Using Intelligent Agents concepts in Analysis and

Design of Library Management System

By:
Naiema Musu Amrayid

Supervisor: Dr.Abduthamed Mohkamed Abdutkafi

Thesis is submitted to the Department of Computer Science in partial
fulfillment of the requirements for the degree of

Master in Computer Science

Al-Tahaddi University, Faculty of Science
Department of Computer Science
Sirte, G.S.P.L.AJ

Academic year 2006/2007

panll sl alll s

uJI-.MLu.olI-‘— J PJ-‘-'-U‘J-'M))
p...S:Jp.nan

Bt 5 e e (32) 4

— u AT wm e welIR S gms o

e e A . . '
H;#J-‘_’-_a:_.,ru,mj

LA | a0 e pad Lid 3

AT T M T s s Sy P NN 5 Ve
-~ 1

- '-"’“ 12f PR e . - r

Jd?‘fr?_ S. : 3ol 8

/‘J/‘ff /1‘!’2“;" o ST 3

Faculty of s’cleﬁm

Department of computer sclence

Title of Thesis
Using Intelligent A gents Concepts in Analysis and
Design of Library Management System

By
Naiema Musa Amrayid

Approved by:

Dr. Abduthamed Mohamed Abdulkafi T T\ .1"-.\5 -3. N
(Supervisor)

Dr.Mohamed Aboulgasem Arteim T

(External examiner)

- - l
. ¢
Dr, Ali Ahmed Abdulaziz oz =

(Internal examiner)

nid' by |
rag Mhgoup
{ Dean of xl.g"ijifiéa‘ﬁciencc}

.-,...-1'.- - A
~ s

- = , 65704
@oHohoo eculy 674 4 054 7 40341 - 62151 = 054! 6034623

Acknowledgements

I would fike to thank my supervisor Dr. Abduthamed M.bdulkafi
for their cooperation with me and for alf their support and advice
and encouragement towards the research.

My special thanks are extended to Dr.Jassan M. Amrieiz whose
information, and corrvecting the language of this thesis, and
criticisms reafty enriched my work. I do sincerely thank
Dr.Zakaria.5.Zubi for his help.

My grateful thanks go to my husband, for his [ove,
thoughtfulness, support, and sacrifice in so many ways in achieving
this. To my mother, Jather for their love, support in all ways over
the years. To my brothers, speciafly khaled, and my sisters for their
fove and support, without them, the completion of this thesis would
net to be possible, special thanks (o my friends who shaved this
experience with me.

Above all, I thank God for making all this work possible.

Naema

Absftract

"*Agent” and “Agent sofiware™ have become popular words in computer soflware.
The reason why this arca gains the popularity is because it 15 based upon Al (Anificial
Intelligence) but works only 1o its specihe field, like a narrowly fucused Al program.
Agent sofiware has been developed tor many different uses in a variety of areas because
of its extraordinary ability of adapting to the speeific field of interest™ [10].

This thesis irst presenis an overview of the sollware agent, which starts {rom the
intreduction of the definition of the software ageni. its terminology. and its other basics.
Afterwards, the concepts and specifications of “Intelligent” agent are brought inlo
contexl 1o describe how the sofiware agent works behund the scene. This includes
action, operalion, autvnomous behavior and communication of agents. The way that a
software agent generades ils goals ol achievemem and to evaluation of its progress is
also very important in keeping agem working tn the right path. Next, the thesis presents
a methedology for agent-oricnted analysis and design and the key aspects of agent-
based soliware development, focusing on one of the most known methodologics as the
Prometheus methodology for developing inmtelligent agent systems. And then we discuss
of the phases of analysis and design of apent system ucuu-r::iing to a sclecled
methodoloyy.

In this thesis one selected function of the library system is programmed. This
function is related tw the library ¢mail agent. This is because Electronic mail has
become one of the main communication tools between people arcund the world
regardless of therr physical distance, The library email apent project is a very Lypical
software agent application. The source code of the Intelligent Library Email Agent

{ILEA) program is included in the Appendix A.

