library Syslem
Domain Modelling
Task Modelling
Modeling interaction objects
Relationships between moedels in TJML
Modeling user interface in UML
Abstract Prescntation Maodelling
2.7.1 Abstract Presentation Structure
2.7.2 Absiract Presentation Behaviour
2.7.3 Using the abstract Presentation model
Concrete Presentation Modelling
2.8.1 Concrete Presentation Structurs and Layout
2.8.2 Conercte presentation Behaviour
Packaging the Application

Unified Modeling Language
3.1.1 Collaboration diagram{CollD)

¥l

i LA
=]

3.1.2 Statechan diagram (StateD)
3.2 Deseription of the Approach
3.2.1 Requirements acquisition
3.2.2 Generation of partial spr:ci[icatinns from scenarios
3.2.3 Analysis of pantial specifications
3.24 Integration of partial specifications
3.2.5% User interface prototype generation
33 Alporithm for User Interface Prototype Generation
3.21 Generating graph of transitions
3.3.2 Masking non-interactive transilions
133 [dentifving user interface blocks
3.34 Composing user interface blocks
3.3.5 Generating the user interface trom composed blocks
Chapter 4 Results
4,1 Conclusion
4.2 Qutlook
A Figures related to chapter 3
B Algorithms for User [nterface Prototype Generation
1} References

V. List of Tables and Figures

63
63
64
66
68
70
7l
12
73
13
5
T
78
80
80
81
32
22
04

Figure L.1: User Interface Specification Formats

Figure 2.1! The use case diagram

IYigure 2.2: "The dormain model

Figure 2.3: A view of the task model] for Librarian

Figure 2.4: A view of the task model for Borrower

Figure 2.5: The borrow book is 2 partial view of the task model for [ibrarian

Figure 2.6(a}: The manage user is a partiai view of the task model lor Libratian

Figure 2.6{b}: The add user is a partial view of the task model for manage user
Figure 2.7; The browse book 15 a partial view of the task modet for Borrower
Figure 2.8: The display of the Loginli7

Figure 2.9: The display of the BarrowBookUI

Figure 2.10: The display of the SearchBookLf

Figure 2.11: The display of the BrowseBook Ul

Figure 2.12: T'he display of the ManageUserLif

Figure 2.13: The abstract presentalion model

Figure 2.14: The abstract model of the Laginlf

Figure 2.15: The abstract model of the BorrowBookl/f

Figure 2.16: The abstract model of the SearchBouk (/]

Fipure 2.17: The abstract mode! of the Browse Book Ul

Figure 2.18: T'he abstract mode! of the Manage User Ul

Figure 2.19: A sequence diagram for the LoginToSysien use case

Fizure 2.20: A sequence diagram fer the BorrowBoek usc case

Figure 2.21: A sequence diagram for the Searchifiook use case

Fiaure 2.22: A sequence diagrum for the BrawseBooks use case

Figure 2.23{a}: A sequence diagram for the {Add Uscr} Manage User use case
Figure 2.23(b): A sequence diagram for {Delete User) Manage Lser use case
Figure 2.24: The concrete presentation models

Figure 2.25: The concrete presentation model of the Loginlif

Figure 2.26: The concrete presentation model of the Barrow BookUf

Figure 2.27: The conerete presentation model of the SearchtiserlHf

Figure 2.28: The concrete presentation model of the Manage Usert/!

Figure 2.29: A second sequence diagram for the BorrowBook use case
Figure 2.30: The package diagram of the Library System

Figure 3.1{n): Scenario successfillyLoginToSystem

Figure 3.1({b}: Scenario CaneellaginToSystent

Figure 3.1(c): Scenatio errorloginaToSvstem

Figure 3.2(a): Scenario RegularBorrowBook

Figure 3.2(b): Scenario CancelBorrawBook

Figure 3.2{c}:Scenario errorBorrow Book

Figure 3.3(a}: Scenario RegiladddUser

Figure 3.3{b}; Scenaric CanceldddUser

vl

20
25
27
28
29

3
3l
3]
34
35
35
36
36
37
38
38
19
30
40
41
44
45
46
48
50
52
53
53
54
54
35
56
58
58
59
39
59
59
60
60

Figure 3.3(a): Scenario ErrordddUser
Figure 3.4{a): Scenario Regularl/serDelete
Figure 3.4(b): Scenario CancelUserDelete
Figure 3.4{c): Scenario errorlUserDelete
Figure 3.5{a): Scenario successfillySearchBook
Figure 3.5{b): Scenario CancelSearchBook
Figure 3.5(c): Scenario failerSearchBook
Figure 3.6(a): Scenario suceefullyBrowseBonk
IFigure 3.6(b):Scenario CancelBrowseBook
Figure 3.6(a); Scenario failerBrowse Book
Figurcd.7: View of the overall process combining formal specification and
Ul prototyping
Figure 3.8: The five activities of the Ul protatyping process
IFigure 3.9{a): State[? for the chject terminal generated by CTS
algorithm on the scenario regularBorrowBook
Figure 3.9(b}: StateD for the object terminal generaled by CTS
algorithm on the scenario ErrorBorrowBook
Figure 3.10{a): StateD for the object 1ermtinal generaled by CTS
algorithm on the scenanio succefiuliviearchBook
Figure 3.10(b): StateD) for the object terminal generated by CT5
algorithm on the scenario failerSearchBook
Figure 3.0 1¢a): The labeled Statel} obtained from the StateDy of Figure 3.9{a)
Iigure 3.11{b}: The labeled StatcD obtained from the Statel? of Figure 3.5(b}
Figure 3.12(2): The labeled State!? obtained rom the StateD of Figure 3.10(z)
Figure 3.12(b): The labeled StateD obtained from the Statel of Figure 3.10(b)
Figure 3.13: The resultant Statel) for the weeminai object afler
integration of the three Scenario of the use case BorrowBook
Figure 3.14; The resultant State[} for the terminal object after
integration of the three scenario of the use case SearchBook
Figure 3.15: Menu generated for the interface object terminal
Figure 3.16¢a): Transition graph for the ebject terminal
and the use case BorrowBook (GT)
Figure 3.16(b). Transition graph after masking non-intcractive
transitions {G17)
Figure 3.17(a): Transition graph for the object tcrminal
and the use case SearchBook (OT)
Figure 3.17(b): Transition graph afler masking
non-interactive transitions (G717}
Figure 3.18: Graph GB resulting from UIB identification on the graph GT° of
Figure 3.16(b)
Figure 3.19: Graph GB resulting from UIB identitication on the graph GT” of
Figurz 3.17(b)}
Figure 3,20; Graph GB’ resulting from user interface block composition
on the graph GB of Figure 3.18
Figure 3.21: Graph GB’ tesulting from user interface block composition
on the praph GB of Figure 3.19

VIII

60
61
41
&1
&l
&1
62
62
62
62

a3
63
67

67

o8

68

69
&Y
65
70

o

7l

74

74

75

5

76

76

17

7

Figure 3.22 : Frames generated for the use case Borrow Boak

Figure 3.23: Frames generated for the use case BorrowBook

Figure 3.24; Prolotype execution

Figure A.).1(a): StateD for the object 1erminal generated by C15
algorithm on the scenario successfithyConnectToSystem

Figure A.1.1(b): StateD for the object terminal generated by CT% algorithm
on the scenario errorConnectToSystem

Figure A.1.2(a): StawcD for the object terminal generated by CTS algorithm
on Lhe scenario succefullyBrowse Boak

Figure A.1.2(b): StateD for the object terminal generated by CTS algorithm
on the cenario faflerBrowse Book

Figure A.1.3{a): StateDfor the object termenal generated by CT% algorithm
on the scenatio remdoardddUser

Fipure A.1.3(b): StateDtor the object terminal generated by CT35 algorithm
on the scenario errordddUser

Figure A.1.4{a): StateDfor the object terminal generated by CT5 algorithm
on the scenario regulare Delere User

Figure A.1.4(b): StatcDfor the object terminal generated by CTS algorithm
on the scenario errorDeleteUser

Figure A.2.1(a): The labeled StateD obtained from the Statel)
of Figure A.1.1{a)

Figure A.2.1{b): The labeled StateD obtained {rom the StaicD
of Figure A L. I{b)

Figure 4.2.2{a): The labeled StateD> obtained from the Statel)
of Figure A.1.2(a)

Figure A.2.2(b): The labeled State[) obtained from the Siatel?
of Figure A.1.2{b)

Figure A.2.3 (a): The labeled StateD obtained from the StateD
of Figure A.1.5{a)

Figure A.2.3(b): The labeled StateD obtained from the State[
of Figure A.1.3(h)

Fipure A.2.4(0); The labeled StateD obtained rom the Statel?
ol Figure A.1.4(a)

Figure A.2.4{b): 'The labeled StateD obtained from the Siatel)
of Figure A.1.4(b)

Figure A.3.1: Resullant StateD for the Connect To Sypsiem

Figure A.3.2: staieD) for the BrowseBooks

Figure A.3.3: stateD for Addliser

Figure A.3.4: stateD for Deletelser
Figure A.4.1(2): Transition graph for the object terminal and the use case
CannectToSystem {GT)
Figure A.4.1{b): Transition graph afier masking non-inicractive
transitions {GT7)
Figure A.4.2(a):Transition graph for the object terminal and use case Browse
Figure A.4.2(b): Transition graph after masking non-interactive
transitions (GT")
Figure A.4.3{a): Transition graph for the object terminal and
the use case Manageliser (GT)

X

79
79
79

82

83

83

33

&4

84

84

B5

a5

86

Ba

86

86

87

87
37
a8
L

&8

88
B9
2%

g9

Figure A.4.3(b): Transition graph after masking non-imeractive
lransilions ((GT7)
Figure A.5.1: Graph GI3 resuliing from UIB identification on the graph GT™ of
Figure A 4.1(b)
Figure A.53.2: Graph GDB resulting (rom UTB identification on the graph G117 of
Figure A.4.2(b)
Figure A.5.3: Graph GB resulting trom UIB identification on the graph GT" of
Figure A.4.3(B)
Figures A.6.1: Graph GB' resulting from uscr inlerface block composition an
The graph GB of Figures A.5.1
Figures A.6.2: Graph GB’ resulting from user interface block composition on
The graph GB of Figures A.3.2
Figures A.6.3: Graph GB’ resulting from user interface block composition on
The graph GB of Figures A.5.3

V1. Abbreviations and Definitions

Activatatle UTFunctionaliy

91

™

ol

An ActlivatableUIFunctionality is a GUI element that can be activaled,
ALGAE

A Language for Generating Asynchronous Eveni handlers
APM
< <gpnt> > stereotype identities the Abstracl Presentation Model classes.
CPM
<<gpm>> stereolype identifies the Concrete Presentation Model classes.
CTS

Collaboration diagram-1o-State diagram transformation algorithm.

B
praph Block
&T
Graph of Transition
L
Graphical User Interface
GUT Layoar
Sizing and positioning GUI elements 1o form a functional, visually attractive
IDE
Integrated Development Environment, a seftware development toel that
includes at least an editor, a compiler and a debugger 2
JFC
Java Foundation Classes
JVM
Java Virtual Machine screen.
MB-1HDES

Model-Based User Interface Development Environments.
MEC
Microsoft Foundation Classes
Muockup
A no- interactive, high-fidelity representation of & Gul
OCL
Object Constraint Language: used to specify constrainis and operations in
UML models
oMG

e

oon

oor

$QL

Xl

Object Management Group, hitpefwww.omg.org

"Object-oricnied analysis is a method of analvsis that examines requirements
from the perspective of the classes and objects found in the vocabulary of the

problem domain.”4

"Object-oriented design is a method of design encompassing the process of
objuct-oriented decomposition and a notation for depicting both logical and

physical as well as static and dynamic models of the system under design."5

"Object-oriented programming is a method of implementation in which
programs are organized as cooperalive collections of objects, each of which
represent an instance of some class, and whose classes are all members of a

hicrarchy ol elasses untiled via inheritance relationships.™6

Structured Query Lanpuage

Srarie Ut Functionality

A StaticLiFunctionality displays a screen element without providing behavior

ot interaction.

Stereo Tipe

{/I1B

IMS

An extensibility mechanisms that can be used ta extend UMI. 1o new domains.

User Interface Block .

User [nterface Managemenl System

Chapter One

Introduction

Numerous tendencies have forrned the UML 10 what it is today, improving on many
fields 10 model all importam aspects of software systems. These aspects are reflected in the
diagrams UML provides for modeling. Judging from these, aspects covered are classes. use
cases, components, deployment. internal states of the sofiware, activitics, timing,
sequences, and collaboration. Obviously, presentation is not one of them. Does it mean
presentation is not an impernant part of software? User interfaces are valued to the users of
a soflware system; 1t 35 the only part of the system that is visible 10 the users. The UML
simply fails to take this into account by not providing the methods for modelling user
interfaces. How can a model be complete if it ignores an aspeel as imporant as user
interfaces?

User interfaces consist of their visual representation (the lavout) and the interaction they
permit. UML provides diagrams for medeling imeraction, and they can be applied 1o the
interaction within user interfaces nicely. But UMI. does nol provide a diagram for
modeling the layout of user interfaces, which is especially impenant for graphical user
interfaces (GUIs), because their graphical nature allows for more diversified designs. UML
provides extensibility mechanisms that can be used to extend UMILL 1o new domains,

This thesis presents two ideas, the [irst is user interface modelling using UM and the
second 1s generaling user inlerface profotypes from scenarios using UML. The case study
of this thesis is Library Svstem. This case study identifies a set of UM constructors that
may be used to model and generate Uls, and identifies some aspects of Uls that cannot be
modelled using UML notation.

The remainder of this thesis is structured as follows; fa chapier one, we will intreduce
some basic facts for reasons for choasing rescarch arca, what is a UML and why do we use
UML? What is a user interface? User interface programming methods and type of users,

After the basics, in chupter two, we will perform a detailed analysis of the case study

{library system), see how it is structured into UML diagrams, and which diagrams are used

14

for domain model, task model, abstract presentation model, concrete presentation model
and lastly, how to put all these diagrams together in one model?

In chapter three, generating user interface prototype from scenarios, we show how we
suggest an approach for requirements engineering supporting the Unified Modeling
Language (UML). The approach provides a five activitics process for deriving a prototype
of the Ul from scenarios and generating a formal specification of the applicalion. Scenarios
are acquired in the form of UML collaberation diagrams and enriched with Ul information.
These diagrams arc transformed into the UML State chart specifications of all the ohjects
involved. The prototype is embedded in a Ul builder environment for further refinement.

Finally. chapter four, we summarized our results and give outlooks of future work in this

dlcd,
1.1 Reasons for choosing research area:

¢ Programmers are otten encouraged not to do user interfaces. In large sottware
companies, interface designs are ofien done by specialists, usually user interface
designers or graphic designers.

s User interface design is not part of most computer science curricula, ner 15 it a
promincnt topic in Mosl programmers’ magazines.

s Many books about user interface deston are 100 acadernic to be useful. and focused

on the theoretical, not the practical.

1.2 The aim

¢ To present a suminarized description of a comprehensive Ul modelling case study
using UML.,

s This case study has the purpose of identifying commen U modelling problems
when using UMLL.

o Identifying o set of UMIL constructors and diagrams that may be used by application

developers to design Uls,

15

1.3 Related work

Many proposals have been made for models that support the design of Ul elements.
using several different netations. For instance, there is research concerning the design of
user tasks, as in Kirwan and Ainsworth [18] and io Johnson [17]. Morcover, there are
several proposals for designing Uls using declarative models, as described in Grilliths [8]
and Szckely [30]. Therelore, it would be best not to have o invent new modelling
constructs for the UT H existing ones, which can be used effectively.

A number of methods have been suggested for deriving the Ul from specifications of the
application domain. Typically, daw attributes serve as input for the selection of interaction
objects according to miles based on style guidelines such as CUA (Common User Access)
[14]. Such methods include the Genius, Janus, and TRIDENT approaches. [n Gesnins [16].
the application domain is captured in data models that are extended entity-relationship

models.
1.4 Whatis UML?

In the field of sofiware enginecring. the Unified Modcling Language (UML) 15 a
standardized specification language for object modeling. UMI. is a general-purpose
modeling language that includes a graphical notation used to create an abstract model of a
system, referred to as a UME model. UML 15 not restricted to modeling sofiware. UML is
also used for business process modeling, systems enginecring modeling and representing
organizativnal structures. UML is extensible, offenng the following mwechanisms for

customization; profiles and stereotype. |25]

1.5 Why UML?

UML supports a rich set of graphical notation clements. [t describes the notation for
classes. components, nodes, activities, work flow. logical, use—cases, objects. states and
how 1o model relationships betwecn these clements. UMI alse supports the notion of
custom extensions through stereotyped clements. The UML provides signiticant benefits 1o
soflware cngineers and organizations by helping to build rigorous. traceable and

maintainable models, which support the lull software development lileeyele. [25]

14

1.6 WWhat is a user interface?

In the past, applications were supplied with their own proprictary user interfaces built in
some low level programming langnage with 2 unique "look and fecl”. While this is still the
case, system intcgrators and end user have begun to use high level, object-oricnted
development environments {GUI's) such as Visual Basic and PowerBuilder to customize
application interfaces and to provide a more common look and feel. These high volume
programming environments alse will make it much easier to create multiapplication

interfaces {or specific clusses of users. [20]
1.7 Types of Users

Because of the user's skill level, is a primary facior determining how the user will interact
with our program. understanding users' skill level plays a significant role in our user
interface design. This section explores the different types of users, how their different skill
levels result in different mterface designs. [20]

s Beginning {sers

Heginning users are determined largely by how much they know about Windows
alone. And beginning users don't know much. [1 means that certain user interface
features are probably inappropriate for them. Luckily for user interface designers, while
all users start out as beginners, few of them stay lor long o5 beginners, with more and
more expericnce with Windows, beginning uscrs quickly become intermediate users.
o fmrermediate Users

Intermediate users understand how to use the standard leatures of Windows fairly
well. They understand more subtle details, but they do not understand all of them. Users
often become advanced users.
» Advanced Users

Like intermediatc users, advanced ones understand almost all of the standard
Windows user interface features. Advanced users understand most of the functionaltity

of your program and they want to get their work done as quickly as possible.