Table of contents

Acknowledgements
Abstruct
List of Figures
List of Tabies
Chapter I: Introduction
.1 Review of titerature
1. 20bfective’s
I 3Thesis organization
Chapter 2: Fundamential Concepts for Seftware Agent
2.1 Introduction for Sofiware Agent
2.2 Definition of Software Agent
2.3 A Typodogy of Agents
2.4 Agent Variants
241 Mobile Agent
2.4.2 Distributed Agent
2.4.3 Multiple Agenits
244 Collaharative Agenty
24.3 Sociaf Agents
2.5 Why are Agenls Needed
2.6 Apent Archifectires
2.6.1 Defiberative Mode!
2.6, 2 Reactive Madel
2.6.3 Hybrid Model
2.7 Bencfits of Agenis
2.8 Security fssues in Agemt System
2.9 Multi- Agent Systems
Chapter 3: Intelligent Agent
3.1 Definition of Imelligent Software Agent
3.2 Imelligent Apents and Artificial helligence
3.3 Intelligenmt Agent Mode!
3.3.{ Task Level Skifts

v

i¥
i
VEFi

ix

™ LY MR, WY g

|

3.3.2 Knowledpe Module
3.3.3 Communicution Skill
3.4 Taxonomy of Intelligent Agents
3.3 Concepts for Intelligent Agents
3.6 Sirtcrure of Intelligent Agents
3.7 Applications of Inteltiyent Agents
3.8 bueliigent Information Manayement

3.9 Emuil Filtering

Chapter 4: Prometheus as an Agent-Oriented Analysis anmid

Design Methodology
4.1 Introduction
4.2 Differences hetween AQ and O0 methodologies
4.3 Promuetheus
4.3.1 Agent Concepts in Prometheus Methodology
4.3.2 {rerview of Prometheus Methadology
A3 2.1 Syxtem Specification
4.3 2.2 Archirvetwral Design
4.3.2.3 Detailed Dexign
4.3.3 Toold Support
Chapter 5: Design and Implementations of the Case Study
3.1 Svsvem Specification
3.1.1 Goals of the Svstem
5. 1.2 Sub- goudy of the System
5. 1.3 Scenarios of the System
5.2 Architectural Design
3.3 Detailed Dexign
531 Checkout Agent
5.3 2 Reservation Agent
3.3.3 Overdue Ageni
3.4.4 Library Email Agent
5441 Features of (1LEA)
3.4.4.2 Tools Reguired
5.4.4.3 Graphical wser Interfuce

28
28

30
30
12

19
86

T W T
LT TR SR

bty
~1

82
83
81
84
&4
88
89

kf

S4.4.4 Storing the Rules Ina Controlf File 03

5.4.4.5 Protutvpe Algorithm 93

Chapter 6: Conclusion 99
6.1 Stemmary 9y

6.2 Recommendation and Future Work 1
References 2

Appendix A: Seurce code Discussions 1y

Figure

2-2
2-3
2-4
2-3
2-6
2-7
3-1

3.2
33
3-4
33

42
4-3
-
13
46
5.1
5.2
3-3
34
5.5
5-6
5-7
3-8

List of Figures

Agent interacts with environments through sensors and effectors
Classification ol Agents

A part view of an Agent Typology

Agent Taxonomy

Simple Deliberalive Agent Model

B Agent Maodel

Reactive Apent Model

Intelligent Agent Model

Agents are siluated

Proactive Agents have Goals, Reactive Apent have Events
Adding Plans and Beliefs

Agent Execution Cycle

Genealogy of Ageni-Onented Methodologics
Agent-Orniented Mcthodoelogies

‘The phases of the Prometheus methedology
Notation used in System Overview Diagram
Notation used in Agent Overview 1iagrams
‘The Prometheus Besign Tool {PIT)

Goal Orverview Diagram

Scenarios Diagram

System Raoles Diagram

Data Coupling Thagram

Apent Role Coupling Diagram

Agenl Acquaintance Dhagram

Sysiem Overview Diagram

Checkout Capability
Return Capability
1.Get Return Date Capability

2.0et Return Date Capability

Faype

-

!

i1
16
18
18
i
27

&2
82

&3

Vil

5-12 Reservation Capability

5-13 Amival Notification Capability

3-14 Owverdue Agent

315 Library Email Agent

3-76 Features of imcelligent agent

5-17 Block diagram of the intellipent agent for email information
processing

5-18 Duataextraction from sorting process

5-f¢ Library E-mail Agem Main Form

J-20 Create Rule Form

3-2f The Setup Form

3-22 Prototype Algorithm

3-23 surting algorithm with identification of forward and replicd

3-24 soring zlgorithm with sensitivity of intelligent

Appendix A

Al Coding the Support Routines

ALl The Imualization Routines

A.12 'The List-Hundling Routines

A3 The Message Processing Routines

A2 Butlding {ILLEA) Actions, Tests, and Rules

¥inl

&3

83

R

&4

86

87

&7
2
40

Yl

0f
07
98
108
i
108
{9
109

120

Table
2-{
3-7
3-2
4-f
5-1
A-1
A-2

List of Tables

Features, Advantages and Benefits of Agent Technology
Agent Concept
The basic elemments for a selection of agent §ypes
The Major Models of Prometheus
Tools required
(1LEA) tests and actions
Adding rules to the (1LEA)