1.8 User interface programming methods

Originally people programmed computers in binary machine code. Later assembly
language was a big revolution. People could write programs using mnemonics instead of
strings of zeros and ones. Soon after programming languages came and compilers, scripting
langnages and interpreters, visual language and visual builders and finally markup
languages and reindeers. 1ligh-level programming languages gave programmers more time
to think about other aspects of software development, such as the user interface; senpting
languages allowed greater portability and flexibility in software: visual languages removed
the need to memorize the language vocabulary; and finally, markup languages reduced the
expertise needed 1o develop user interfaces and preserve information, The next section

looks at the advaniages and disadvantages of each method.
1.8.1 Low-level Programming

Low-level interface programming was the first method programmers used to create
interfaces. Most or all of the code is writien in assembly and used the instructional
machines. The problem with assembly programming is that it is platform-specific and
porting to new platforms requires a complete redesign of the applications, because cach
platform has its own instructional machine set. On the plus side. assembly programs are
extremely fast and compact and do not require a compiler. Currently. low-level interfuce
programming is mainly used for highly interactive applications, such as pames, where

response time is morc important than portability.
1.8.2 High-Leve! Programming

One of the most popular ways 1o build user interfaces for applications is with a high-
level languape or with a visual designer. High-leve! programming is powertul and provides
the programumer with a lot of control over details in the design and it requires significam
programming experience. The most popular high-level Janguages are C/C+H, Java, and

Visual Basic,

]!

1.8.3 Scripting Languages

Markup languages are not “functionally complete.” They lack some imporant
programming features such as conditional statements. loops and functions. Scnipting
languages provide a nige complement to markup languages and the combination of the two
provides the functionality needed so as to build most applications. However, the power and
sophistication of scripling languages has improved dramatically in recemt years. The
tremendousness increases in both computer speed and memory slorage makes it possible to
use them for a much broader range ol applications than was previously passible. Scripting

languages are alsc easier for non-computer persens to learn. [28]
1.8.4 Toolkit Programming

Toolkit programming uses object-oricnied techniques to raise the level of abstraction in
building user interfaces. Programmers build the interface in a high-level propramming or
scripting language by using widgets [rom a particular toolkit set. Widgets are high-level
objects (¢.g. butions). The major advantage of toolkil programming is the ability (o hide all
the low-Jevel details (e.g.. drawing the widget on the screen} and handling low-level events
{e.g., keyboard interrupis) from the programmer. Some of the most popular toolkits are
Microsolt Foundation Classes (MEC) used in MS-Windows and the Motif toolkit used in
X-Windows. When Sun designed the Java language, it aiso designed a new toolkit (Java
Foundation Classes, or JFC). Each toolkil is trying 10 solve a different problem: portability,

easy of use, looks, more features and so on. [22]
1.8.5 ¥Yisual Programming

Visual programming is like toolkit programming, but instecad of wniting code the
programmer uses direet manipulation to design the interface. Visual builders allow the
programmer to drag-and-drop widgets into a design area and then specify the events by
writing code in some high-level programming or scripting language. For simple interfaces.
visual programming is fuster than tolkit programming; it is used for simple interfaces and

quick prototyping.

19

1.8.6 Markup Langnages

A markup description is higher than toolkit programming in the user interface
abstraction. With the advent of the Web, markup languages are now used to describe and
preserve user interfaces. They provide high degrees of portabitity and this allows cross
platform user interfaces 10 be distributed over the Intemnet. Markup languages requre little
programming experience and they are usable by novice programmers, An example of

markup languages for user interfaces is eXiensible Markup Language (XML). [Y]
1.8.7 Hybrid Programming

Java Applets f HTML
An applet is a specia! program written in the Java programming language that can be

included in an HTML page.

Perl / CGI/HTML
The combination of the three {HTMI. is for the user interface, Common Gateway
Interface (CGI} for the communication, and Perl-scripts for the backend) is a popular

combination for Web-based applications.

VBScript f ASP fHTML
Active Server Pages (A5} is a server based on seripting language that is used to build

database driven Websites, where the browser may have no scripting at all.
1.9 Specification Formats

Programming user interfaces at the toolkit level is guite difficult [21]. One way to make the
user interfase production process easier is with high-level 1ools. These wols aid the user
interface production at various stages. Al design lime the tool lets the user interface
designer creates the interface. This can be done with a graphical editor that can lay out the
interface or a compiler thal can process a textual specification. At run-time the tool
manages the user interface and monitors the interaction with the end-user (the term “User
interface Management System™ or UIMS is also used for this kind of tools). This usual

contains a toolkit, but may also include other software that measures the performance of the

20

interface or other administrative work. Finally, at after-run-time the tool can help with the
cvaluation and debugging of the interface. Due to the lack of good user inlerface metrics,
few tools provide support for aller-run-time help.

There are several ways to classify high-level user interface tools, One way 15 by how the
interface designer specifies what the interface should be [21]. As Figure 1.1 shows, some
tools reguire the programmer o program in a speeial purpese language, some provide an
application lramework to guide the programming, some automatically generate the
interface from a high-level model or specification, and others allow the interface 1o be

designed interactively. Following is a more detail description of each category.

Specification Format

I
l l l

. Interactive Graphical
Application Model-Based Langusge Based
Frameworks Geperation

Specification

State Transition Sereen
Networks Serapers
Context -Free Yisual
Grammars Programming
Constraint Dalabase
Languapes Lnierfaces
Event Declarative
Languages Languages

Figure 1.1: Uscr Interface Specification Formats

21

1.9.1 Application Frameworks

Most windowing systems provide a low-level toolkit for building powerful and
sophisticated user interfaces {e.g. XLib for X-Windows} [12]). These tcolkits provide
routines for controlling line-drawing, pixel coloring, cursor movement, and other low-level
aperations. Although necessary for some classes of imerfaces, programming at this level 1s
very difficult and requires knowledge of the underlying platform. Also, building interfaces
that conform o the platforn style guidelines {i.e., look-und-feel) 15 also difficult, Today
there are many frameworks to help with the development of user interfaces. The Microsefi
Foundation Classes {MFC) for Windows and the CodeWarrior PowerPlant for the
Macintosh are some examples. Some frameworks span muliple platforms providing a way
10 enforce the same look-and-feel on multiple platforms. For example. the Java Foundation
Classes (JFC) provides that same lock-and-feel on any platformn that has a Java Virual
Machine (JYM) implementation. JFC poes one step further in that it provides a way 1o
separate the look-and-feel from the implementation. Accordingly, you can create a custom

lock-and-feel and enforce it for all applications on all plaiforms.
1.9.2 Maodel-Based Generation

All interizee gencration tools are faced with a trade off between giving designers control over
an interface design and providing a high level of automation [31]. On one hand, piving
extensive control forces designers to program by hand all the details of the design. In this
case, the designer must be an expert in interface design and the interface is costly to build.
Automating significant portions of the inerface design. On the other hand, removes the
power from the designers. allowing them 10 control only a few details. This is preferred for
applications where fow resources are available for building and maintaining the intcrface
code (e.2., ong person job). Automation can generate cheap yet complete and consistenl user

intertaces.
1,9.3 Intcractive Specification

Creating a good user inlerface requires good artistic skills. The problem 1s that graphic

designers and user interface specialists (the people who should be designing user

12

interfaces) are not geperally good programmers. Interactive specification (also called direct
manipulation) programming enables users 10 graphically manipulate the user interface parts
{and their propertics) by placing objects on the screen and organize them using a poinling
device, The system then generates the appropriate code thus limiting the amount of
programming required.

Direct manipulation tools can be subdivided into four categories:[12]

1. Prototyping lools,

2. Wirzard (sequence of cards) tools,

3. Interface builders, and

4. Graphical edilors.

The prototyping tools allow the designer 1o quickly mock up how the interface looks for
cerlain scenarios but cannot create the real user interface. These 1ools are different from
“rapid prototyping” tools that can create workable uscr interfaces.

The wizard foels are tools for developing user imerfaces that exhibit sequential behavior.
The user traverses & sequence of screens {also known as cards, frame, or forms) and the
final screen shows the result. Each screen contains a set of widgets, which can be static
(fixed set of widgets) or dynamic (set of widgets depends on previous responses {rom the
user). The wizard tools usually allow the designer to create both static serecns (each screen
individually) and dynamic screens {using a template with embedded seripts),

Interfuce builders allow the designer (o build the interface using dircct manipulation, The
user selects a widget from the list of available widgets (associated with a particular toolkit)
and places them on a drawing arca using a pointing device, The system then genermes code
that is compiled with the rest of the application. An example of an interface builder 1s
(Visual Studic) from Microsoft, which provides a graphical tool to generate a user interface
and then compile it with the actual application {writien in C++, Visual Basic, or Java).

In the end, graphical editers arc specialized tools for dala visualization applications.
Although similar to interface builders, they include custom widgets for sophisticated
operations {such as simulations, process conlrol, syslem monitoring, network management,

and data analysis).

13

1.9.4 User Interface Language Based Specification

From the beginning most user inmerface tools provided a special-purpose language for the
designer to specify the user interface. Many different 1ypes of languages were developed

with each language taking a different form, such as:
s Stute I'ransition Networks
¢ Cuntext-Free Grammars

s Constraints

Event-Based

Database Queries

Screen Scrapers

Visual Programming

Declarative Languages

For detailed information concerned every kind, go back to references [12], [27].

Chapter Two
User Interface Modelling With UML

In this chapter, the case study clanfies user interface modehing by ustng UMT,. Numcrous
tendencies have formed the UML to what it is today, improving on many fields to model all
important aspects of sollware systems. These aspects are reflected in the diagrams UML
provides for modeling. Judging from these, aspects covered are classes, use cases,
components, activities, sequences, collaboration and finaliy the package. Presentation is not
one of them, because UML does not provide a diagram for modeling the layout of user
interfaces, UML provides extensibility mechanisms that can be used to extend UML to new

domains. This will be explained in this chapter.

2.1 Case Study: The Library System
In this scction, we explain a simple case study of a library system to illustraie the
problems that faced during the modeling of user interface.

In the Unified Modeling Language (UML). one of the key tools for behavior modeling is
the Use Care model. The key concepts associated with the use case model are acters and
use cases. The users and any other syslems that may interact with the system are
represented as actors. The required behavior of the system is specified by one or more uscs
cases, wishes are defined according to the needs of the actors. Each use case specifies some
behavior, possibly including vaniants that the system can perform in collaboration with onc
OF MOTE ACLOTE,

Use case model is intended to be used in carly stages of the system analysis in order Lo

specify the system funciionality. as an external view af the system.

=)
rn

b ——{ -
hivsayguBonk LI mBovrowed Books
M-I T T o iy [i e = i Lty
- i
Mg vt LogaTaSymem
i 32 . e e
e N SN e gy pais WSS SN
1 Brwrtvutiom Bk
Lot T LA e Libwwrian T icmnr, £ icatent Borroser CollnrBrod
L Ry i
Harteuel ek HompaBoik
X T C e < pomaianical | e icaies=
-l @
Eorgrafiond Semichllook

Figure 2.1: the use case diagram

We noticed from use case diagram in Figure 2.1, that there are two actors, they are
Librarian and Borrower. When the Librarian succeeds to inter the system, it can perform
the following functions:

s Manage Book (add, update and remove book records}),
» Manage User (add, update and remove user records}).
s Borrow Book.

s Return Book.

e ListReservationBooks.

Also from the diagram in Figure 2.1, there arc some functions are performed by both
Librarian and Borrower:

s List the books borrowed by a library user.
« Seurch Book.

s Browse Book.

s Check the availability of a book.

The use case CoflectBook, associated with <<aclor>> Borrower, is modeled to represent
a task performed by Barrowers, although it is not implemented 1n the Library System. For

this reason. the use case CollectBook does not have a <<communicales™> stereotype

anached to il
The Library System must ensure that Borrower does speeial functions of borrowers and

Librarian does only special functions of librarian.

]

2.2 Domain Modelling

Classes and objecls modeling the entitics of a system are elements of the domain.
Therefore the domain models descnbe the properties of classes and objects of the domain.
From the use case diagram in Figure 2.1 and the system specification not entirely described
in this research, we obtained the design of the domain modet represented by the class
diagram shown in Figure 2.2. This class diagram is composed of the following <<entity>>
classes: Library, User, Librarian, Borrower, ook and copy.

» The Library cfass: has a list of all the books and all the users of a library. I also
provides find operations for the User, Book. and Copy classes.

» The Uiser class: represents people who lend comes of bocks from the hbrary, and
therefore they have a list of borrowed copies and 2 list of copics that are waiting 10
be picked up by the user (reserved copies).

* The Book ¢lass; represents the data thal 1s commen to all copics of the book like
title and author... elc, Instances of this class also provide a list of all copies of the
represented book and a list of users that are waiting for a copy of this book ta
become available {association “reservation List™).)

» Each instance of the Copy class: represents a single copy of a book that 15 available

in the library and thus there is a simple association to the Book class.

The borrowBook and returnBook methods of class Library both expect a user and a copy
as arguments and are used 10 indicate that the given user borrows or returns the given copy,
The <<entity>> stercotype, <<control>> stereolype and <<boundary>> siereotype are
used throughout this research, they were introduced by Jabeobson in his Object-Orniented

Saftware Engineering [15] and incorporated hy UML:
s The <<entity>> stereotype identifics classes and class instances that model things
or objects that exist in their own right.
e The <<controf>> stereolype identifies classes and class instances that perform
system behavior.
s The <<boundary>> stereotype identifies classes and class instances that handle

the interaction between system uscrs and systems.

< aiy wa
ek,
< emlity 3% Aushar ; Senny
Libewry A heoklim g e | Dite:Strina

LT TP < gy 27
1shraram s
Salary Imirger

Figure 2.2: The domain model

2.3 Task Modelling

Indeed, both of use case and activities in LUML represent the task's notation. We can elicit
user interface functionalitics required 10 allow users achiceve their goals by using the use
cases and their scenarios, [n addition, to be able to identify possible ways to perform
actions that support the funclionalitics elicited wsing use cascs, we can usc the using
activitics. Thercfore, mapping use cases inte top-level activitics can help describe a set off

interface functionalities similar to that des¢nbed by task models.

The Borrowlook, Returaliook, Searchliook, ManageUser and ManageBook use cases in
Figure 2.1 shows that the Librarian can perform borrowing, returning, managing the books
and managing users. The same usc case dizgram shows that the SearchBoek and
Browsefouk use cases shows that both of the Librarian and Berrower can search and
browse a hook. Howoever, both of the librarians and borrowers must be logged to perform
the functions for them. Using UML terminology this means that the actor Librarian use the
BorrowBuok, ReturnBuook, ManageUser, MunageBook, ScarchBook and BrowseBooks use
cases, the actor Borrower use the SearchBook and BrweseBooks use cases, if they
previously used the LewinfoSystem use case. n fact both of the librarian and the borrower
are used JoginToSystem. With out it they can not enter 10 the system. The same use case
diagram shows that, the ReservationBeok use case extends the SearchBook and

BrowseBouks use cases, but it does not explain how this extension happens,

pt

The use case model i3 intended to be used in early stages ol the system analysis in arder
to specify the system functicnality, as an cxternal view of the system. but they do not
provide contrel flow information related 1o tasks and do not provide some features ofien
associated with user requirements, like goals, pre-condition and post-condition, which may
help the design stape. Therefore the activily diagram is required. The activity diagram in
Figure 2.3 shows how a [ibrarian can inicract with the user interfzee of the Library
Systemn. The activity diagram shows that after logging into the system, a Librarian needs to
select one of the following opuions: horrowing book, returning book, munaging ser,

managing book, searching for a book or guif the interaction with the application.

l_ibra:im/'Q\ & ——— =)
¥

% Seben Funclsan
T |
[manage] é““’!n.)
Ry
fenemagt kool | rearch) ',|Imﬂ|;m|
Munuge Iowro
U | Brgeame] Bocd,
[quin]
ISahwat] o
rarfem
Iknrrnw
Frhain
- - % -
It
e aloct] [S#let |
' Fourfiear i Parform
I l
Hrowas Search
* [k ” Baak]
Jopmit] $ {quan]
[Satma] [St]

Figure 2.3: A view of the task model for Librarian.

19

While the activity diagram in Figure 2.4 shows the Berrower after logging into the system,
he needs o select one of the lollowing options: Searching for a hook. Browsing the books,

Display a list of the borrowed books or Cuitting the interaction with the application.

Furthermore, the borrowing operation performed through Search or Browse operation,
then we know it the book is available, afier that ReservationBBook operation is exccuted this

15 a requisition of borrowing.

— }qi ._.L—r)

Logm
X Nalnge Fumctind)

Figure 2.4; A view of the task model for Borrower.

Activity diagrams show the procedural flow of control between two or more class objects
while processing an activity, Activity diagrams can be used to model higher-level process
and also 1o model low-level internal process. For that we can decompose for some activities
to give more details about the behavior of system. Therefore in my research, the activities
BorrowBook and Manage User of Figure 2.3 can be explained more precisely by an
additional activity diagrams as shown in Figure 2.3, 2.6(a) and 2.6(b) respectively. And so
the activity Browse book of Figure 2.4 can be explained more preeisely by an additional

activity diagram as shown in Figure 2.7.

/ BORROW BOOK \

e T ol e S o a—
¢ NI

: Folyr e il b
[Flxe|
Dl:pln’
n“ﬁ'l'lx
[4rua)

o=

' et book. |l]

'!'

€ 7(m

i
>
o

Figure 2.5: The borrow hook is a partial view of (the task model for Librarian.

MAMAGE LSER

\

k]!

ATID LSER

~

Tq\
B

Select ndd
L il

o

Cpbary mt ey
kS

» I: Pl :I
a-ul-:ur Ly
Lyinplay phurte
- ¥ g

1

[E

{b)

Figurce 2.6: (a) The manage user is a partial view of the task model for Librarian.
{b) The add user is a partial view of the task model for manage nser.

BROWMAE BOOK

*

Salwct bromee oyicu

Figure 2.7: The browse book is a partial view of the task model for Borrower,

2.4 Modelling interaction objects

A user inleracls with a systemy through interaction objects. Interaction objects are
commonly classified as either ahstract or concrete [19]. We can represent important
features of both concrete and absiract presentations using standard UML class diagrams.
Additionally, we can describe interaction objects’ associated behavior using standard UML
sequence diagram, However, UML provides special visualizations for absiract presentation
madels. UML interface diagrams are cssentially UML class diagrams that clarily the
purpose of individual abstract components and the containment relationships between

different componcnts.

2.5 Relationships between models in UML

We use object {lows in activity diagrams to describe how 1o use class instances to perform
actions in actionable states. In fact, by using object flows, we can incorpoerate the notion of
state into sequence diagrams that are primanly used for modelling behavior. In UML. we
can also use object Hlows 1o describe how to use interaction class instances. UML specifies
categorics of object flow slates specific to interaction objects [2]:

* The <<interacts>> object flows relate primitive interaction objects to aclion states.

They indicate that associated action states are responsible for interactions in which
users invoke object operations or visualize the results of object operations.

= The <<presents>> object flows relate FreeContainers to activities and specify that

the associated FreeContainers should be visible while the achivaties are active,

» The <<confirms>> object flows relate Actionlnvokers to selection siates and

specify that selection states have finished normally.

» The <<cancels>> ohject flows relate Actionlnvokers to composite activities or
selection states and specify that activities or selection states have not finished
normally and that the application flow of control should be rerouted to a previous
state.

» The <<aclivates>> object flows relate Actionlnvokers to other activitics, thereby

triggering the associated activities that start when an event occurs.

33

2.6 Moaodeling user interfaces in UML

Because we can model absiract and conerete interaction objects using class diagrams, no
particular need seems 10 exist o extend UUML's represemiational fucilities w describe
interface components. However, class diagrams don’t necessarily provide an intuitive
interface representation. UML provides an alternative diagram notation for describing
abstract interaction objects. UML's user interface diagram consists of five
constructors [7]:

o The FreeContainers or AbstractForm i3 a top-level interaction class that no other
interaction class can include.

o The Containers is a mechanism that groups interaction classes other than
FreeContainers.

o The StaticDisplay category is related to those components that just provide some
visual information, such as labels.

o The Actionfnvoker category is related 10 those components thal can receive system
cvents that are propagated as system operations, such as butions. Actiorinvokers
receives direct instructions from users

o The InteractionControl category is relaled to those components that can receive
system events that normally model user options concerning navigation through the
UL such as menus.

» Inputrers receive information from users.
» Editors facilitate provide twe-ways to exchange the information,
» Displayers send informatien to the users.
Bodart and Vanderdoncki [2] provide a more precise discussion of the categerization of

abstract companents.

2.7 Abstract Presentation Modelling

Presentation models Classes and objects responsible for the visual appearance of user
imerfaces are structural elements, interaction objects are usually called widgess.
Presentation models are structura! models describing propertics of widgets and their

classes. Interaction objects can be concrete interaction objects (C1Os) and abstract

34

interaction objects (ATOs). The CIOs are the widgets that compose the U The AIOs are
abstractions of these widgets thal describe if interaction objects are used for data input
{(irpurter). data outpul {displayver) or both (editor) in presentation models.
In the abstmct presentation model, we do not need a detailed model of the Ui

presentation, hut enly [3]:

e T'o know what kind of compeonents compose the UL

+ How many components there are.

s How may they be grouped?

s Know which operations these Ul elements should have, Therefore, we need an

abstract presepiation model.

The modeling of a user successfully logging into the Library Svstem, regular borrow
book, successfully search book. regular browse beooks and regular manage user into the

Library Svstem, can be used (o exemplify the use of an abstract presentation model.

Login to the Library Syvsiem
Login Ay —— — Specily eonneciion info
¢} Librarian Login [|
() Bomower Password [|
41,9 CANCEL

Figure 2.8: the display of the Logintif

'The LoginUi object presents to the user a login user interface, requesting a login name
and a password. This user interface can be something like the form shown in Figure 2.8,
which is net a UML diagram. However, it would be good 1o have & notation that allows
designers 1o specily widgets and their layout or to abstract over such details, should they

choose to do so.

A5

BorrowBaoki’]
Useridertificanon [
Name 1
Addres C——

Phone numnber ———
Boak idemtification []

Tutle —]
Authop AR —
Status I, Dl
Lyue dute)
1 Fnter I ' Apply | | Caocel |

Figure 2.9; The display of the Borrow 8ok Uf

The BorrowBook{/! object presents to the user a loan user interface as the form in the
Figure 2.9, this form request a user identification and document ident fication, then

displaying a name. an address, a phone number, a title, an author, a status and a due date.

SearchBook /T
Book ID |]
Author |]
Title | |
Results
Search Cancel

Figurc 2.10: The display of the SearchBookUT

The SecrchBopkt] object presents to the user @ scarch user interface as in igure 2,10,
which requesting book identification, author, title or a combination ol these, and then

displaying the result.

36

BrowseBook(i}]
Category | 1]
Author |]
Title []
Resolts
Browse Cancel

Figure 2.11: The display of the BrowseBookUf
The BrwoseBookUI object presents to the user a browse book user interface as the form

in the Figure 2.11, this form requesting specific the category of the book. author, title or a
combination of these, or without them all. and then displaying a result.

Mangeeliseril}

User identification |]

Wame [|

Address [;

Phione number []

Enter Add relete Caneel

Figure 2.12: The display of the Managelisert/i

The MunageUsert/l object presents to the user the additional or the removed user
interlace, which requesiing a user identification, a name, an address and a phone number,

this is an additional case. But in the deleting case, user identification will be requested .This

user interface can be something like the form shown in Figure 2.12.

7

Figures 2.8, 2.9, 2,10, 2.11, 2.12 are not a UML diagram since UML does not specify any
notation for designing presentztions. [n fact, we arce not claiming that UMIL. should have a
U1 mock up notation that can lead 10 an ecarly commitment in terms of Ul Jayou and
component selection. However, we argue that UML needs a notation that can describe
better the structure of abstract user interfaces than class and object diagrams. In lact, such
notation could be used early in the Ul design even to support the task design using activity
diagrams,

We can descnbe interaction objects’ associated behavior using standard UMLL sequence
diggram, deseription of how UML constructs can be used to model I presentations 1s

presented in the next section.

2.7.1 Abstract Presentation Structure

The abstract presentation model (APM) in Figure 2.13 provides a gencric description of
classes and their relationships used to represent abstract widgets. There the APM has a top-
level container: which are the <<apm>> FreeContainer (Abstractform) and the Container
are defined in section 2.5, All the struciural elements of the L] presentation are represcnted
by (he abstract component JnferactionCluss. The dctionfmvoker sub-catcpory of
fiteractionClays., The PrimitivelnteractionClass sub-category of feferactionClass can be

further specialized into Displayer, inputter and Ediior.

1

bt {:}' . o o
: . . g
[|
capm TUAEEr TERpmI> A
AbaracrEreeC ontaimer Agtioninveker Sincicidiabdny IndermetionControl
b E oarmy) f
7 pecllacs | [1 1
—— m“‘-DIE:L}ﬁn"U Inputier Displawer 1o ibar
sendCancalil |t ation el | meractmnCanl (1= S T |

Figure 2.13: The abstracet presentation model.

An object diagram of the class diagram in Figure 2.13 of the user interface Joginlif is
described by the model shown in Figure 2.14. The compose is the name beiween
AbstractComponents and AbstractContainers, while the integrate is representing the links

between Lwo instances of AbstractContainers.

38

HascDhrriry Sdngiclnaplny
> comptine
cimmp
5 Pl
I FrnapeBicals At tncul coltimitd I
]
I
. T
ey IS =Ty N ey
- - _',,.J“" Y
- r.'qulu' e compase /\ COMEpOM
k=
CmltnBwiton Abeirecoote
= CommandButtn ; el compose compuse N
AbnrwiC onmter FasymomdLabel ; ogunTess ;
!" \' Giaei Laplay \ loiezpctivnt ouerg
u‘lII!|I\'lI¢ |_|_||n|_|._'|§t J'Ir
LOMPIR: coinpene Pasgwerd Text - Letuan).alsl
Labingan Sstianinvoke Bepgowny detrpplnviker / \ Lttt St i Dupley
Cb : Artonlnyeker CANCE| Acionlnyoke

Figure 2.14: The abstract model of the LoginUT
An object diagram of the class diagram in Figure 2.13 of the user interface BorrowBoakUlf
15 described by the model shown in Figure 2.15.

T H ke DY SrariTHaplyy

Diznbwverimerny et entral coimpase DuaplaverinternyLgnCgnoes]
Bugk|[)4hg) ¢ \ Comqoes / Bt Labols
SlativLuploy compnse SarieDisplay

< M0

BiogkIDTewt; - St can;
InputizrintemetiapCan gl wompaks SampaEe ixieplever|ntoractiondant of
—~ e
RPN \ ol

AddrgzeTes § [T £+
iy e lneradionControl Liaginygrinteractimi, yidrl

[umeMyrnbabel Itusich{um Texi
Lglnverloterweignl ynt of

Figure 2.15: The abstract model of the BorrowBook Ul

3

An object diagram of the class diagram in Figure 2.13 concemed the user interface
SearchBooklil s deseribed by the model shown in Figure 2.16.

AmihotLubxd ; TileLabsl ;
s Uplay SaricTipapley
IrocriwcrscoosContigl IroticriierachonCostrol
CiEmponE
StancDurlyy compoac | ImesDuoley
SEARCHC LanCEL o —
acenlowkg || Asinlyvoker Ten P
& e Inpuberipleracionsioner ol LOMp0i compase Uapleym ot tion Gantred
Lannpoae campase —-..._._‘_H_‘_ —
\/ CONHYC COmLe

Butcnllon ABTCOUN | mrgaie—| Ay e DRAB AbracContiver |

Figure 2.16: The abstract modcl of the SearchBook Ul

An object diagram of the class diagram in Figure 2,13 of the user interface

Browse Books U] is described by the mode! shown in Figure 2.17.

I [T Tkl abecd ©
i Derday Bt Dueriyy
by iy ool ool l f— bty Lt e
- CaporyTua .
0 SrsticTiesplay compose B ELL
Lrorss; m cainpasg LM
Agsnglpvaker Aatimonycker \ f .
. Braul ezt
Y - - cOnipale Sabnjande I Lonzgrhagyt et s lageCoptrol
compame compose Comibaobiis - AbswactContyingr —
T

Basics: Ao | acge—] ety |wtgrme| Dilies: AbtreCaesa

Figurc 2.17: The abstract model of the BrowseRook U]

An object diagram of the class diagram in Figure 2.13 of the user interface

Manage User Ul is described by the model shown in Figure 2.18.

40

- —— = m—
campeat o

, b e -

ENTER, CAMCEL LDl abel ; Eonmpen .
. e : oo P Nl
] \.

AL LFPATE, LELETE: Upelleal.: compie NupsTeat:
Adtwninecktr || Actoddoks || Adienimoks InvepucniunCurarel /,mmw,c \ Inerracton ontry|

Inpeeygonieg] ImeraectnCaning

Figure 2.18: The abstract model of the ManageUserd/f

2.7.2 Abstract Presentation Behaviour

A five operations are defined in the APM in Figure (2.13): showForm{}, getData(),
setDataf), vendConfirm{) and sendCancelf). These are the abstract operanons of Ul

presentation elements that should be implemented hy (widgets) <<boundury>> vbjucts.

s showForm() specify that the FreeContainer is a presentation unit. This means thal
the widgets directly contained by Ul must be instantiated and must be made visible
when the Ul is activity.

» petDataf) operation informs <<boundury>> objects relate fmreractionControd that
collects information provided by the user after an interaction, doing any required
transformation on the information provided into suitable parameters for system
OpeTRtions.

« setDataf) operation informs <<boundury>> objects relate fmteractionConiro, gels
information provided by the system operations, then displayed them on the out put
device.

» sendConfirms() operation informs <<boundury>> objects relate Actionfmvoker that
the system's user 1s submitting information to the system,

» yendCancelsf) operation specilies that the Cancel Actionlnvoker is active and can

finish the Conncct activity any time when the control flow is there.

41

2.7.3 Using the Abstract Presentation Model

In the Figure 2.19, the acter {Library or Brower) make interaction with the Loginf/7 like
Figure 2.8, when the interaction 1s happened, it could pick up the Name and the Password
10 the library system through Loginf) [unction, the object LibrarySvstem verily the name
and the password of the user by verifpliserf] operation where the LibrarySestem Passing
the name and the password as a parameters to the Data Base. Data Base cxccutes Search()

operation about the name and the password. If the name and the password are correc, then
create the Mainlf!

Aidix LibswrSyvism LUMG UGS
1 kwni) - ‘
- 2 & verify L'wex [] » ;)
march ()
[L
AbatiiiF i
e}
L] L) -

Figure 2.19: A scquence diagram for the Login ToSystem
USE CASC,

lrom the RegularBorrowBook sequence diagram in Figure 2.20, the LibrarySystem

creates the <<houndary>> BorrowBookU! object of class Abstractiorm
{AbsiractFreeContainer), which cxecutes the showform(} method. This method draws the
BorrowBpokU! form that presented to the uscr. Imicracting with the U the uscr sends a
sendConfirmation{) message 1o the BorrowBookUl object. The sendConfirmation()
message can be an event associated with the Enter button shown in Figurc 2.9, but this is
not specified during the abstract presentation modclling. The BerrowBooklJ! objeet
performs a getParaf) operation that picks up the data provided by the user. After collecting
the data, the BorrowBouk/! object sends a system operation message checkUser() to the

<<controf>> BorrowBookControfler object, passing the user identification as parameler.

42

The BorrowBookControfler object prepares a query that is submiited to a databasc
management syslem. 1f there are objects of class Person with the provided user
identification in the database, the database instantiates Person. Then, the <<control>>
BorrowBookController object sends a message to the <<entity>> Person object checking
the provided user identification. [f the user identification 1s comect, the <<camtrol>>
BorrowBookController vbject sends a gerhackDatal) message 10 the <<entity>> Person
object. The perbackDatad) message recovered the information {name, address and phone
numbery for the user, who has the user identification. After collecting the dats, the
<<control>> BorrowBookConiroller vbject sends a system operation message display () o
the BorrowBookU{ form objeet which execules the showData¢} method. This method
shows the data {user information) on the BerrowBook{/f form that presented 10 the user.

For the next time. the user interact with the BorrowBogkUf. the user sends a
sendConfirmationf) message 1o the BorrowBookUI object. The sendConfirmation(}
message can be an event associated with the Enter bution shown n Figure 2.9, The
BorrowliookUT object performs a getDura) operation that picks up the data provided by
the user. After cellecting the data, the BerrowBonktf object sends & system operation
muessape checkBook(d to the <<control>> BarrowBookConiroiler object, passing the book
identification as parameter. The BorrowBookController objecl prepares a query Lhat is
submitted 1c a database management system, If there arc objects of class Bouk with the
provided book identification in the database, the database instantiates Book. Then, the
<<controf>> BoerrowBoekControtler object sends a message to the <<entin>> Book
abject checking the provided book identification. If the book identification is correct, the
<<conirol>> BorrowBookControffer object sends a gethackDaraf) message to the
<<entity>> Book object. The getbackDataf} message recovered the intormation {title,
author, status and due date) for the book, who has the book identitication. Afler collecting
the data, the <<controf>> HorrewBookConroller object sends o syslem operation
message displey () to the BorrowBookUI form ohject which executes the showDafaf)
method, This method shows the book information (book identification, tnle, author, status
and due date} on the BorrowBookUJ form that presented to the user.