Page

Chapter One

Introduction

The past decade has experienced a great deal of sciemific activily on standard
intelligent techniques (fuzzy logic. evolutionary computing, machine leaming & neural
networks) as well as on adaptive and hybrid intelligent sysiems. Despite the continsously
growing number of publications in this area, it 35 nol clear y¢t whether companies have
realized the polential of intelligent techniques in solving real- world problems and the
new opportunities given on a business level. Research and development cfforts in
computer science have increasingly embraced the concept of software agents and multi-
agent systems, One key reason is that the idea of an agent as an autonomous system,
capable of interacting with other agents in order to satisfy ils design objectives. is a
naturally appealing one for software designers. This has led 10 the growth of interest
in agents as a new design-puradigm for softwire engineering [12].

Intelligent agents arc a powerful Anificial Intelligence technology, which shows
considerable promise as a new paradigm tor mainstream soflware development. In recent
vears, agent-based systems have received considerable attention in both academic and
industry. An inteliigent agent is onc, which is able 10 make rational decisions. 1.e..
hlending proactiveness and reactiveness, shuwing rational commitment to decisions
made. and exhibiting Nexibility in the face of an uncertain and changing cavironment,
Despite their promise, intelligent agents are still scarce in the market place. There is a
real technical reason for this, which stems from the fact that developing intelligent agent
software currently requires significant training and skills.

‘The reasons why developing intelligent agent systems are difficult include: fi1)

L. [mmature tool support: There is a lack of good debugging 1oals. many 100ls are
rescarch prototypes and lack efficiency, perability, documentatien, andfor
SUppOrt.

2. The need for processes and methodologies: Programmers are familiar with
designing object-oriented sysiems. ilowever, the design ol agent-oricnted systems
difters in a number of ways c.g. identifving rules, goals, and interaction patlerns.

3. Design guidelines and examples: Destgning a collectien of plans to achieve a goal
is different 10 designing a single procedure to perform a function. This difference
is lundamental, the fact that developing intelligent agent, is a dilferent
programminy paradigm and needs 10 be learnt and taught as such.

4. Compiex concepts such as intentions are difficult to explain and this is not helped
by a lack ol agreement on concepts and inconsistent terminology.

5. Lack of a suitable textbook: much of the work on tntelligent agents is s¢attered
across many research papers (sometimes collected into volumes).

The development of agent-bused software and mulli-agent syslems 1S increasing
significantly. Thus, agent-based software and multi-agem systern designers need
methadologics and tocls to help them. The main purpose of Agent-Oriented Soflware
Engineering (A(SL) is to create methodologics and tools thal enable inexpensive
development and maintenance of agent-based software, In addition, the seftware should
ke flexible, casy-lo-use, scalable, and of high quality. In other words, guite similar to the
research issucs of other branches of software engineering, for example, objectl-oriented
software enginecring. Agent-oriented programming {AOP) can be seen as an extension of

object-oriented programming (QOP), on the other hand, can be scen as a successor of

structured programming. Hecenl vears have scen an incredible development of agent-
oriented software engineering methodologies trying to cover all the range of features 1ha
agents and agent-based systems encompass, These methodologies are based cither on

object-oriented methodotogics or on specific to agent theory | 16].

1.1 Review of literature

There is a lot of interesting work showing a methodological approach for agent
systen development. These approaches must be analyzed to identily possible
enhancements. One example can be seen in [35], which shows z feature-based evaluation
of several AQSE mcthodologies. Their criteria include software engineering related
criteria and crileria relating W agent concepts. Another paper [34] used (he same
techniques in addition 10 a small experimental evaluation 10 perform an evaluation of
their own Agent Onented Modelling Techniques (AOMT), this work suffers from
subjectivity in that the criteria they identificd are those thal they see as important, and
naturally, AOMT focuses on addressing these criteria. A framcework 1o carry out an
evaluation of agent-oriented analysis and design modeling methods has been proposed by
other rescarchers [18], The proposal makes use of feature based cvaluation techniques but
meinc and guaniitative evaluations are also introduced. The significance of the
framework i« the construction of an attribuie tree, where each node of the tree represemts
a software engineering criterion or a characteristic of ageni-hased system. Lach attribute
is assigned with a score and the score of attributes on the node is calculaled based on

those of their children. They have applied that framework to evaloate and compare two

AOSE methodologies: the Agent Modeling Technigues for Systems of BOIL (Bclief,
Desire and Intention) Agents and MAS-CommonKADS.