For the thired time, the user interact with the BorrowBookUl, the user sends a

sendConfirmation() wessage to the BorrowBookUI object. The sendConfirmation()

43

message can be an event associated with the Apply bution shown in Figure 2.9, The
BorrowBaokUI object performs a getData() operation that picks up the data provided from
the last operation. Afier collecting the data, the BerrowBookl/! object sends a system
operation message checkBooak() 10 the <<control>> BorrowBookControifer object, passing
the book identification and book status as parameter. The BorrowBookContrufler object
preparcs i query that is submitted to a database management system. To make sure that the
book status, is not borrowed in the database, the databasc instantiates Book. Then, the
<<eamtrol>> BorrowBookControllcr object sends a message to the <<emtity>> Book
object checking the provided book idennfication and book status. I the book identification
and the book status are correct, the <<controi>> BorrowBookControfier object sends a
foanBookf) message. which perform loanBook() operation, to the database management
system, that instantiates Loon object. When the feanBook(} operation is finished, the
BorrowBookConiroller object creates a NewBorrowBookUf object and destroys the last
BorrowBookUI

Figure 2.20: A sequence diagram for the BorrowBook use cuse,

44

Léancian ShySyalon BorewBocilotrlo | CDMG DDEMS
1
g i i ErTae, r
Borrefiovk LT ShaivaciFing
L
™ 1]
-
T Bttt |
™ - P D)
P
itochs Lver Cud
e [] Propuraiuenyt
T haaberwnn = QueryPersan]
—M™ desarease= Foun
Jipprarmen]l ewl e = check Ul dif iy |
ey alwrecri & L i O o B Dt
i L
e a1
ot manani 1 'y
| pm
! sl
[| Propareluerd}
st = CHIL Cuery{ Bonk)
—®* | cuwcrees .B
hasBoek] BoohIdis = cherd Bonk d(bid) t
PEFT—— ey Y R W%ﬂ
-
O
T dandionlmacioall 1 o
|.' ek |
iy, Pty e
Ik = (WL EnueryfBouk)
]
|wwxcbchﬂuoklibu,b:l]
[indca Btk Dot o of B Jhoibioudoimd E
PP
=] e T
[h-n:.ﬁbmumwr
[Tmnle i b | ot iy E
- = n I

45

The SearchBook scquence diagram in Figure 221, the Lifrary Spstem creates the
<<hgundary>> SegrchBookU] object of class AbswractForm {(AbstraciFreeContuiner),
which executes the showForm() method. This method draws the SearchBoakUT form that
presented to the user. Interacting with the UL, the user sends a semdConfirmation(} message
to the SearchBookUI object. The sendConfirmationf) message can be an cvent associated
with the Search button shown in Figure 2,10, but this is not specified during the abstract
presentation modelling. The SearchBockl/f object performs a gerDataf) operation 1hat
picks up the data provided by the user. After collecting the data, the SearchBook{f object
sends a system operation messape checkBnak() to the <<comirol=>= SearchBookontroffer
object, passing the book identilication, awthor, tille, or a combination of them s
parameters, The SearchBockControfler object prepares a query thal is submitted to a
database management system. If there are objects of class Soek with the provided (book
identification, author or title} in the database, the database instantiates Pock. Then, the
<Zcontrol=> SearchBookConirollcr object sends a message to the <<emtity>> Book
object checking the provided boeok identification, autbor or title. It there at least one 1tem
from the last items is correct, the SearchBookController object perlorms a gethack Dataf)
operation that gel back the daila provided by the database management system. After
collecting the data, the <<comired>> SearchBookControfler objcet sends a system
operation message oisplayil to the SearchBookl!! objcet, which executes the showDatal}
niethod. This method shows the data (result of scarching) on the SearchBookUT form that
presented to the user.

L SepehRopkComler OPMG CDOMS

=hawFoimi)

J_

7
weml ol RN | grDwn
—_

[]mkﬁo&tbid.'hl.hj
-

e PrtparcT Jugi 1)

h 3

Tlimsock = (HLOusrpfBank]

S —
Bugk

I

[huHrmk]hmkid"wlbarl'mleGK - ch.er':Enpoid.bu.bll.

<< ispliny =
shoatDiwel] |

=

-

[y
™

lmmk&&{bmud'!unhu!lﬁ:l::c-mmsukmmﬂ]

! t | |
Figure 2.21: A sequence diagram for the SearchBook use case,

b

Returning to the BrowseBoaks sequence diagram in Figure 2.22, the Library Svstem
creates the <<buundary>> BrowseBooksUf object of class AbstractForm, which execules
the showFormg) method, This method draws the BrowseBookst/f form thal presented to the
user. Interacting with the UL, the user sends a sendConfirmition{) message 0 the
BrowseBooks /I object. The sendConfirmation{) message can be an event associated with
the Browse button shown in Figure 2.11. The BrowseBooksUT object performs a gerPatal)
operation that picks up the data provided by the user. After collecting the data, the
BrowseBooeksU{ object sends a system operation message checkBook() 1o the <<contrel>>
Browse BooksControfler objeet, passing the hook category, author or title, as paramueters.
The BrowseBooksContrefler object prepares a query that is submitted to a database
management system. [f there are objects of class Book with the provided (book category.
author or title} in the database, the database instantiates Book. Then, the <<confrof>>
BrowseBooksControlfer object sends a message to the <<entify>> Book object checking
the provided book category, author or tile. If therg at least one item from the last items is
correct or with out them, the BrowseBonksControfier object perlorms a gethackData)
operation that get back the data provided by database management system. After collecting
the data, the <<control>> BrowseBooksComrolfer object sends a system operation
message display() to the BrowseBooks{UI object . which executes the showData} method.
This method shows the data on the BrowseBooks T form that presented to the user.

Butral LLbaars Semem B RookyCaniplier ANIMSHDOUMS

L K hrowes

—Erealesr B fiogh17l_3 i
WernT i}

i
'..Lrﬂh-ﬂ
o
vk Honkihesd bk
b Bk ;Lr Bragaciunyt}

H -
: e b JIEC] oA Bk g+
FU—. [k A temragory S e | 0

Duini}

“r -

Figure 1.22: A sequence diagram for the BrowseBook use case.

47

From the AddUser sequence diagram in Figure 2.23(a), the Library System creates the
<<houndary>> ManageUserl/l obyect of class Abstractiform, which executes the
showFarm(} method. This methed draws the ManagelserU! form (hat is presented to the
user. Interacting with the UL the user sends a sendConfirmationf) mcessage to the
Manuge UfserUT object. The xendConfirmationf) message can be an event associated with
the Enter button shown in Figure 2,12, The ManageUsertt object performs a getDaral}
operation that takes up the data provided by the user. Afier collecting the data, the
ManageUser U object sends a system operation message checkUser(} 1o the <<control==>
ManageUscrlontroller object, passing the user identification as parameter. The
ManageUserControfier object prepares a query that is submitted (o a database munagement
svstem. If there are not objects of class Person with the provided user identification in the
database, the database does not insiantiates Person. Then, the <<conrol>>
Manage UserContraller object sends an enable() message to the ManageUserld! obyecl, The
enablef} messape makes the other fields active to user information entered.

Fer the next time the user Interacting with the Ul the user sends a sendConfirmation()
message 10 the Manage UserUT object. The sendCeonfirmation() message can be an event
associated with the Add button shown in Figure 2.12. The ManeageLiserUt object performs
a geiDataf) operation which for the second time take the daia provided by the user, Atter
collecting the data, the ManageUserldf ohjecl sends a systern operation message
checkUser() 10 the <<comtrol>> ManageUserController object. passing the user
identification, name, address and phone number as parameters. The Manage UserControlier
object sends an addlver() message that is submitled 10 a database management system. For
create new objects of class Persen with the provided uvser information in the dalabase. the
database instantiates Person. Then, the <<centrol>> ManageUserControtler object sends
a addlser) message to the <<entity>> Person object, that add a new user to the
<<egmify=> Persont objecl. When wddUser(} operation is finished, the
ManageUiserConiroiler objeet creates a new ManageUserUf object and destroys the last

ManageUserUl,

44

Libariun it Sviem Jelanagelipeg Conemity L0 ODRA S
! requent sdd I
- T
L
P
FrepurCuryl)
RapT'orson ;= O Ansery(Foimin)
| g Py BT ey LF AL AE e pmaliled >0
oy —————
" i i
' Lol n Armanond'} 1
- gilutal}
chack L. v ukl, unam,wadduphot
' 'eepuneCuen
._Jq
= DAL Dy Ferson
Ly letormbe
E N
wddUseiduid,ueon . plnd
[WL Scrpame
" bl K - s
=]
.r [

Figurc 2.23{a): A sequence diagram for the (AddUser) ManageUser use case.

49

Returning 1o the Deletellser sequence diagram in Figure 2.23(b}, the Library System
creales the <<boundary>> ManageUser Ul object of class AbstractForm. which executes
the showForm() method. This method draws the ManageUserUf form that is presented to
the user. Interacling with the Ul the user sends a sendConfirmuation() message 1o the
Manage User U object. The sendConfirmaiion(} message can be an event associaled with
the Enter button shown n Figure 2,12, The ManageUserUf object performs a getDeatu()
operation that picks up the data provided by the user. Afier collecting the data, the
AanageUserUI object sends a system operation message checkUser() 1o the <<controf>>
ManageUserControlfer object, passing the user identification as parameter. The
MarnageUserComtroller objeel prepares a query that 18 submitled 1o a database managenient
system. If there are objects of class Person with the provided user identification in the
database, the datubase instantivtes Person. Then, the <<controf>> Manage UserController
objeet sends 2 message 1o the <<emtiny=> Persan object checking the provided user
identification. If the user 1dentification 15 correct, the Manage UserControlier olyect sends a
gethuckiDatad) message thatl get back the data provided by the <<eanrin>=> Person object.
Afler collecting the data, the <<controf>> ManageUserControiler object sends a system
operation message displav() to the ManugelUserl/! form object which executes the
showDutaf) method. This method shows the data (user information) on the Mengge Userlf/
form that presented o the user.

For the next time the user Interacting with the UL, the user sends a sendConfirmation()
message to the ManagelserUl object. The sendConfirmation(} message can be an event
assocjated with the Delete button shown in Figure 2.12. The Maregellserl] obiect
performs a getData() operation that picks up the data provided From previous cperation..
After collecting the data, the Manage UserUF object sends a system operation message
checkUser() to the <<conirofl>> MuanageUserControfler objecl, passing the user
identification, name, address and phone number as parameters. The ManageUser{ onirolier
object prepares @ query that is submitted to a database management system. To restnct
object of class Persen with the provided user information (user identification. nume,
address and phone number) in the database, the database instantiates Person. Then, the
<<controf>> ManageUserController object sends a message to the <<emtiny>> Person

object checking the provided user informations. If the user information are correct, the

50

ManageUserControfier object pecforms a delUser() operation that remove the user from
database. When defUserf) operation is fimshed, the Mangge UserCantroffer object creates o

new Managellser Ul obiect and destroys the last MunageUser UL

AgrarrSipen Skt st Comorolic; DostG OEings
1 mequest mansge |
et | Ul AbiEe
wowlarm{}
T S ol | 1
J*h-dL' 15
o) g Preparaluen;
T WaeFomn = Emmwn]
z » Jom
Dhmaarscalvar WG = cheh i liimid . |
wedppleys Tt rmorudt AL e 30 G B kT o iy] |
*MDM}
i D‘ i
" SemdCemfrmanon} = ‘
F!—-ﬂ"ﬂ-‘)
E daillsar =431 Query(Peraon)
—_—
ipabora] LemrbOK. = check [lecklimid} .
| imaPrmad & T ey WG K| el Euied I-l—l
[#efl sevte!) OK]) T"'*L{"ﬂ“‘}“"w* :'?fl w banageltaerlll
et e -i E
| — [T~
g T il
| | |

Figure 2.23(b): A sequence diagram lor the (Deleteliser} ManageUser use case.

The presented sequence diagrams are restricted to the scenario where the user
successfully in logs into the system, regular Loan, successfully scarch book, successfully
browse books and regular manage user. Unsuccessful attempis to log into the system,

irregular borrow book scenario, Unsuccessful search book and Unsuccessful Browse books

scenano can be modelled as deseribad in Section 2.8.2.

51

Activities, as presented in Section 2.3, abstract presentation models are weakly
connecied by the flow objects in the activily diagrams. Indeed, AbstractComponents should
he used in activity disgrams to cxplain the data Mow between the L1 and the underlying
application. However, we belicve that a well-defined relationship between activities and
instances of AbstractForms can facilitate the design of tasks and abstract presentation. For
instance, activities that involve user interactions should be supported by <<boundary>>
abjects. However, it is difficuli to identify <<boundury™>> objects from an activity or to

identify activities [rom <<boundary>> ohjects.
2.8 Concrete Presentation Modelling

A user interacls wilth a system through interaction cbjects. Interaction objects arc
commonly classificd as either abstract or congrete. But:

s The abstract presentation model does not give much of a feel for the functionality or
organization of the event for components user interface associated with operation of
<<gomrol>> classes,

s The abstract presentation maedel can not give any description of layout, and can not
describe what is component that formed for <<boundary>> class.

Because the absiract presentation model can not cover these aspects, so we should use

Concrete presentution model.
2.8.1 Concrete Presentation Structure and Layout

A conecrete interaction object. any widgel, is a physical implementation of an abstract
interaction object. Most interface builders (such as Microsofi Visual C++) provide facilities
for interactively selecting and placing concrete interaction objects dunng interface
development,

Figure 2.13 shows an ahstract presentaion model, in this maodel
<<apm>>AbstractComponent Class represents different functions that typify those
supported by concrete interaction objects in widely available widget sets. and
<<apm>>AbstractContainer represents the grouping of components and containers in an
interface. We can represent a corresponding conerete presentation model as UML classes.
We might reverse-engineer a UMI. class diagram from an cxisting object-criented widget

sct, such as Java Swing [6], as a practical option.

52

We could then allocate concrete widgets to support abstracl components with a UML
framewaork, as described in Figure 2.24. In Figure 2.24, the class diagram in Figure 2,13 is
the specification of the pattern for the Ul presemtation model. This pattern called
PresentationFramework collaboration. We can bind concrete classes to absiract oncs using
this PresemvationFramewark, where the <<¢pm>2> Frame is bound 10 the <<upm>>
AbstractForm, the <<cpm>> Container 15 bound 1o the <<upm>> AbstractComainer, the
<<epm>> Label is bound to the <<apm>> StaticDisplay, the <<cpm>> TextField is
bound 10 the <<agpm>> ImeractionControl, the <<cpm>> Button 15 bound to the
<<apm>> Actionlnveker und the <<epm>> Combo Box is bound to the <<apm>>

Actionfnvoker,

ﬂmn
Concainer
| 1
- tw
x>
Wemdorn, K ompoacot
i | | !
e pri SEEE ELL ML o P
ITessfichl JPusttan ILahel Fombalay
T
o o \ Sll!i.i.'l‘-ll:lphy/
e T | N A
Actiopinvober
— .,“_tnmm-l:mﬂ
’ ‘-"""--..._H_‘,“H Abumracol ctioner .r{__.__‘____
1 an g I
<icpmar o AbrtFom Framscwor] Ahfmf:?:im
i Grid 3 A bt ol uenge
Flaw layou BT St DHisglny
— 1 — . Inirexpacinint ‘ominuil
- Actenlaroker
m:‘?
Layout] cprbe cncrmtvom

Figure 2.24: The concrete presentation muodel.

We notice rom the Figure 2.24:
» What is requircd to model the case study?
» Give us description of how the layout will be.
o Dvery class dealed as a Comainer so il must be an instance of

LayoutImplementution.

53

UM, also provides speciahized visualizations for absiract presentation models. However,
UML interface diagrams are essentially UML class diagrams that clarify the purpose of
individual abstract componcnts and the containment relationships between different
companents.

However, specifying specific concrele interaction object placement is very much an
implementation activity. And specifying an interface using concrele interaction objects
risks premature commilment to a specific look and feel.

Figure 2.25 presents the concrete presentation model for the Loginlif presented in
Figures 2.8. The model is an object diagram where the links are; the compose and
integrate links intreduced in Section 2.7.1, and the organise link that relates instances of
Frame (playing the role of the AbstractContainer) with their respective instances of

Layvoutimpicmentation. This link is mandatory for each instance of Frame,

| Blirmlical aviss) ; Firslayas II Conmocmonlanour Beinl sve “ CiminBored st ; (Gl irminal i lrhﬂmlm:m I
T 1 T T
Loy ol b L7 TR
o Erams:
ealmjhim -
— ¥ compose 7\ Comype thmpan SAEpaE
m:_“‘m Bumon I E Cosmund Button | Butln I _ ol 2 X
* - - j Pusstvrcidl aberl = Liseel |m ml e Tew TesFickd I LosinAg SpecchComnecinio:
el cowpe cops e : 2 Labd Labs
tomaz, Buton || Becwwer Butioo Ok Bty || Camsek: Button | Pussottoncrours | | comiibet: ot |

Figure 2.25: The concrete presentation madel of the fogint!i

Figures 2.26 15 an object diagram of the concrete presentation models for the
BorrowBook{I presented in Figures 2.9,

I Dubonfkaul gpoue ; Flowlayon | | e teoga] avmat (Harder] 5o I | CrarsBual avnd | Girgll svout l
I
EATISE OTLAmiw QIumniee
| ! |
B fiocd LI 2 .

Boumdoy ; Faacl SR [

T T
| Uintbraber: el [
o camguse compns
cRIpHIAE EOhlpuise
P Unerll Tent; TanaE el

CrHmpHISE | Lok DT ext: TewiFiuly
o B Akl sbel: Label Sonb i e L E
m I|

] “'\.. I Tk Tru TenFidd I
compos Y
¥ Aughewl sl Label
\ At Texe: Tou bid
coempnae
I Muae Texr: Tenthwald I

l SamcLabel Lot | DonwciOvaae Tevy. Test Fuiled

Figure 2.26: The concrete presentation model of the BorrewBaokUl -
fe

XTI _’ Shmipal gbed [[abel l

r——E Siatua Text - TearFothl 1l
& AT

“| HockIDLabel © Label
COMpRece

Dacabios : Pracl —

| A Tear. TixaF sid |/

PhoncHuml kel Label

ThueeMumTexl ; TesxFietd

Figures 2.27 is an object diagram of the concrete presentation models for the
SearchBookU{ presented in Figures 2.10.

l Tohtlatuc] - Labcd H Ainluorl sl ; Lakerl |
i

I TinleTexl = TentFickd | ‘,.l"l’l AutbapeTeat TeatFickl |

f
COmpe
x %
Faou | [Tahel leed — FimpaaE [RemuleLabel : Label |
=y -

CLL Rt —
[Mln'l'n.t TeoFucdd | SOmpt UL Rt Tew ; TenrFisld
\/ O CORPOIE
buficpBon: Paomd e Bl ,l—meuru Cafi ; Paod l
T 1
DR Ofjpish e NRAT M

| | |
Sowrchl wirms Bopderl o DmiaBorxlavous : Vil iroml

Figure 2.27: The concrete presentation model of the Search User UF

Figures 2.28 is an object diagram of the concrete presentation models for the
ManageUser Ul presented in Figures 2,12,

| HymonBonl.veaul | Flowl avaut 1 l {uripedionlavowd Hordeel pyvr | | DacaBiosl ayoid ¢ Gl syoue |
I
oFEALise oTiAdist DR
| 1
r Buticraficm, | Farird r—m-‘— Hﬂf:ﬂ;‘dﬂ“ :
EOMpOaE Gampoe compuse

SOIEY |l

O
R N mmp-unc | UsecltLalel j L] "2 o psaiie Lubsed £ Labl I
| Ui Toay T ek il . RARPRAME
¢ll q H
M : et it |

|
| AddressText : TeuFiald II_F"hnnc‘.\IerTul: Lynckied l

Figure 2.28: The concrete presentation model of (he ManagelserU]
Further, Figures 2.25, 2.26, 2.27, 2.28 shows that Panels arc being used instead of
Contuiners to model non top-level containers. 'This is possible, since the subclasses of Lhe

bound to classes can also be considered as part of the concrele presentation model.
2.8.2 Concrete Presentation Behaviour

We can represent important features of both concrete and abstract prescntations using
standard UML. class diagrams. Additionally, we can describe interaction objects” associaled
behavior using standard UML sequence or aclivity diagrams.