Authars in |2] propose 4 number of eriteria lor evaluating methodologies with a
view 10 allowing organizations to decide whether to adopt AOSE methodologies or use
existing Object Orienmed methodologies. Although they performed a survey 1o validate
their criteria, they do not provide detailed guidelines or methods for assessing
methodologies against their criteria. Their example comparison (between MaSE and
Boech) gives ratings against the critcria withow justifyving them. Their work is useful in
that it provides a systematic method of taking o set of criteria, weightings for these
criteria (determined on a case by case basis). and an assessment of 2 number of
methedologies and determining an overall ranking and an indication of which criteria are
critical to thy result.

A larpe number of agent-oriented methodologies have been proposed in recent
years [15]. Compared with other methodologies, Prometheus’ distinguishing features are
that it is aimed at industrial practitioners (as well as students), that it wims to be detaiied
and complete. that il emphasizes the importance of tool support and automated
consistency checking. and that it supponts the detailed design of plan-based agents. The
structured nature of the design artifacts allow (or development ol support structures ot
debugging as demonstrated in this thesis. This work suffers from subjectivity in that
the criteria thev identified are thosc that they sec as important and, naturally, AOMT
focuses on addressing these criteria. Comparisons o’ Prometheus with other agent-

otiented methodologies can be found in [4, 14, 15, 17, and 1R8],

Lh

Another experiment shown i [6] analyzed four agent-oricnted methodologies o
evaluate them in common crileria. The experiment comprehended two tnals in which iwo
agent-oriented sysiems were developed using each methodology. They presented some
contradictions between the two trials that are credited so the different level of experience
in agent-oriented development among the participants of each trial.

(Hher researchers [38) presented five agent oriented soltware engincering
methodologies and discussed their concepiual foundations like interaction, cooperation.

corllaboration, organizational design cte wherever applicable.

1.2 Objectives
The main objectives ot this research are:
1. 1Hustrate the main reasons why people need software agents.
2. Discussion of the phases of analysis and design of agent system according 1o a selected
methodolegy.
3. Applying the previous phases 1o a library system.
4. Coding and programming a part of this library system 10 act as intelligent agent within

the library system.

1.3 Thesis OQrganization

We intend 1o organize the research into different Chapters. Chapter two illustrates
Fundamental concepts for software agent. While Chapter three, presents a theoretical
background for iniclligent agents. In Chapter tour, the rescarch discusses one ol the well-

known methodology procedures. Chapter five presents a case study and applies the

methodology procedures ta the selected case study. The conclusions of the rescarch are
presented in Chapter six. One appendix is used to include the source code of the

Intelligent Library Email Agem (ILEA) program,

Chapter Two

Fundamental concepts for Software Agent

2.1 Introduction for Software Agent

An agent is anything that can be viewed oy perceiving its environment through
sensors and acting upon thal environment through effectors. A human agent has cyes.
ears, and other organs for sensors, and hands, legs., mouth, and other body parts for
effectors. A robotic agent substitutes cameras and infrared range finders for the sensors
and various maters for the effectors. A soflware agent has encoded bit strings as i1s
percepts and actions. A generic agent is shown in Figurer (2-1) [39].

in this section we will discuss some of the general principhes used in the design of
agents throughout the thesis, among which is the principle that agents should know

things. In the end, we will show how we might go about building one.

SENSOrs

percepts

actions

i
effetiors P"

Figure (2-1) - Agent interacts with environments through sensors and effectors.

|5 Russell and P. Norvig, " Anilicial Intelligence: A Modern Approach™, Prentice -Hall, 1995,

2.2 Definition of Software Agent:

There are at Jeast twa reasons why it is so difficult to define precisely what
agenis are. Firstly, agent researchers do not awn this term in the same way as fuzzry
logiciansfAl researchers, for example. the lerm fuzzy logic - it is one that is used
widely in everyday parlance as in travel agents, estate agents, cte. Secondly, cven
within the soflware fraternity, the word agent is really an umbrelia 1erm for a
heterogeneous body of research and development. The response of some agent
rescarchers to this lack of delinition has been 1o invent yot Somc more Synonyms,

and it is arguable if thesc solve anything or just further add to the confusion.

An agent is very gencrally defined as™ a computer system that i5 situated in
some environmenl. and that is capable of autonomous action in this environment in
order to meet Jts design objectives™ . Various definitions have been proposed. For
instance, in restricted situations of Game Theory one can adopt this definition @ ™ An
agent is an entity which can receive information about a stale of the environment,
1ake actions which may alter thal state, and express preferences ameng the various

possible states| 13].

Instead of the formal definition. a list of general characicristics ot agents will
be given. Together these characteristics give a global impression of what an agent

is| 28].

2.3 A Typology of Agents
This section attempts ta place existing agents into different agent classes, i.e.

its goal is to investigate a typology of agents,

- d_
Cotaboradee
(Cogering ™

(‘F'r‘aw

TTr— - =
=Smat =
o p— Y]
I e DL 4" BB
Teo v - .
ST Mndraron -r- u“:-w
.l;lr ,J

Figure (2-2) - Classification of Agents from !

A typology refers 10 the study of types of entities. There are several dimensions to
classify existing software agents.

Firstly, agents may be classified by their mobility, ie. by their ability 10 move
around some network. This vields the classes of static or mobile agents.

Secondly, they may be classed as either deliberative or reaciive. Deliberative
agents derive from the deliberative thinking paradigm: the agents possess an internal
symbolic reasoning mode! and they engage in planning and negotiation in order to
achieve coordination with other agents. These agents on the contrary do not have any
internal, symbolic models of their environment, and they act using a stimulus/response
1vpe of behavior by responding to the presenl state of the environment in which they are

ermbedded.

' G_. Pang. "Implementation of an Apent-Pased Business Process”, Rescarch paper. Chengdu,
Sichuan, China, Universily Zarich, 2000.

14

Thirdly, agents may he classified alony several ideal and primary atiributes.
which agents should exhibit. At BT Labs in {I1] identitied a minimal list of three:
autonomy, learning and cooperation. The research appreciate that any such list is
comentious, but it is ne more or po less so than any other proposal. Autonomy relers to
the principle that agents can operate on their own without the need for human guidance.
even though this would sometimes be invaluable. tHence, agents have individual internal
states and goals, and they act in such a manner as 10 meet its gaals on behalf of 11s user.

A key clement of their autonomy is their proactiveness, i.¢. their ability to take the
initiative rather than acting simply in response W their environment. Cooperation with
other agents is paramount: it is the reason for being for having multiple agents in the first
place in contrast to having just one. In order to cooperate. agents need 10 possess a social
ubility, i.c. the ability to interact with other agents and possibly humans via some
communication language. Having said this, il is possible for agents to coordinate their
aclions without cooperation.

astly, for agent systems (o be truly smarl, they would have to fearn as they reacl
andfor interact with their external environment. In our view, agents arc (or should be)
disembodied bits of intelligence. Flowever, we will not atiempt 1o define what
intelligence is, we maintain that a key attribute of any intelligent being is s abilily 0
leamn.

The learing may also take the form of increased performance over time. We use
the three minimal characteristics in Figurer (2-3) lo derive four types of agents to be
included in our tvpology: cofluborative ugerts, collaborative learning agents, interfuce

agents and truly smart agenis.

Sman
Agenls

Conanaratvi
Laarning Agents

G olla Boratve

Agents Aytonornoug

Figure (2-3)- A part view of an Agent Typology'

We emphasize that these distinctions are sof definitive. For example, with
collaborative agents, there is more emphasis on cooperation and autonomy than on
leaming: hence, we do not imply that collaborative agents never learn. Likewise, lor
interface agents. there is more emphasis on autonamy and leaming than on cooperation.
We da mof consider anvthing else which lic owtside the intersecting areas to be agents.
For example, most expert systems are Jargely autonomous but, typically, they do not
cooperate of leamn. [deally. in our view, agents should de all three equally well. but this is
the aspiration rather than the reality.

In principic, by combining the two constructs so far (ie, slatic/mobile and

reactive/deliberative) in conjunction with the agent types identified (i.e. collaborative

I' H. Xu and §. M. Shatz. "A Framework for Model-Rased Desipn of Agent-Uriented Software”,
Research paper, The University of Hlineis, Chicago, 19%9,

Available at: www cis.umassd. edui~hxuPapers/IC/TSE paf | 2006-7-20.

i2

agents, interface agents. ete.), we could have static deliberative collaburaiive agents,
mobile reactive collaborative agents, static deliberative interfuce agents, mobile reactive
interface agents, ¢le. However, these categories, though quite a mouthful, may also be
necessary to further classity existing agents.

Fourthly, agents may sometimes be classified by their rules (preferably, if the
rules are major ones). e.g. World Wide Web (WWW) information agents. This category
of agents usually exploits intermet search engines such as WebCrawlers, Lycos and
Spiders. Essentially. they help manage the vast amount of information in wide area
networks like the intemet. We refer to these classes of agents in this research as
information ot infernel agemis, Again, information agents may be static, mobile or
deliberative. Clearly, it is also pointless making classes of other minor rules as in report
agents. presentation agents. analysis and design agents, testing agents, packaging agenis
and help agents - or else, the list of classes will be large.