In section 2.7.3 presented the sequence diagrams for the ConnectToSystem, BorrowBuok,

SearchBook, BrowseBook and MarnageUser use cases are restricted to the scenario where

the user successfully in logs into the system, regular Loan, successfully search book.

7]
L

successlully browse books and regular manage user. The scenario for these use cases where
the CANCEL button 1s pressed are going to clarily in this scetion by using Conerete
Preseniation Behaviour.

The Figures 2.25. 2.26, 2,27, 2,28 we have noticed that, these I'igures have a number of
components, which have a special behaviour, to discuss the behaviour ol concrete
presentation model, we have (0 know each event associated with each component
(<<boundan>> object). The idca here is, every <<bowndary>> object (compenent) is an
instance of Frame and has operations that have events associated with them, in which,
every message sent by an actor to an <<sgundury™>> object represents an eveni associated

with an U] component.

Figure 2.29' shows the sequence diagram for the BorrowBook use case where the
CANCEL bunton is a <<boundary>> cbject (component) in the BorrowBook UL Frame that
is a Concrere Presertation Mode!l, There for, this button has an event associated with it,
represented as CancelPressed message, that triggered when the Actor press the bution
CANCEL. CancelPressed message is execule the operation sendeancellation(} hetween the
library' system and the vser.

And it was advised 10 deal with the other use cases for modeliing a scenario where the

CANCEL bution is pressed, with a ditference in the frame name.

Figure 2.29: A second scquence diagram for the BorrowBook use vase.

! The Figure is borrewed from {4, with some changes.

2.9 Packaging the Application

The package diagram shows dependencies between various components of the system.

Figure 2.30 shows a package diagram that presents an overview to the whole system.

]
—_— Conmrelier
— v
Diagram I
Eleneniy
|:- I —_— Windowang Spstam
|V A WA i
Comam Liserinterfnces

Figure 2.30: The package diapram of the Library System.

The classes and class instances are grouped into five packages, as follows:-

» The Hindewing System composed of those classes used 10 build the user interface.
The environment could be an object-oriented programming language. We have used
java language as the environment of this rescarch work.

= The t/ser Interfoce package composed of <<boundary>> classes and objects.

» The Pomain Model package composed of <<entity>> classes. The class diagram of
these classes forms the domain model in Figure 2.2,

» The Cuntrol package composed of <<control>> classes. These classes are presented in
sequence diagrams that shown in Figures 2.19. 2.20, 2.21, 2.22. 2.23(a), and 2.23(b).

v« The Element Diagram package composed of <<apm>> classes as shown in Figure

2.13, and the <<epm>> classes of the Presestation Framework pattern.

Chapter Three
Generating User Interface Prototypes
from Scenarios

Ower the pasl years, scenarios have received significant altention and have been used for
different purposes such as human computer inleraction analysis {23]. specification
ceneration [1], Object-Onented Analysis {O0A) and Object-Criented Design (GO [3.
15, 24], and requirements enginecring [13]. A typical process lor requirements enginecring
based on scenarios [13] has two main tasks. The firss fask consists of penerating from
scenarios specifications that describe system behavior. The second fask concers scenano
validation with vsers by simulation and protolyping.

For the purpose of wvalidation in early development stages. prototyping tools are
commenly and widely used. Recently, many advances have been made in User Interfuce
(UD) prototyping tools like Ul builders and Ul management systems. Yet, the development
of Uls is stll time-consuming, since every Ul object bas to be created and laid out
explicitly. Also, specifications of dialogue controls must be added by programming (for Ul
buiiders) or via a speciahized language (for Ul management systems).

In this chapter, we suggest an approach for requirements engineering supporting the
Unified Modeling Language (UML). The approach provides a five activitics process wilh
limited manual inlervention for deriving a protolype of the Ul from scenarios and
gencraling a formal specification of the application. Scenarios are acquired in the form of
UMI. collaboration diagrams and enniched with Ul information. These diagrams are
automatically transformed, based on previous work [8] and [13] inte the UML Statechart
specifications of all the objects involved. The prototype is cmbedded in a Ul builder
environment for further refinement.

Section 1 of this chapter gives a brief overview of the UML diagrams retevant for our
work. Section 2 presents the five activities of our approach. Scction 3 describes in detail the

fifih of these activities.

3.1 Unified Modeling Language

The UML provides a syntactic notation to describe all major views of a sysiem using
different kinds of diagrams. In this section, we introduce the UML diagrams that are

relevant lor our approach: Collaboration diagram (Collfd), and Statechart diagram (StateD).
3.1.1 Collaboration diagram (CollD})

A scenario shows a particular series of interactions among objects in a single execution
of 2 use case of a systen1, Scenarios can be viewed in lwo different ways: through sequenee
diagrams (Sequencetds) or CollDs, Both types of diagrams rely on the same underlving
scmantics, and conversion from one to the other is possible. For this work, we chose to use
CollDs because the UMILL documeniation defines them more precisely than sequenceDs.

For a complete definition of CollDs refer to [12].

Figures 3.1(a), 3.1{b). and 3.1{¢) depict three scenarios {Colllds) of the use case
ConnecrToSystem. Figure 3.1(a) represents the scenario where a user suceessfully Jogging
into the librarv system, Figure 3.1(b) represents the case where the LoginToSysiem is

canceled, and Figure 3.1(c) shows the scenario where the user is not registered yet o the

S}"St 211,
P Loxm
T 12 vk =oeck yasriod)
T L4 2l gk _uiameom)
| Afrmn | =ph AR rex=ak]: depluy skl -+
Lier lerminal Muiold [iJerminal
1 Ll e Pilney il — 11 =T eyl enimrnd(h -+
13 wini ~OTERgr mame el ornd) - + 1} wapme =VIFfey somm mbered(y —+
11 vBirdect Fuiey Buioud) -+ 17 ERayebrcr Cateoid Bt} —
1. rquarst_conmectan(} T 1 rwquanst_soamecion)
Figure 3.1(a): Scenarin Figure 3.1{b): Scenario

successfullyLoginToSystem CancellaginToSystem

59

Peraon

T 1.4 e =checs_userfuid wname!
1 H{rer=falw]. M‘_—___ﬂ'lrﬂj —

Liewy Sz .
A

11 i =#IFRuser id cmeorsdi) -
12 unume:=dlFkuser_nama eminred} =« Legtngd

13 sBMReleE Enner J'hllwll'ﬂ' . XX Owricn W8 Jnpakjbed
- #Ld Label ¥71'# TemiFiekd

P4 ComboBos

11 et coonectiony

Figure 3.1{c): Scenario errorlaginToSystem

Figures 3.2(u), 3.2(h), and 3.2{c) depiet three scenarios (CellDs) of the use casc
BorrowBaok, Figure 3.2(a} represents the scenaric where the borrow book is comrectly
registered, Figure 3.2(b) represents the case where the borrow bock is canceled, and Figure

3.2(c) shows the scenaric where the user is not registered yet in the system,

1 4frerck] depley_uwe_wiocy s | Eue
14 1. AT hdupdiy bt _plieel) —
1 42 fTRsfapley v adires) - . .
113 oI g e LR S T)
1 Mrev=—ok] dugdey_bock o) —
101 #TFidinpluy_bovk_babe)

| 81 ATFedumplay hustk_imriheat() — .
14 b ATTadipluy_buik_sisis) < § Tranm chogh _boviklhid) -
1.5, WiFedisping, dua_ dave() — 1 11n Wit buohlhid) =

C:—'_"h\.

Librcian Jerminal ok

11 v Fmne_ul ot} - 111k mew_nasl()
L2 Filowhici Exw Demow] —
I % b =+TF¥armian_bok i) - 1

| & MiWpchere Enter Bapthon)
110 ¥Bzlod_Agply Bt} ¢ nre Bompadngl) o

Figure 3.2{a): Scenario RegularBorrowBook

L Hewgk] dmpiny_uoer_mioi) -+ | LEcea
L4 | ®¥FFmpapley user name(y —

14 2 KT Ficdhapley _used_pddneas() - ; . Feoen

) 43 SEFRigley aer_phoos] «» T 12 re=check_uwer d{uid)

10|k display_booh_ indng) = 113 rev=check_user_iaiusd

101 FTFisphy_bock tilef) —+

1 0] FTPedmpiry bl imthen() « v)

10} ATFdapley bk e} -+ | Ty = chrte ik - o VHrerfain] A Adoply s o wma -+

1% FTFMcplty e das] — C.—...‘ :.—.

L Tttt Tk Ll Tkl Bk

11wl ~¥EFMuner_id cierend)) - v 11 wid <AIFWiser_id enterec{) —
1L ¥lifmaiect Timter_ Dutlore} -+ 13 ¥lkschect uler_Mutanl — + 1 create Barwng()

U4 i P Faeer_bok () —
14 $iielici B Bumon() -+
110 #Bewdac Cancel Button(-+, Borncraiesl)

Figure 3.2{b): Scenario Figurc 3.2{c):Scenario
CancelBorrowBook errorBorrowBook.

60

Figures 3.3(a), 3.3{b) and 3.3(c) depict three scenarios (CollDs) of the use case
Managellser (ddd User). Vigure 3.3(a) represents the scenario where an add user is
correctly registered, Figure 3.3(b) represents the case where the add user is canceled | and
Figure 3.3(c) shows the scenario where the 2dd user is error.

Pitw o

T 1 Lren=theck_usd_ibuid)

) T han | wdd_yaer_idiuid) L 1 rex=check_wsar_idfudh T

| A{rr—Talee] et _ubes_indof| =+ T14n.2 add uks_maiunani} | dnepeFne]- mmar_war mnfod)—+

; 1 d) add_ user_ackiimmil unddd} C_.,\
1 & A nokd per phomluplso)
C""\ Lirsapy J i
L Jirmm A
1 1w melFaunts il _sncereld) —

12 VBwselact Ertar Berdon) - -

1.4 12 unam =EHE wmmr_user_named) -
1.4 Z.usdd =¥ Fll entar_aser_wddreas() —
14 Tupha=nlFd quier ||achp}mnn|] 1)
L.5. NBdmeloe ¢ sncel Awlonf) — T 1. treate_AddD

I usid =~#IFahumar i embered(} — 1 St mewr_AdkY]) —
.2 didpkae Filee_ Buiton) —

-1 1. umarm =4[1'N orier_user mame)—

L4 uadd w0 gnwn umer addrepa) - s
14 J upha =#IF4 amer_user_phonal} —

1%, Stlpeon_Add Buoon(t —

T1 cresie Ay

Figure 3.3{2): Sceparin Figure 3.3(b): Scenario

Reguladdidtiser CancelAddUser
Jlsfaon !

I 4| rggeca | dinpley user_indol) —

14§ ATT dimplwy_uihl _Ramal) - = V| Ares=check user siuid

14 1ATF# dinplay umy_sddramal} =

147 STFS deaplyy_ys_phomal) -

Liyuisn it Add

11wl P il enagred)) - »

1.2 MH¥sehect_Crler_Builondh -

HE R

Figure 3.3(c): Scenario ErrorAddUser

Figures 3.4{u), 3.4(b) and 3.4{c) depict three scenarios {(Colllds) of the usc case
ManageUser (DelereUser}, Figure 3.4{a) represents the scenario where a delete user is
correctly. Figure 3.4(b) represcnls the case where the delete wser is canceled. and Frgure

3.4(c) shows the scenario where the delete user is error.

Pa-ion,)|

61

Peron

L A[rea=ok]: dupley uwer oy« s T3 mew =chech _nmer [dinid) 1 4[ru—nh|. ,j;-,|"_u“_"|ﬁ.{] — T11rem rrheck_aser_idiuid]
1'd 1: ATThdiapluy _weer_same} = T 1 6a Mkl apr_whuld) 141 STPddwqlny_aser_nameil —
|4 ZKTFodispley_user sddrapal} s |42 KT dplny_weer_addreas) —
L 43, KTHAdpluy _wse_phote') — 1ot mew | kA - 143 071 mdeapluy ey phome) - ¢
Livaas Teroima Ldair Libraus Tormmasi
1] uid=Funm ol sul]) -« 11 wd =" by i rmbered} —
:j: Etsitec Fmes_Bunson]) — 12 Hrain Emar Bure) -
VEdochect_Dubit, Burow] - » 1 e Cammd] Baoni) —
T create_ i Tl crentr lidrie)
Figurc 3.4{a): Scenarin Figure 3.4{b}): Seenario
ReguiarDeletel/ser CancelDeleteUser
o

Lore=talw) dimliy uwer_jmicd] —
a | NTEMusy rarmge' ™ oy

142 ¥R pddtlpr="" —

1.4.3 #TFusar phose="" =p

T 12 renechoud _umit_iwid}

Jormizal

Dty

1.1 wid = Il _ul sdiwbid} —
12 Miderint File' Babom) -+

T L. creata_Detitel

Figure 3.4{c): Scenario
errarDeletelser

Figures 3.5(a), 3.5(b). and 3.5{c) depict three sccnarios {(CollDs) of the use case

SearchBook. Yigure 3.5(a) represents the scenario where the search book is successfully,

Figure 3.5{b) represents the case where the search book is canceled, and Figure 3.3(c}

shows the scenario where the search book is failer.

Beonk

T Hfen 1ok, i ool ot bl ok
Y deapley_peamch_romlil) -
14 1. STFodupbiy Becsk i) — ;::Ic:.d;m_ﬂ

2 m — T h- _ﬂhd:
:: ; ﬂmhrjm:mﬂ =k I_ 12Tl meherck Bouk_taleibek
144 KTHrduplay bunth pdai) = 1.1 3 ren} maduck_lkaok_authanita)
145 ¥TFhdinplay i dulel) =3

_LibrarySsem ;Termansl
Usn

11" emer ane ook)=+

117 bid = wIFebocd o _mebared() -+
L12 W= Fshocs ek s} -+

11T = AFvench il cidiiell() —
17 Hihwien Tawvh Bution) -+

T 1 oo _Sewchiloni)

Figure 3.5(a): Scenarin
suceessfuflySearchBook

T1 oreme SearchBeoly)

Figure3.5(h): Scenario
CancelSearchBook

Bank

T 13 chech hoak_infod}
1. A¢rem | = Malwaand] ramtulne und T LA relmcheck_bok ddimidy
(reaY=fabsel) WlLidispley motfousd mes () — 1 1.3 2 rowd mphapek Bk ticieEa)
- T 127t sheeck_book_scthortbal

y—— oo

| st ity Rk e} -9

1.1: hidl = WIFabnok, ul_weapredl)

12 how WIFkRonk_enbd_wHierwdl) —

1.3, b= dIF sk, waihoe_enlered() - > T 1. cremte_Smarchbioph]

1
1
1
1.
12 dENMeelect S::url;h LTI "y

Figure 3.5(c): Scenario failerSearchBook

Figures 3.6{(a)}, 3.6(b} and 3.6{c) depict trree scenarios {ColiDs) of the use case
BrowseBaok. Figure 3.6(a) represenis the scenario where the browse book is successfully,
Figure 3.6(h} represents the ease where the browse book is canceled, and Figure 3.6(c)

shows the scenario where the browse book is failer.

Bock

1 A ko] pet T =esk Acnd ot g |

orf k] iy ookt et} - 1.3, check_ock_indbi] B

14 1 ¥TFiplay becds idip== | b1 el =chagk buosplh, mhuu

1.4 2. FTFinpley_hacka 1alef) = ¢ ¥ 112 2 mzhach hewk_trilefi

141, iTF¥ligpluy_lsiks muimanl = 315 resd mcheck_bouk_anianba)

| 44 aTFddispluy_bomikn_yenmp =+

LA 5ATFédispluy_boswhs Mstum)] «» LibrarySyslem C

C:_——-.. L Lo
Lty Symem Termunal
Lime 11 whbw _mer_bock _nka) —
. TH b ot Bk ooy scbonkal) - +

11, o - bk i) -+ FU2 o ool mk comerrel) < v
111 et = e Fubtwwd ey | it} — 117 b AT oot s ek 11 crete_BroeweBook (3
111 Im = HFthook pilr welarmi(] -+ - 'S Caacel
117 bu.= TF ¥ixmsh_imcthecr aniacwd() == v 1: erepee_Boowmschenk) Friacy Buman() -+
I I: eBverieo Broooss_Bubow)] ==

Figure3.6{h}:Scenario

Fisure 3.6 Scenario
‘gt 2(a): See CancelBrinvse Books

succefullyBrowseBooks

T3 chaeh cmk wlol)
T4 rvm T <t reat =l et | 3|31 | ok bk cabegory{beat)
(ree] ~fulen)] MLEplay_notfowed |1 (13 read =~chawh vk _uakiba}

B L BERL v L] hriadschuch_book_mthoriba)

Ecminal

LibrarySyuem T
Lser

vl _bowsk; _enfal) - v

Ho- Bl i] m mobeciad() —
= fiFviek bl sly) -+ N
-iﬂ'!hnnl.lh—ﬂ] i | el Betewevallookl}
1.2, #Eaigey Sy ot omond} —

1.
1
1
1

,.
15

Figure 3.6(c): Scenario
SuilerBrowseBooks

63

3.1.2 Statechart diagram (StateD)

A Statel) shows the sequence of states thal an objeet goes through during its life cyele in
response 1o stimuli. Generally, a StaleD may be attached to a class of objects with an
interesting dynamie behavior.

The formalism {notation and semanties} used i StateDs is denved from Statecharts as
defined by Harel [10]. Any state in a StateD) can be recursively decomposed into exclusive
states (or-sfaie) or concurrent states (and-siafe). When a transition in a Statechart is
triggered event receive and guard condition tested’’, the object leaves iis current state,
initiates the action(s) for that transition and enters a new state. Transitions between
concurrent stales are not allowed., but synchronization and information exchange are
possible through events. As an illustration, Figure 3.9 depicts the Statel) of the object
Terminal, "The state waltingbordpphyOrCuncel, is an wmif-state composed of twoe

concurrent sub states separated by a dashed line,

3.2 Description of the Approach

In this section, we describe the overall approach to derive a Ul prototype from scenarios
using the UML artifacts. We aim to provide a process that bridges two iterative software
processes: the formal specificalion process as illustrated at the top of figuee 3.7, and the UI

prototyping process at the bottom of the figure 3.7."

lﬁﬁlihitiun?ﬁ
! i

- TR
iﬁf;ir_in;rrﬁtq:.l’
~ yoecilifddinn -

by W (AT

A Frdiohs e 2 Xy Piviotpe "
Rrtids g&«""“
Figurc 3.7: View of the overall process combining formal specification and Ul
prototyping

' The figure is borrowed from {11]

64

Dafa specificarion (sce Figure 3.7) are capturcd in a detailed ClassD which shows
structural relationships between classes, and specifies class attributes and method togcther
with pre-and postconditions. This information is used for secenario acquisition via CollDs,
and for prototype generation to enhance the visual aspect of the generaled prototypes. User
interface specifications are derived from scenario descriptions, and are used for both
generation of UI prototypes and for specification verification {verifying coherence and
completeness of the Ul specification). The generaled prototypes are evatuated with end
users 1o validate the users’ needs.

In this chapter. we foeus on the Ul prototyping process, essentially on the
transformations represented by the bold arrows in Figure 3.7. This process can be
decomposed inte five activities (sce Figure 3.8) which are detailed below:

r Requirements acquisition {scetion 3.2.1)

* Generation of partial specifications ftom scenarios (section 3.2.2)
» Analysis of partial specifications {section 3.2.3)

* sintegration of partial specifications {(section 3.2.4)

® User inleriace prototype generation (scction 3.2.5).

3.2.1 Requirements acquisition

Scenario medeling is the key technique mostly used in thas activity, 11 is used in object-
oricnted methodologies [3, 15 and 24 as an approach (o requirements engineering. The
UMLE proposes a swtable lramework for scemario acquisition using UsecaseDs for
capturing system functionalities and CollDs for describing scenarios.

In this activity, the analyst first claborates the Usceasel) of the system (see Figure 2,13,
Then, we acquires scenarins as CollDs for each use case in the UsecaseD. lor instance
Figures 3.1{(a}, 3.1{b}, and 3.1{c) show tor cxample, the three sample CollDs corresponding

to the use case LoginTaSstem of the library system.

65

Requirements
Acquisition
ClassD Q\ ?:'
UseCaseD <

ColtDs /44 >\

;g A :
r 1
Creneration of partial %:‘? A / Qif_‘
specifications

SCONATios e e % ;;l ?Jﬂ _?*j"? 'Q‘f

Statelds

Analysis of partial

spermm"ﬂnsi.abeﬂed %‘%’ﬂw — %ﬂj%ﬂ EEE?
StateDs NN \ /

Integration of partial N V /

StateDs \ T

specifications E‘EF F =] F=I= E:.il:i
Integrated) —— F ¢
/
/

User interface \ —

prototype A= m -% !
generation == 352
Ul Prototypes

Figure 3.8: The five activities of the Ul prototyping process.

Scenarios of a given use cases are classilfied by type and ordered by frequency of use.
We have considered two types of scenarios: normal scenarios. which arc executed in
normal situations, and sceparios of exception executed in case of ermors and abnomal
situations. The frequency of use of a scenario is a number between 1 and 10 assigned by the
analyst 1o indicate how ofien a given scenario is likely to occur [t5). In our examples, the
use case LoginToSystem has one normal scenario (scenatrio successfully LoginSystem with
frequency 5) and lwo scenarios of exception {scenario cancelloginTeSystem with
frequency 3 and scenario errorfoginToSystem with frequenmcy 5). The use case
RorrowBook has one normal scenario (scenatio regilarBorrowBook with frequency 10)
and (wo scenatios of exception (secnario concelBorrowBack with frequency 3 and scenario

errarllverBorrowBook with frequency 3).The use case ManageUser has one normal

66

scenaric (scenario regwlardddUser with frequency 6) and one scenarios of cxception
{scenano canceldddUser with frequency 5), and Managel/ser use case has one normal
seenanio (scenuno regulurDelereUser with frequency 6) and one scenarios of exception
{scenariv cancel DefereUser with frequency 5). The use case SearchBook has one normal
seenario (scenario reglarSearchiflook with frequency 4) and two seenanos of excephion
{scenario cancelSearchBook with lrequency 3 and scenario failerSearchBock wilh
frequency 4). The usc case BrowseBaoks has one normal scenanio (scenario BrowseBook
with frequency 4) and one scenarios of exception {scenario cuncefBrowseBook with
frequency 2). This classification is used for the composition of Ui blocks {sce section
3.3.4).

In our examples. the object Ferminad is a generalization of the following objects,
LaginUf BorrowBookU!, MunagelfserUl SearchBookUl and Browse BookUi. The objcct
ferminad is a special object called fnterface object. An interface ohject 1s defined as an
objeet through which the user interacts with the system to enter input data and receive
results. An imteractive miessage is defined as a message in a Colll> that is sent to an
interactive object. For Ul generation purposes. messages corresponding 10 user interactions,
which arc marked in the CollD)s with the fype of interacticn objects (i.c., widgets) that the
analyst wanis to find in the resulting Ul. For instance in Figure 3.2{a). the mark #8% at the
beginning of the name of message /.2 means thal this message corresponds to a user
interaction with the Butfon widgel, Note (hat #TF# stands for Text Field as in message
341, RIFH for Inpur Field as in message 1/, and #L4# for Label as in message {4 in Fipure
3.2(c). and #CB# for Compo Box as in message 7. 1. f m Figure 3.6(a},

3.2.2 Generation of partial specifications from scenarios

[n this activity, we repeatedly apply on ¢ach CollD the Coll[}-To-StateD transformation
algorithm (CTS) described in [26]. In order to generate Partial specifications for all the
ohjects participating in the input scenario.

I'ransforming ene CollD> into Stalelds is, according to the C'S ulgorithm, a process al
Nve steps. Step I creats a Statel) for every distinet class implicd by the objects in the
CollI). Srep 2 introduces as state variables all varibles that are not attributes of the objecis

of the CollD. Step 3 creats transitions for the objects from which messages are sent. Srep 4

&7

crcates transitions for the objects W which messages are sent. Finally, step 5 brings for all

StateDs the set of penerated transitions inle correct scquences, connecting them by states.

After applying the CTS algenithm 1o the scenarios regularBorrowBook
ErrorBorrowBook, we obitain for the object Terminal the partial StateDs shown in figure

3.9(a), figure 3.9(b), respiciively.

4 T N

Fidptar] oo _lgraca

I e e

Ao Trormel T Fidioploy s PFTF Redeigpaiy

ita i tr-_um.nnl

H___'h_} Pt =k vk ook _li s
|rerok MTFdducplay ook _iotient TFéicpley
\ l_ B MB—B _H_m-‘qu_m_w
iiotir duce

Figure 3.9a): StateD for the object terminal generated by CTS algorithm on the scenaric
regularBorrowBoak

/.— Wid sinng. bed wirdg fve Bockmn \\1
#“"m‘_ ll'ﬂ-llr_uurﬂi-
e I" g

I‘I:Ilulaq__:nlv_bmln
ren bormw check_meer_i

Tron-aer L) #1 Slimglsy mesn Bnrow e}

-

./

Figure 3.%b): Statcl) for the object terminal generated by CTS algorithm on the svenario
ErrorBerrowBoak

68

Applying the CTS algorithm to the scenarios regularSearchBook and ErvorSearchBook, we

obtain for the object Terminal the partial StateDs shown in higure 3.10(a) and figure

il b bt ey
resl, rea” real hogdagn
[}————s
ol

IF a0 ook WK
*IF¥anier bunL__qul:
‘WaitingForSearchCy ¥ Fianier boak _trke ;

3.10(b), resprictivedy.

el
(ﬁvllﬂlkhﬂl!ﬂ‘ﬁkh{lﬂ}*\'nl irlviptlec search_baitan
TFR gl bk, i) ¢ een | ik chnch _lomih_bidkhwd p
aTFidinplay Bock_mahar f raa] Lok chack bosik suerbay

FTFdinplay_bock_titla" hin] Book chack beok _citleiay'

N

Figure 3.10{a): Statel) for the objeet terminal generated by CTS algorithm on the scenario
succefullpSearchBook

e yeyep ™~

rel.ml mi oolesn

el _wearchi | -
=
Jermal=nosuk umdiimf-noy ¥Hiweloct ararch_huom KIFaenter book i}/
ok v rew] Smciok {4 reak Book check book _idrhldy FTdeober_book _auchar) f
digpdey nocfeund | ml Book.check_ book | mikar(ba) broter_book _Lilel)

ol ook check_ bosd _Wchalbi)

N ‘ L)

Figure 3.10{b}): StateD) for the object terminal generated by CTS algorithm on the scennrio
JailerSearchBuok

The applving of the CTS algorithm 1o the other scenarios (reguiarloginToSysten,
ErrorLoginToSysiem. regularBrowseBooks, ErrorBrowseBooks. regularMunage{fser and

errorManagelfser), see the appendix ALl
3.2.3 Analysis of partial specifications

The partial SlateDs generated in the previous activily are unlabeled, i.e., their states L
do not carry names. However, the scenario integration algorithm (sec Section 3.2.4
below) is state bascd, requiring labled StateDs as input. To obtain labled StateDs, our

approach uses the pre- and pestcondilions to add state names. The analyst must identify

&9

equivalent states and give them common state names. Unique states arc labeled wath

unique state names.

Applying this algorithm to the StatcDs for BerrowBrok of figures 3.9(a) and 3.9(b).
we obtain the StateD shown in figure 3.11{a) and 3.11({b), respectively.

/ ukd s, bid. Rring. res baolesn \

mﬂnmm

I e

Iy, [resmok A TFédemp ny _wver_named W TE*HpLEY.
'l TFldaaplay_usem el

Waluihg,Foes pplay D ol . .
o B ll#lwlu_bnuk_ﬂ@

Ifh-u-c-llclmt:!hm:h!'lmcl'l

e et)

bota mew_)

59 | e T Fibingedny _bonkc_esthadl Chadimply
\ I.\-_ HEI#HINL_{-‘&M__MDD _b.:.nh1l||thu'.'HTFHdi.|pla'f_hM_llllun'ly

Hdizplay dato_ il

Sy

Figure 3.11{a): The labeled Statel} obtained {rom the Statel) of Figurc 3.9(a)

' | uld iy, bid serimg. res. boalaan

eroal_bnan, LU eI
Call L If g2

[res=not ok] HLEmiry oeexd boqrgrs ceran)

.

Figure 3.11(b): The labeled StateD obtained from the StateD of Figure 3.9(b)

Applying this algorithm 10 the StateDs for Search Book of figures 3.10(a) and 3.10(b),
we oblain the StateD) shown in figure 3.12(a) and 3.12(b}, respectively.

/ bud, b, b meny \
resl, resl, vl hoslegs

NEF i bk)
[T e— _bock_mribver]
wlusnll'nr%mhﬂ- AlFdgmur heob _lisle(y
ok jor read =ub otresi=ok)d THPsleel starch_bunlan
ﬁuwﬁtmﬂuﬁ;{; TV L eal ok check ok, (bidy
WTFicinplay ook matten F m!ﬂannhﬁmmi
T gy ook ko' i) KBk thowch Bk i)
m (_______________________
—{ s

Ilﬂulul carncal_busion j

Figure 3.12(a): The labeled State!) obtained from the Statel} of Figure 3.10(2}

ED >
——y
Bt vary Foriuiec,_rch am o o) !
{rea)t e} PLE rexl Bk chock ook idwd Y F e _book _amtier() /
. e Bk check ook "ashorhe "ok

L

Figure 3.12(h): The labeled StateD obtained from the StateD) of Figure 3.10(h)

Note that no new state lable is generated for this particular Sialel?, The applying of this

algorithm 10 the other

SCEnarios

(regidarLogintoSystem,

frrorLoginloSystem,

regifar Browse Books, ErrorBrowseBooks, regularManageUser and errorMangge User),

see Lhe appendix A2

3.2.4 Integration of partial

specifications

The objective of this activity is to integrate for each object and cach use case in which it

participates all s partial StateDs into one single StateD per use case |8]. For instance

Figure 3.13 shows the resultant StateD of the Ferminu! object afier the integration of the

three scenarios of use case BorrowBook.

-

Ui Sanng bed strwa iw bookien

[¥l ¥pmlact wmier hucion

A

111

T 1 A=[resr=—meri ok] VLA display oo)
Timeren -hE_ Ta=WIFienier _usar jpb=
O = 5l I[

Wrating ForAppliyUrC ancel

tfrorw ek _weer_id
_ _lane|
S 5
T4+ rew=ob W'l wdinplay _user nanee j,-'i't’l'ﬂ-rlilpllng:“'II

._":7
A+]

Tio=bonk lend bk (hid)

THT<hinkh mwe_ hoaaa}y

umer mudroon¥ U Wdisplny nmer tal
TE=¥Gimeleci _ Doerow ™

Ti=dikvpnisi Im:L_b%]
Eiustioal]

e e

Kes mtok chack_bonk _id(hid

< b

mehm_@

\-

ATEMpy et

~

TV {tmrct, TP inplay_book_biie# TFackis
way_boock, mahat M T idnpley_bock _sisom’

Figure 3.13; The resultant StateD} for the Terminal object after integration of the
three scenario of the use case BorrowBook

Figure 3.14 shows the resultant Statel} of the Terminal object after the integration of the

three seenarios of use case SegrchBook,

vl b, b mrweg
ik}, b il bockean

Tt=|iren |+ not nk jnd{Tesd=ned oh e
{read=not ok} FLAdixpkay_ ol

EX
TI-WTFhemar _hemk bl

T WIFenper_bonk _agehan |
WislingForSapchi)r ¥ Fkencer book hide(|

Cancel

- =l " TA=dE4selecd_wearch hutine
ﬁ{{:ﬁ;:&}:ﬂ:mh:?F rea]:Bock ek bk _sdMbidy

ol ulbbugrion sty resd sk check bk seahenfball
I'T':'lﬁ.qil.r;_mi vk rea B check ook utiee]
4j - ot

= b

Figure 3.14: The resultant StateD for the Terminal object after integrativn of the
three scenario of the use case SearchBook

The resultant StateDs of the Terminal object after the integration of the scenarios of
other use cases (regulurifoginToSvstem, ErrorioginToSystem, regulurBrowseBooks,

ErrorBrowseBooks, regularManagelUser and errorManageUser), see the appendix ALS.

3.2.5 User interface prototype generation

In this activity, we derive UI prototypes for the interface objects found in the system.
Both the static and the dynamic aspects of the U] prototypes are generated from the StateDs
of the underlying interface objects. For each interface object, we generate from its StateDs,
as found in the various use cascs, a standalone prototype. This prototype comprises 4 menu
to switch between the different use cases. The different screens of the prototype visualize
the static aspect of the object; the dynamic aspect of the object maps inte the dialog contrel
of the prototype. In our current implementation, protolypes are Java applications
comptising cach a number of frames and navigation functionality (see Figures 3.15 and

3.24). The delails of protolype gencration are described in the next section.

12

3.3 Algorithm for User Interface Prototype Generation

In this section. we detail the process of prototype generation frem interface object

behavior specifications. This process can be summarized in the following algorithm [32].

Let 10 e the ser of interface hpects in e syswem,
Lo UCwfucl, uel,., wen} be the sor of wse cuses of the sysiom,
Fiw esch w m 1O

Fowr each wei i [0
M W uscdind Iescassiuci] then
s = o perSuel Miwl becass{uciy
sl generateFrodety pef)

End I
Ind For
i pencrain ompheic Pratoty pa }
End For
The operation wvedindisecasefuci). apphed to the object in, checks it the object io
participates or ™1 in cne of more of the Colll)s associaled with use case wei If the
operation returns frue, the operation getStaredforlisecasefuci) is called. which retrieves sd,
the StateD capturing the behavior of object fo that is related to this use case. From State[)
sd, a L) prototype 15 generated using the operation generate Prototvpef).
The operation generateCompletePrototype() imegrates the prototypes generated for the
various use cases into one single zpplication. This application comprises a menu (sce
Figure 3.15} providing as options the different use cases in which object io participates.

] Lipaw giecrs Wirirkw Uws G

i_l%l

Figure 3.15: Meno generated for the interface object

The eperation of prototype generation {(gencratePrototype()) s composed of five
operations, which are described in the sections below:
Mgencrating graph of transitions
Omasking non-interactive transitions
Msdentifving user interface blocks
Deomposing user interface blocks

Mgenerating the user interface from compased hlocks.