Fifthly, we have also included the category of Mvhrid agents, which is combined
of two or more agent philosophies in a single agent. There are other attributes of agents.
which we consider secondary to those already mentioned. For example, is an agent
versatile (i.c. does it have many goals or does it engage in a variety ol tasks)? Does an
agent lie knowingly or is it always truthful (this atiribute is termed veracity)? Can you
trust the agent enough to (risk) delegate tasks 10 it? 1s it temporally continuous? Does it
degrade gracefully in contrast lo failing drastically at the bounduries? Perhaps
unbelievably. same researchers are also attributing emotional attitudes 1o agents - are
they fed up being asked to do the same thing repeatedly? What nzle does emotion have in

constructing belicvable agents? Some agents are alse imbued with mentalistic attitudes or

13

notions such as beliefs, desires and intentions - referred to Lypically as B agents. Such
atiributes as these provide for a steonger defmition of agenthood.

In essence, agents exist in o truly multi-dimensional space, which is why we
have not vsed o 1wo or three-dimensional matrix 10 classify them - this would be
incomplete and inaccurate. However, for the sake of ¢larity of undersianding. we
have collapsed this multi-dimensional space into a single lisi.

In order (o carry out such an sudacious move, we have made use af our
knowledge of the agents we know are currently out there and what we wish o aspire
to. Therefore, the ensuing list is 10 some degree arbitrary, but we believe these tvpes
cover most of the agent types being investigated currently. We have left out
collaborative learning agents, sce Figurer (2-3), because we do not know of the
exisience ouwt there of any such agents. which collaborate and learn, but are not

auionomous | 12).

2. 4 Agenl Variants

There are several variants w agents: [12]
2. 4.1 Mobile Agents:

Also known as traveling agents, these programs will shutile their being. code
and state, amonyg resources. This often improves perfarmance by meaving the apents
to where the data reside instead ol moving the data 1o where the agents reside.

The alternative 1vpical operation involves a client-server model. In this case,
the agent, in the rule of the clien, requests that the server transmit volumes of data

back to the agent 10 be analyzed, In many situations, the agent must return the data to

14

the server in a processed farm. Significant bandwidth performance improvements
can be achieved by running the agents within the same chassis as the data.

Mobile agent frameworks are currently rare due 1o the high level of trust
requited to accept a foreign agent onlo one's data server. With advances in
lechnelogics for accountability and immunity, mobile agent systems are expected to

become more very popular,

2.4.2 Distributed Agents:

Load balancing can be achieved by distributing apents over i finite number of
cemputational resources. Some mobile agents are self-distributing. seeking and
maving to agent platforms that can offer the higher computational resources at lower

Costs,

2.4.3 Multiple Agents:

Some tasks can be broken into sub-lasks in order to be performed independently hy
spccialized agents. Such agents are unaware of the existence of the others bul

nonetheless rely upon the successful eperations of all.

2.4.4 Collaborative Agents:

Collaboralive agents interact with each olher to share information or barter for
specialized services to alfect a deliberate synergism, While each agent may uniquely speak

the protocel of a particular operating environment, they generally share a common

I3

intecface languape, which enables them to request specialized services from their brethren

as required.

2.4.5 Social Agents:

Some researchers see anthropomerphism as a key requirement to successful
collaboration between humans and agents. To this end, agents are being developed.
which can buoth present ithemselves as human-like creations as well as interprel
human-generated communications such as continuous speech, gestures. and facial
expressions. There are some applications, which combine agents rom two or more of
these categorics, and these are relerred to as heferogencous avemt xystems. Such
applications already exist even though they are relatively few. Another issue of note
15 that agenls need not be benevolent to one another, 1t is quite possible that agents
will be in competition with one another, or perhaps quite antagonistic towards each
other |12).

In the middle of the ninctics when the model first appeared it was relatively
clear thal there is not a widely shared conceptual framework and this proposal,
among others, reflected a clear effort to show the origins of the different meanings
and offer some alternatives of complementary conceptual frameworks. For instance
the conceptual review of Laxonomy of autonomous agents, repraduce it tn the Figurer
(2-4). All this Kind of classifications are oriented to understand the scientific

production and the related software products. [5].

Autonomous Agents

>

Biological Agents Robotic Agents Computational Agents
Software Agenls Artiticial life Agents
Tusk-specific Agents Entertainment Yiruses

Figure (2-1). Agent taxonomy

2.5 Why Are Agents Needed

Today increasing usage ol any kind ol networking makes the working
environment ol computer software becoming dynamic and open, Soflware agents arc
designed for this kind of environment.