73

3.3.1 Generating graph of transitions

This operation consists of deriving a direcied graph of transitions (GT) from the StateD
of an interface object io related to a use case wel. Transitions of the StateD will represent
the nodes of the GT. Edges will indicate the precedence of execution betwesn transitions. If
transition ¢/ precedes transition 2 in execulion, we will have an edge between the nodes

representing ¢f and 1.2,

A GT has a list of nodes nudeList, a list of edges edgelist, and a hist of initial nodes
initial Nodel st (entry nodes [or the graph). The nodelist of a (V] is easily obtained, since it
corresponds 1o the transition list of the StateD at hand. The edgefisr of a GT is obtained by
identifying for each transition r all the transitions that enter the stale from which ¢ can be
tnggered, All these transitions precede the transition ¢ and hence define cach an edge to
node 1.

In the library system, given the StateD of Fermiinal for the usc cases BorrowBook (see
Figure 3.13) and search Book (see Figure 3.14). the graph of transition GT generaled shown
in Figures 3.16(a), 3.17(a), respictively, The star character (*} is used to mark initial nodes
in the graph. We mention that the graph transition GT for the Siatci> for ferminal to the
scenarics of other use cases {LoginToSystem. BrowseBooks and MuonageBook). had
tlustrated in the appendix A4,

The algorithm details how 10 get nodeList, edgeList, and initialNode List of the G'T from
a given Statel) sd, see the appendix B,

3.3.2 Masking non-interactive transitions

This operation consists of removing all transitions that do not directly affect the UL (1.c..
that do not carry widgets). These transitions arc called non-fateractive transitions. All such
iransitions are removed from the list of nodes nodelist and from the list of initial nodes
initialiNodeList, and all edges defined by those transitions are removed from edgelist.
When a transition ¢ is removed from rodelist, we remove all edges where # takes part, and

we add new edges in order 1o “bridge” the removed transition nodes. If the initiafNodeList

7

list of 1plbal lansitions containg any non-interactive ransitions, they arc replaced by their

successer nodes.
The result of this operation on the graph of Figures 3.16(a} and 3.17{a) for BorrowBook
and SearchBoek use cascs, is given in Figures 3.16(b) and 3.17(b}, respectively.

Applying this operation on the scenarios of other use cases (LoginToSvstem. BrowseBooks
and AManageBeok, had illustrated in the appendix A4, The pscudocode details this
opcration, see the appendix B.

9

Figurc 3.16: (a) Transition graph for the ahject
Terminal and the usc case BorrowBook (GT).
(b} Transition graph after masking
nen-interactive transitions {(GT7).

75

Figure 3.17: {a) Transition graph for the object
Terminal and the use cuse SearchBook (GT).
(b) ‘I'ransition graph after masking
non-interactive transitions (GT').

3.3.3 ldentifying uscr interface blocks

This operation consists of constructing a dirccted graph where nodes represent User

Interfuce Blocks (UIB). A UIB is a subgraph of 1" consisting of a sequence of transition
nodes that is characterized by a single input and a single output edge. The beginning and
the end ot each UIB is identitied from the graph GT" based on the following rules {16]:
{Rule 13 An initial node of (717 is the beginning ol a UIB.

{Rule 2) A node that has more than one input edge is the beginning of a UIB.

(Rule 3} A suceessor of a node that has more than one output edge is the beginning of a

UIB.

(Rule 43 A predecesser of a node that has more than one input edge ends a UIB.

(Rule 5) A node that has more than one outpul edge ends a UIR.

(Rule 6) A node that has an cutput cdge to an initiai node ends a UIB.

Applying these rules to the graph of Figures 3.16(b) and 3.17(b), we obtain the graph block

GB shown in Figures 3.18 and 3.19, respictively. [n figures 3.18, Rule | determines the

76

beginmung of 87 (7T2) and Rule 5 the end of B/ (T3). Rules 3 and 5 determine the UIB 82,
The UIBs 3, 84 and 85 are gencraled by applying Rule 3 or Rule 4.

Figure 3.18: Graph GB resulting from UIB identification on the graph GT" of
Fipure 3.16(h)

In figures 3.19, Rule 1 determines the beginning of’ 87 (72.7) and Rule 5 the end ol 3/
(72.3}. Rule 3 determine the UIB B2, The UIBs B3 and B+ are gencrated by applying Rule

3 or Rule 6.

5

[

ROSOROE

I...p
—

Figure 3.19; Graph GB resulting from UIB

identification on the graph GT' of
Figure 3.17(b).

7

Applving these rules on the other scenarios of use cases (LoginToSpstem, BrowseBuoks

and Managel/ser, see the appendix A5,
3.3.4 Composing user interface blocks

Generally, the UI blocks obtained from the previous operation contain only few widgels
and represent only small parts of the overall use case functionality. Our approach suppons
the combination of UIBs in order te have more interesting blocks which can be transformed
into suitable graphic windows. We use the following rules to merge the UlBs of a use case
[15}:

{Rule 6) Adjacent UIBs belonging to the same scenario are merged (scenario
membership).
(Rule 7} The operation of composition begins with scenarios having the highest
frequency {scenario classification, see Section 3.2.1).
(Rule 8) ‘Two UIBs can only be grouped if the total of their widgeis is less than 20
{(ecrgononuc eriterion),
Applying these rules (o the GB of Figures 3.18 and 3.19, results in the graph GB” of

UlBs shown in Figures 3.20 and 3.21, respictively.

A . S
B2 \?.:& - BI]
*

*

i LH

- - L]
Bd B l e

Figure 3.20 Figure 3.21

Figures 3.20, 3.21: Graph GB’ resulting from user interface block composition on

the geaph GB of Figures 3.18, 3.19, respictively,

Applying these rules 10 the GB of on the other scenarios of use cases (LoginToSysrem,

BrowseBuoks and ManageBook, results in the graph GI3* of UIBs sce the appendix A.6.

78

3.3.5 Generating the user interface from composed blocks

[n this operation, we gencrate for each Ul of GB' a graphic frame. The generated
frame comains the widgets of alt the transitions belonging to the concemed UIB. Edges
between UIBs in GB™ are transformed 1o calt functions in the appropriate frame classes. In
our current implemeniation, Java code is generated that is compatible with the interface
builder [29].

The 1wo frames derived from each composed blocks of the graph GB” of Figures 3.20 and
3.21, are shown in Figures 3.22 and 3.24, respictively. The dynamic aspect of the Ul is
controlled by the behavior specification {StateD} of the underlying interface object. The
pretotype responds to all user interaction events captured in GT°. and ignores all other
event.

Te support prototype execution. For example, after selecting the use case BorrowBook
from the LseCuses menu (sce Figure 3.23, wop window), a frame is displayed in the
simulation window that confirms the use case selection and prompts the user to input the
user identification and to click the Enfer button. When execution reaches a node in GT°
from which scveral continuation paths are possible. [n the example of Figure 3.24, the
lower frame corresponds Lo the scenario ¢rrorBorrowBook, and the upper frame one to the
scenarios regular BorrowBook and cancelBorrowBook.

To support prototype exccution. For example, after selecting the use case Search Book
from the ffveCases menu {see Figure 3.25, top window), a frame is displayed in the
simulation window that confirms the us¢ case selection and prompts the user to input the
book information and 10 click the Search button. When exccution reaches a node in GT°
from which scveral continuation paths are possible. In the example of Figure 3.23. the
lower lrame corresponds Lo the scenaro fhailerSearchBoak, and the upper rame one 10 the

scenarios reguiarSearchBook and cancelSearch. Once a path has becn selected.

ISioi =
zar clurkicaion .] I

. Mame | b
fudcrmd I e = .2
Phrs rumtet e e .

E. Bockaribcabion . . e !
Tiln I_ ot
Qe [.

[Stoan I 2]
P dae ___ _

i

[- | ol 1 Cancat I
|

. BAEiror Massaoe 1>

Uteer 1D Incosrect

Figure3.22 : Frames gencrated for the
use case BorrowBook,

SEE
Opsations Books tlzers Out
i. m'lﬁll rewBi sk 1)1 tp 1 E.I.g.l.._’sl

Liimit achtwrabafi Ao |3-|z‘_ o}

Hama 1 . }
A BT 10 M xc.oor EE £
! L—J Usex 1D Inconect
! Bk ickerraher Alica I-_—-i.

.I The I.. _— b
! Aaihen I 1
. S |_-_._‘__ _ ;;
- e dadn | N o
Enier | Aoty | i Cencel |

Figure 3.24; Prototy pe execution
far Borrow Book.

4 ————— T

Resulx

[T =<

|

The ook is ot fownid

Reay |

ELIIJHW Systern 33N

Fipure3.23 : Framces generated for

the usc case SearchBook.

Opesations Bocks Ues Gt
ﬂﬁaalt:hl-luuhlji - Ir- 1UI_‘_;J

Cancwel

Figure 3.25: Prototype execuiion
for SearchBook,

Chapter Four
Results

4.1 Conclusions

'This thesis discussed user interface modeling, a new approach to the gencration of U1
protetypes from scenarios using a Library System case study. The case study was modelled
using the Unificd Modeling Language that has proved for modeling and generating user
interfaces.

On one hand. from the case study we can elicit and define some problems that faced
during modeling and generating Uls. from the modelling problems we can identify some
aspects of Uls that are not covered by the UML, such as:

» Use cases do not provide some aspects of user requirements like goals, pre-
conditiens and post conditions that may help the design of activity diagrams.

s UML. dees not describe clearly the relationship between use cases and activities.

s UMIL, does not have a notation to describe abstract presentations.

e« UML does not provide a relationship between classes providing an abstract
presenlation and activities. In fact, it is difficult to identify which Ul is related 1o
each aclivity that involves user interaction.

On the other hand, from the set of constructors we can identify the aspects of Uls that are
covered by the UML, where we found that the UMI. has a rich set of constructors complete
enough to model the architectural aspects of form-based user interfaces.

Additionally, from the approach ol generating user interface prototypes ftom scenarios,
some notes that can be obtatned:

» The analyst has the manual 1ask of eliciting scenarios of the system and of labeling
the gencrated partial StateDs.

e Our approach may be applied to windows and widgets interfuces, vet fails 1o
supporl in its cuerent form alternative Ul paradigms.

» Verification of characteristics such as coherence, completencss, cic.

81
4.2 Qutlook

For modelling the user interface, the case study provides illustrative examples of the use
of many UML constructors, in erms of diagrams. The UML diagrams used in this thesis
are class diapram. activity diagran and class diagram with design patierns, interaction
(sequence) diagram object diagram, these UMI. diagrams had used to model Domain
Model, Task Model and Presentation Model {(abstract and concrete) as user interface
elernent, respectively.

There are also some lessons that can be leamed from the modelling of the Library
System:

o The design of an uscr interface is a complex process singe il requires complete
comprehension of the elements that compose the user interface. Indeed. Uls in
general have many clements that are not clearly required from the beginning of the
design.

» The elements of the user interface have many dependencies among them. Therefore.
the design process should consider Ul modeiling as integral.

And also, from the approach of gencrating user interface prototypes from scenarios, the
scope of this approach is three fold:

» |t proposes a process [or requirements engineering compliant with the UML.

o It provides automatic support for building object specifications.

» T supports Ul protetyping.

APPENDIX A
Figures Related to Chapter 3

A.1. Generation of partial specifications from scenarios

Afler applyving the CTS algorithm 1o the senarios regufarConnectToSystem,
ErrorConneciToSystem, we abtain for the object Terminal the partial Statelds shown in figure
AL 1{a), figure AL L(h), respictively.

Figure A.1L. L{xa): StateD lor the ubject termenal gencrated by CI'S algorithm on the
scenario successfullyConnectToSystem

/' wil wmarna pnng, \
wml rmd cukan
sti_trwwiiinhi} W
Cal

|4rmm | =nal uk
L=y ok VLA
dipli_armor_magat) A i _ i o
i | el clwich it =KUY

,I-.:-I' chich ume Ml uridite) B
k - _/

IFH ke _uear Wl

NIFF e _Uuner_nama |

Figure A.LI(b): Statel? for the objeet fermenal genernted by CTS algerithm on (he
scenario ¢rrorConnect ToSpstem

Applying the CI1S algorithm to the senarios regularfirowsefook, ErrorBrowseBook, we
obtain for the abject Terminal the partial StateDs shown in figure A.1.2(a), figure A.1.2(b},

respictively.

b

beed, ba, bi: niring,
real, resd, read: boolean
e Wowsel) .
-

LIRS Sl

FAIFAenin bk,

wningForArowgeDy A IFAarier_ book _ﬁuﬂjv
Cancal

LU IO TR TN
reel Bouk chack bk _ulbcal
rest Dok check_baolk_withamibay

rest Book check bool: illefed)
—{]
ABAzelmi rancel bullm:]
\ /)

Figure A.1.2{a): StateD for the object termenal generated by CTS algorithm on the
scenario suceefulfy Brivvse Book

mﬁl-olnhﬂ,ml'ol-mr{rﬁholn}]
ATFAlay ool =) !

¥TFéiplay_bool_auther £
#TEAdisplay_book_aile’

beal, b, bl Saing,
el e e beoolean

oreal browss(| .
E =
ATCENoter bouh_caitgpiryd)

Jéres L ok parecH ok} ABAssli)_lrowio_bumon IFRenior book | aatherit ¢
andiressrocckilf 4La rosd Ducument.chock 0% S#AR0n (01| 4 |Fkanim’ boal ol
diapley, niddouwmnd fssl] { e Dhacummenl. cveck doc_auther (bl = =

] Docwmenl.check_doc_tills bty
-
< C_]

Figure A.1.2{b): StateD for the object termenal gencrated by CTS algorithm on the
scenario faillerBrowseBook

Applying the CTS algorithm to the senarios, regularManagelUser {ddd Usery and
errorManage User (Add User), we obtain for the object T'erminal the partial StateDs shown in

figure A.1.3(a), fipure A.1.3(b), respiciively.

/_ | L' Siring, ras: bookean | \
Grem_mid|p - AFAenier_user o)
i IF = -~

4] ABAceim:! eiea_humoed)
resumer check_user_id{uid)
wailingFea A dd i mocd
wder ndd wseniuid) Aldselect ndd Ires=nol okl+ 1 F¥embar_aser_
= Tumey} A TFYenlm_ex_
I = i § FTEWefier_ user_psl
T
whl rarm_ ek} .
ey
\ N WBAxaded_cancel_bulien C] /

Figure A.1.3{a}: StateDfor the object termenal generated by CTS algorithm on the
scenarin regularAddUser

o3

4 []
D o _ikK) ED

nama] lTI‘l.hqh-p u- F|Faeniar whir 1D

d et ¥ THMpley W Dttt _buntind p
war_lal f oy chech_weer il

- <

Figure A.1.3{b): StateDfor the object termenal generated by CT'S algorithm on the

scenario errorAddiiser

Applying the CTS algorithm to the semarios, regularManagelUser (Delete User} and

errorMarageUser (Delete User), we obtain for the object Terminat the partial StateD}s shown

in figure A.l.4{a) and figure A.1.4(b), respictively.

/] uid. S 120 boalean | \
£hiep Jimi]] - FIFRelar_ et 1} .
-~ ral
1
uid

Au FEAMln_mmer_bulond
re wun el user 1d|

N = JK

Figure A.1.4(a): StateDfor the ohject termenal generated by C'FS algorithm on the

scenario regulareDelete User

,/_ l wid ming, ren: boolen
D crml_dedete} ?

Figure A.L4{b): StateDfor the object termenal generated by CTS algorithm on the

scenarin errorDefete User

o4

A.2. Analysis of partial specifications

Applying the analvsis of partial specifications algorithm to the 5tateDs of fipures
Al l{a) and A.1.1{b}, we obtain the 5talel> shown in figure A.2.1{a) and A.2.1(h),

respectively.

udl IFNp AT E
el i boo b

¥FEar _
i fibplet e builon s,)
T2~{ires | =odland rmd=od]| |-l wnr chech e iHud}

 displuy mmain Ll ol s chack e mame|

Figure A.2.1¢{a): The labeled Starel) obtained from the StateD of Figure A.1.1{a)

il ol
b | feml Exwdii
- I o b -;.
|trealrnn. nkpsr WLF¥ener_wmer id() !
['r_e:}-nl.'ll:(\l-]b' ¥l Fis¥selae e hullin WIFeemcer_ucer_namel) !
display_erroi mwral} il i Lhech uiw 1diwdp

1o s ks R Ui b
)
e < 52

Fipure A.2.1(b): The labeled StateD obtained from the StateD of Figure A.1.1{b)

Applying the analysis of partial specitications algorithm to the StatcDs of figures A.1.2(a)
and A.1.2{b}, we obiain the StateD> shown in figure A.2.2(a) and A2 2(b}, respectively.

X Bawsbrol_book _criwgriet
1 WIF s ook _marthery !
Wailingbedbirpumetn ¥TEREIlar_book e) W

Ifl'; i P2k i Tk] NRMalacr_browsa_tastion
ATF gl hoed 1! | Book check_bouh_Ssegoriboacy
FTHRdlay bk b} e Book check | ook _auther hal

FTFRdiplay bk Wil raad- Bonkdmi_bm'l nillbp

Figure A.2.2(a): The labeled Statel) obtained from the Statcd of Figure A.1.2(a)

a5

beal, b, M s
rml rml rmd bonlean

i Ralirad’ | [
W) -

[+ferict g e Wi patect b e ntiom
i it Gk WL Pl Bk chech ok _calgrytbonly
dupler_repifirgied gl rmZ Boch chck ook mkeriba

rm] Sech cech Wcob Bl I
1 I o=
o5

Fipure A.2.2{b): The Labeled StateDd obtained from the StatelD) of Figure A.L2ID)

Applving the analysis of partial specifications algorithm 10 the SrateDds of figures A.1.3(a)
and A.1.3{b). we obtain the Statel) shown in figure A.2.3(a} and A.2.3(b), respcctively.