There are Tour main reasons why people need software agents.

1. A personal requirement,

2. They are changes in the business cnvironment that are driving agent

development.

There is a huge increasing growth of personal computers.

LIFF)

-

The emergence of the Internet.

17

It 15 abvious that both the tasks perfermed on the computers and the amount af
time, that people spend on computers are inereasing and will continue to do so. In
addition. the tasks performed by the computers are becomning much more complicated as
people Iry 1o make computers do their jobs.

Software agents are designed for working autonomously without user
intervention. The use of software agents can not only provide help and assistance ta

the users. but can also resull in cost effectiveness [10].

2.6 Agent Architectures
‘I'he chaice ot a specific architeeture [s quite a crucial ene in the construction of
an agenl, and will have influence on charactenstics of the agent. There are three basic

agenl archilectures: deliberative, reactive and hybrid models [10].

2.6.1 Deliberative Model

A deliberative agent is one that contains an explicithy represented, symbolic model of
the world. and in which decisions are made through logical reasoning based on pattern
matching and symbolic manipulation. There are two problems, which arise in the
implemeniation of a deliberative agent.

Firsthy, the transduction problem: "How can the real world be translated into a
symbotic description that the agent can understand?”

Secondly, the representation/reasoning problem: "How can a complex world be
represented symbolically”, and "how can agents usc the informatien to reason about a

problem and make the results to be useful?®

8

Deliberative agents are sometimes called BIN (heliel, desire, intention) agents.

‘This picture gives an overview of the structure of the mental siate.

Dirges

Caab
sl .)
-; 3 — Imteziioes }_ _::,“- E
*

Figure (2-5). Simple Dehberative Agent Model]

From Figure (2-5), the desires are what first are formed. based on the agent’s
heltefs, Desires are the most unstructured of the agent’s hope lor future situations and are
allowed to be conflicting and unrealistic. A subset of the desires is the goals. These are
basicatly desires that do not conflict with cach other and that are realistic. Intentions are
goals that the agem has decided to follow. The plans consist of the single actions

AUCESSAry To do s0.

Qv |
e e— 4
y 1
= ‘. ¥ »’ Losemtyons |
i Mag ger “I Rrawma I.. S a———
= . —— » D ley
= 'y H +
H I
=l | '
: | afwmastcow Extriciedge b
et (g *_p; A -—-l v T T et b

Figure (2-6). 131)] Agent Mode| !

! Flsi-Rouo Li. "softwane apent”. Thesis, Shokie, Hlinais, 1.5.A Decernber 2002,

v

Figure (2-6) shows that the information receiver has a very smali role to play in
the architecture. This means that the internal model of the agent can only be modified to a
limited extent. The rigid structure of the plan-based system and the minimal wpdating of
the internal model make the agent unsuitable for a dynamically changing environment.
Another problem is the time necessary for the agent 1o reach a decision. As stated earlier.
a BDI agen uses logic to form ils intentions from its beliefs. The B model 15 not
constructed with time efficiency in mind. The algorithms that preduce the plans for the

agents are designed for perfect results, and this makes them quite [L0].

2.6.2 Reactive Model

Figure {2-7) shows Reactive Agent Model, a major advantage of the reactlive
model is its fault tolerance. Since the competence modules work in parallel, it is not fatal
it one of them should fail. The agent can probably carry out s 1ask anyway.

Reactive agents do not have an explicit internal model of their environment, as
deliberative agents do. They cannot use logic to reason with their knowledge and reach
decisions. ‘That a reactive agent cannol solve a problem for which it has no competence
module. B2 agents are designed in a more generic way, not being restricted 10 a specific

class of tasks, bul are limited by the amount of information in their knowledge base [10].

lapur
Iperceplipny]

| COmpeienge I
p—in= miedale a

T

I cowpeleace
—* module -

| Compeicnin I
— modulr —

T 2T o

Sclmadors

Oulput {Lcfiaoa}

2.6.3 Hybrid Model
An agent of the hybrid model has both a reactive and a deliberative part. The
deliberative part maintains the knowicedge base and does the reasoning, planning and

deciston-making, and the reactive module is concerned with tnteraction with the

environment [10].

Figure (2-7). Keactive Agent Mode!'

1.7 Benefits of Agents

20

The benefit of an agent is based on the skills that the agent has. Table (2-1) shows

I'catures. Advantages and Benefits of Agent Technology |32].

' Hsi-Kuo Li. *sofiware agent”, ‘Thesis, Skokie, Hllinois, U.5.A December 2002.

21

Feature Advuniage Beoefit

Autgmaiion Perform soperitive tacke e eased productivicy
Customnizanion Cus:omize information interaction Reduced overioad
Notificabion Notify user of cvents of aigmbicance Eecduccd workioad
Learming Learn user{sh behavier Prougtive asistance
Tutering Coach user in context Fuduged raining
Messaying Prilunm asks remuotely CHI- e wiwh,

Table (2-1). Features, Advantages and Benefits of Agent Technology'

The repetitive behavior can be either {lime-based) or (event-hased), for example
¢learing up the recycle bin before tuming ofT the computer evervday. Unfortunately,
different users have different preference that will repeat very often. Because of this
dissimilarity, it is very hard to have a design that will be suitable lor every user. Agent-
hased automation is very helpful because the agent can remember the user preference and
perform the repetitive behavior automatically [32].

Agents prescnl their customization benefits by presenting only the information
that matches the preference of the user. Thercfore, the workload can be reduced by
elimimating the action for finding and delivering the unnecessary information. Agents can
atso provide notification benefits. Agents can notify their users of occurrences of events
in which users are interested. This will free users to their personal significance and

reduce Lheir workload. An example of this is the Windows updute notilication. Agents

1 M. R, Jennings, M. Wooldridge, "Applicalions of intelligent Agents®, Hescarch paper, Queen Man &

Westfield College, University of London. Available al:

http:Aiwww o5 umbe edu/agentsfintroductions jennings 98 pdf. 2006-5- 14

22

with learning ahilitivs can leamn both user behavior and preference. Once they have
learned this. they can work proactively. However, these agents need sorme time for them
to leamn all the user behaviors and preterences. Agents with tuloring abilities can coach
users to correct their mistakes. This benefit can reduce the training requirement. A
messaging agent can allow wsers to accompiish their task off-line at a remote site. Maobile
agents are one kind of messaging agents. These agenis can travel around the sites

themselves 1o intersct with other agenis and perform tasks on behalf of users [32].

2.8 Secority Issues in Agent System

An agent is a computer program that represents a human user. This may mean that
the program makes decisions, or gives advice, that would otherwise have been made or
given only by a human. It may mean that the program travels over a network 1o carry out
aperations on remole systems on behalf of a less mobile human user. [t may mean baoth.,
Agents that travel lrom sysiem to system are called mobile or itineranl. A sample
inerant agent is a program Lhat 15 dispatehed into a network to lind some information for
a user. i1 moves from system to system, finding pieces of the desired information. A
sample intelligent agent 15 a sophisticated mail-sorting program that processes incoming
mail tor the user, making decisions about what mail to discard unread, what to mark as
urgent, what to send a reply to, and so0 on. An example of an agent that falls into both
categones 15 a shopping agent that users dispaich inte the network to find goods for sale
and 10 decide what goods o purchase on behalf of the wsers. These three samples are
threc different kinds of agents that people often use. So what 15 dillerent about security in

agent systemns? Here s a st of issues of agent security: [32]

I- Delegation: users are delegating some of their authorities to their agents in
order to allow agents to perform the Lasks. Hoewever, according Lo the basic
design of agents, users cannot always see what agents are doing when agents
are performing the given tasks. Agents can acecss wherever the users permit
them to access.

2- Mobility: the itinerant agents travel from systemn 1o system (o perform their
tasks, the uscr has no way to know where thetr agents have been.

3- Viruses: agents and viruses are very much alike. Therefore, if the environment
15 created for agents, this may also mean that virus can breed in this
ENVILOTNINCHL.

4- Trust: agents can communicate with one another. They can communicale with
any agent they want in order to perform their task. However. agents cannot
predict the reliabilities of other agents. Unlike human beings. agenls cannot
assign different reliabilities to other agents.

Nince agents work independently with all the authorities delegated to them, there is
usually no way thal uscrs can detect if. for example, an e-mail agent contains a virus.
or prevent agenls from ¢xccuting virus programs. Agents can access anywhere that
the users have authorized and this increases the chance thar agents may spread the
viruses with which they have heen infected. ‘These are sccurity issues in agent

systems that are different from conventional systems [32].

2.9 Maulti-Agent Systems

The interest, in the Soflware Engincering Approach. s focused in Multi Agent Sysiems
{(MAS). A MAS is a set of autonomous agents, which work cooperatively to achieve their
goals. Each agenl may interact with its environment or with other agents, using high-level
communication Janguages and proocols, in order 1o coordinate its activities and Lo oblain
services andfor infermation [36].

Defining MAS is not straightfarward. However, almost 2ll the detinitions given in
the literature conceive a MAS as a system compaosed of cooperative or competitive agents
that interact