=T
I% = [

1 S gy]
LR e)

e Ce)

|) 'H“‘.W oot b T i aplehr_

[

—t:le—@:@ o,

nbiiram | FTFiiny
sl . _ i)

=

Nac==C N

Figure A.2.3 (a): The lzbeled Statel) obained from the Statel) of Figure A.1.3(a)

f I utd Swng v boulpan l
chlt_ w1
E]_h_—al 51
i
| 1k MR ey -y
it P ATFX gl e NIFRmaee_Luy_wl)
.Hm.l!TFldnpll-r iliariact wier Bultiod

usr_txl e euser chack s diad}

S e et vy

Figure A.2.3(b): The labeled Stateld obtained from the StateD of Figure A.1.3(b)

Applying the analysis of partial specificalions algorithm to the StateDs of figures A.l.4(a}
and A.1.4(b), we ohtain the StateD shown in figure A.2.4(2) and A.2.4(b), respectively.

= D

Tl debuiml | FLFWarat it kKb .
* > m rat B
_ _ L]

MB
~

==t

Figurc A.2.4(2): The labeled Statel) obtained from the StateD of Figure A.1.4(a)

=

\.

[

o
I_lr-wllll]l'l'FF—_-J-'"f
AT by wem_ achiew=* = 1

1ot bl e i il

-

2 iFii W)
iFadmpley oy w=" | R w—
]

1n

Figure A.2.4{b): The labeled StateD obtained from the StateD of Figure A.L.4{b)

A.J. Integraltion of partial specifications

Figure A.3.1 shows the resultant StaleD of the Fermina objeel after the integration of partial

specilications of the three scenarios of use case Comneet TrSuten,

-

T Tewr=mll =L] FLAEreplan _ wrwor_mmad [

] SOUNG unaTe SAng
real, read Boolssn

Figure A.3.1: Resultant StateD for the Connect To System

Figure A.3.2 shows the resultant StateD of the Termina! object alter the integration of

partial specifications of the three scenarios of use case BrowseBook.

o

boam. Bn, e mnay,
i, ikl hd el

Té={ires =m0l ob andrmd e i} e
Arexd=nnd ok AL Akl

e

ra

Toa{Tubuwct_levol tfrugoryd) |

il bl malia

mingFarBrowweOr HSmmar baed bl J',\ l;
Cmoxl

A —

=k A TF by Mook 1T
#TFeduplay_bouk mot |

ATFhdopley_book it

T rrEws AT

T | et b
il ook cheich bk iyl
2 Book chech et _mlwri
vt Bouk chwch ok Rake(b

-

=)

Figure A.3.2: stateD) for the BrowseBooks

L

Figures A.3.3 and A.3.4 shows the resultant StateD of the Terminal ohject atter the
integration of partial specifications of the three scenarios of use case Manage User {AddUser
and Defete User}, respictively.
/ P ——— \ / i iy, o e \
S T O i £l T gl _ il =1

TR tlingby wvw_ biraar .}
AT by ="

E‘] ncrem_doiesnl} }-E THII-I-M-IIJU>

A TUATopticy_ e buerd]

TF=uca detoa_upwg) = 1T -0k M T Muplny
O —— e 1wl AT _
—‘ < e el T Y gl
e, | e

TEdolih b _duliin}

\ Heeo) J“T PANg T

Figurc A.3.J; stateDd for AddUser Figure A.3.4: stateD for DefeteUser

A4, Generaling graph of transitions and Masking non-interactive

traositions

Given the StateD of Terminal for the use cases ConnectToSystem {sec Figure A.3.1), the GT

generated shown in Figures A.4.1(a}.

B &

(k)
(u}

Fipure A.4.1; (8} Transition graph for the object
Terminal and the use case ConnectToSystem (GT).
{b) Transitivn graph after masking
non-interactive transitions (GT7).

Given the StaleD of Terminal for the use cases BrowseBook (see Figure A.3.2), the GT

generated shown in Figures A.4.2(a),

kL

PORONONO

©!
¥
o

(b
(a)

OROZOS0%0
0R00R0%0

Figure A.4.2; (a) Transitinn graph for the object
Terminal and 1he vse case BrowseBook (GT.
{b) Transition graph after masking
non-interactive transitions (GT).

Given the StateD of Termingf for the use cases ManageBoak (AddUser and DeleteUser) (sce

Figures A.3.3. A.3.4 respectively), the GT generated shown in Figures A.4.3(a).

Figure A.4.3: (a) Transition graph for the object
Terminal and the use case ManageUser (GT).
{b) Transition graph after masking
non-interactive transitions (G'T°).

a9

A5, ldentifying user interface blocks

In figure A.5.1, Rule 1 determines the beginning of 87 (T2¢ and Bule 5 the end of BF (73).
RBule 3 determine the UIB B2/T4). The UlBs £3 and B4 arc generated by applving Rule 3 or
Rule 6.

L

PN
RS

(b}

Figure A.5.1: Graph GB resulting from UlB
Identification on the graph GT* of
Figure A.4.1:(h)
In figure A.5.2, Rule | determines the beginning of B7 (72.1) and Rule 5 the end of Bf
(T2.3). Rule 3 determine the UNIB B2. The UlBs B3 and B4 are generated by applying Rule 3
or Rule 6.

<)

—
(=3
i

)

0z

Figurc A.5.2: Graph GB resulting from UIB
identification on the graph GT* of
Figure A.4.2:(b)

100

In figure A.5.3, Rule | determines the beginning of 87 ¢72.f) and Rule 5 the end of Bf
fF2.3). Rule 3 determine the UIB B2, The UIBs B3 and B4 are pencrated by applving Rule 3
or Rule 6.

Figure A.5.3: Graph GB resulting from UIB
identification on the graph GT of
Figure A.4.3:(h)

A.6. Composing user interface blocks

Applying the rules to the GB of Figures A.5.1, A.5.2 and A.5.3, results in the graph GB' of
UIB3s shown in Figures A.6.1, A.6.2 and A.6.3, respictively,

E:I % ul I FE_! h‘?‘}&iT
s H; E:z : — |:13 [P
A | _;Jﬁk_;“_ B

Figure A.6.1 Figure A.6.2 Figure A.6.3

Figures A.6.1, A.6.2, A.6.3: Graph GB’ resulting from uscr interface block composition
on the graph GB of Figures A5.1, AS.2, A 5.3, respictively.

141

Appendix B
Algorithms for User Interface Prototype Generation

B.1 The following algorithn details how to get nodeList, edgelisi, and iniiialNodeList of the

GT from a given StateD s4.

A retuzns the hist of tranmbons 10 S1ateD sd
oL i = ad Tranacion| st}

M edgel s computatiun
cdgel.asc = 2
Forench t & melel.ist

1= a4 Fromiaie{u)
I relumns the state From which
i 1he tranailion Lis origingting
L = ad Ik Transitions(s)
£ retuma the |1 of transilions that
I et the suE 3
For L& List edpeLixt addEdpeis. L)
IF cave wihete 3 14 a0 outiad chete of s
If 3 bype == wyhalSixe
=3 xupey S hate()
N rehoma the parent sale of 5
Lixt = sl mput Tramsiisees{s)
Fort e lm
edpelist addFdge{L L}
Linel 1£
M case whete 4 i1 3 composite skate
I [and-sale, or-sale):
IF (3. type=—andState) or (5. ype==—or3iabe)
Ligt = 3 transitignsInaide()
Fretutia the |ist of trangidons inside
A e Cempoaite state s
Fet tee Ligt edgeList addFdge(tL)
End Il
Lnd For
MoniplNade] sl computation;
ke Mawdel gl = 3
L15=sd innialSiancs()
For esch 1 4 LIS
OT = g pactgan] cansctions()
i retueng the Leet of transitions thad
K Ian oyl from x
imalModeList = mitwlModeLast L OT
End For

B.2 The iollowing pseudocode deuwils the Masking non-interactive transitions

operation (the update of inirial Node List is not shown):

Fot each1 € nodeList

Fad I'or

If twadgeti =" then

End I

npdeList debetggty
[Tl ~cd geLagt inpulla geil
i returtis Lhe: [ist ol voraiton &
{ it (L) = exdge] it
CTLeedgela outpatbdge(l)
H retums the list of Ganmkwns L.
with {tL) = edgeList
Foreacht e ITL
For exch e OTL.
edgelin addFazsiL Ly
echpeList defetrEdgeiy 1)
aedpelan deleicEdgeii e
Esd For
End For

142

10)

Appendix C

References

[1] I. 8 Andersen, and B. Dumey, “Using Scenarios in Deficiencydriven Reguirements
Engineering”, Requirements Engineering 93, IEEE Computer Socicty Press, 1993, pp. 134-
141,

[2] F. Bodart and). Vanderdonckt. Widget standardisation through abstract interaction
objects. In Advances in Applied Ergonomics, pages 3004303, [stanbul - West Lalayeite, May
1996, USA Publishing.

[31 G. Booch, Object Oriemed Analysis and Design with Applications, BenjaminCummings
Publishing Company Inc.. Redwood City, CA, 1994,

(4] G. Booch, J. Rumbaugh. and |, Iacobson. The Unified Modeling Language User Guide.
Addison-Wesley, Reading, MA, 1999,

[5] . Gamma, R. Helm, . Johnson, and), Viissides. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA, 1993,

[6] J. Gosling, B. Joy, and G. Steele, The Java Language Specification. Addison-Wesley,
Reading, MA, 1996,

[7] T. Griffiths er.al, "A Model-Based User Inierface Development Environmem for Object
Databases,” Interacting with Computers, voi. 14, no. 1, Dec. 2001, pp. 31-68.

[8] T. Griffiths, L. MeKirdy. G. Forrester. N, Paton.). Kennedy. P. Barclay. R, Cooper, C.
Goble, and P. Gray. Exploiting medel-based techniques for user interfaces to database. In
Proceedings of YDXB-, pages 21 {44, laly, May 1998,

(9] Exrensible Markup Lansuaee (XML) Fersion L0, World Wide Web Consortium
Recommendation 10-February-1998. hilpfwww. wd orp/ TR/REC-xm|

[13] [}. Harel, “Statecharts: A visual formalism lor complex syvstems”™, Scivnce of (Computer
Frogramuning, 8, June 1987, pp. 231-274.

[11] D). Harel, H. Lachover. A. Naamad, A. Pnueli, M. Politt. R. Sherman, A. 5htull-
Trauring, and M. Trekhtenbrol, “STATEMATE: A Working Environment for the
Development of Complex Reactive Systems™, JEEE Transactions gn Sgftware Engincering,
(164, April 1990, pp. 403-414.

[12] Nanson, 1. R., I Hix. Human-Computer [nterface Development: Concepls and
Systemns for Its Management. In ACAf Computing Surveys, 21, 1, 1939, pp. 3-92.

[13] . Usia, 1. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen, “Formal approach to
scenario analysis ™, JEEE Sofhware, {1112, March 1994, pp. 33-41.

L4

{14]) IBM. Systems Application Architecture: Common User Access - Guide o User Interface
{Dexign — Advanced Interfuce Design Reference, IBM, 1991,

[15] L. Jacobson, M. Christerson, . Jonsson, and (. OOvergaard. Ohject-Oriented Sofiware
Engincering: A Use Case Driven Approach. Addison Wesley, Reading, Ma, 1992,

[16] C. Janssen, A. Weisbecker, and U, Ziegler, “Generating User Interfaces from Data
Models and Dialogue Net Specifications™, Proc. Of the Conference on fluman Factors in
Computing Svstems (CHI'93), Amsterdam, The Netherlands, April 1993, pp. 418-423,

[17] P. Johnson, Human compiter intcraction: psychology, wask analysis and software
engineering. McGraw-l1ill, Maidenhead, UK, 1992,

[18] B. Kirwan and [.. Ainsworth. A Guide to Task Analysis. Tavlor & Francis, London, UK,
1992,

[19] P. Markopoulos and . Marijnissen, * UML. as a Representalion for Interaction Design,”
Pree. Australian Conf, Computer-Human Interaction, CHISIG, 2000, pp, 240-245.

[20] M. McKay, Developing User Interfaces for M5 Windows, pp 295-315, 1993

[21] Myers, B. A, User Interface Software Tools. In ACM Transactions on Computer-Fluman
Interaciion. vol.2, no. 1. March, 1993, pp. 64-103.

[22] Myers. B. A. and M. Rosson. Survey on User Interface Programming. In Human Factors
in Compuring Systems. Proceedings of SIGCHI 92, Monterey, CA, May 1992, pp. 195-202.

[23] B. A. Nardi, “The Use Of Scenarios In Design™, SIGCHT Bullerin, 24(4}, October 1992,

|24] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Objecr-oriented
Madeling and Design, Prentice-Hall. Inc., 1991.

(25] J. Rumbaugh, 1. Jacobson, and G. Booch, The Unified Modeling Language Reference
Manual, Addison Wesley, Inc., 1999,

|26] 5. Schnberger, R. K. Keller and 1. Khriss, Algurithmic Support for Transformations in
(hjoct-Oriented Software Development, Technical Rep. GELO-83, Univ. de Montréal,
Maontréal, Qe, Canada. April 1998,

[27] Schulert. A, J., G. T. Rogers, and J. A. Hamilton. ADM-A Dialogue Manager. In Human
Factors in Computing Systems. Proceedings SIGCHI'83, San Francisco, CA, April, 1983, pp.
177-183.

[28] Ousterhout, J. K. Scripting: Higher-level Programming for the 21st Century. In JEEE
Cempiter, March 1998, pp. 23-30.

[24] Symantec, Inc, VFisual Café for Jave: User Guide, Symantec, Ine.,1997.

15

[30] P.A. Szekehy. "Retrospective and Challenges for Model-Based Interface Development,”
Computer-Aided Design of User Interfaces, F. Bodart and I. Vanderdonckt, eds., Namur
Univ. Press, pp. xxi-xliv.

|31] Loa, P, P. Szekety, and R, Neches. Management of Interface Design in Humanoid, In
Proceedings of INFERCHI'RS, April 24-29, 1993, pp. 107-114.

[32] Wiecha, C.. W. Bennett, 5. Boies,). Gould, and 8. Greene., T1%: A Tool for Rapidly
Developing [nteractive Applications. In ACM Transactions on Information Systems, vol. 8,
no. 3, July 19940, pp. 204-236.

A M adla

A (Software Sysiems) el phai 3Ll e ja Ciageal asasodine i
Lalail Lol jalt Al o4 (Unified Modelling Language) 33x yail Lahailt 451 i
PLadill dadail Apulill dpeali ta e (User Interface Modelling) pasiual 1202
e il il 3 (Object Oriented Modelling) idast Sl

EY RSN LR EECORIPREL oL I B3 PV E GO PPN i £+ S TR
phaaioly g et e pdtndl 000 23 gai 3 1 4008 g Al GUa (UML)
AL iy jad (B Baa gall Al AR i pal sladiiud 23 ua Baa gall 4adaill Aad
San galt A et Gl 85 i) g Cioozall Lt el AISA (e i gla g (K

(e gl y clanlt o SLal cibeld g o Al Ladia G 6 e 3 g1 Jualh
gatadiul cun o o(Unificd Modelling Language) sas yall iaiaill dady iy st
{(User Interface Methods) sl 2205 A y (3 ks sgpadiiuall &1l iy ja
UML) #2a galt Labailt 433 sladdaly A 5Ca0 Ui Salat 5 it 128 41 SN Gl
Pl A WS A Bl Lpataniodd i M (Diagrams JISSYY oale Ciy jad af Sy
N 3ea g o Task Model) JUsil Jga 4ok ((Domain Model) AL o pas dadeg s
{(Package Diagrum) s aaly JS5 8 SIS o3a JS pa 33)

User Interface) g tued) (a aifondi 420 25 40 3 05 oaill M)95 1 S0 Juaili
Lo e g A S e sl 30 s o(Generation From Scepario
UML Collaboration) JS& b 4%bea 435y (Requirement Engineering)-haikidt
S a8 a1y o3 o(UUML State Charl Diagram) o Wt & A (Diagrams
Algorithm For User Intlerfoce)pdaiaall L5 25 40ui2d 53y gl i p L
(Prototype Generation

Lt o gl 3 A SN i) ey g s 80l M A g0 a1 (el

b e B R ST et 3l)
el 3 g ST Bk b Al Ladp

d‘" b.,I..JI

/‘-ﬁ;‘ I;ZZJ/‘;GJ 4auvmﬁ

agmdul] i___ i3
n..!g_..:bdl n_...s
.'._1__41 slemnia
T — “-r—-mv"rrﬁ* "-:-*r hll-""""'"""-"!lar 7 gy v s Tl -

Lo A . ”’i‘f i‘ ! -L
o J—dﬂ-i.llloll |’d:h_¢.t

‘-‘—-&ﬂfﬁl—l‘h’]Uﬁ*’[L |“* _I:___u s, “w‘i{,;\‘\
~y :\\

L 4;; e .-Jg:’f n:-_a'w
Ve
[N
[EAY

o Lt PN LIS
H P
;_'n__LL‘J_'J.._..g.:.l.‘._n:L..*— 1'

i -._'...._.(_E_J_-_:—ﬁ:i-ll.)‘ —————

" A e =2
. (L.:.-..uilu:u..}
= ‘___:’_._‘_“J_-J_ui_];f‘)_'
{L_n_;l_'xl_m.u.u]

l::nadi oy 674 5K 054/60361 - 62181 &

054/60363.65704 ©

o sladt A panill s

Jhal gy A pladioly A0CaY AUBT addicall ALY Aadal

u}iﬂirﬂiﬁtlﬂuﬂ;
qudall agle A giealadids b e Jgantl o cdbia

A0l e Aedia

@jﬂi@@h@@i}j

el dana saud)

2008 /2007 sl el

	Untitled
	2
	Untitled
	4
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled

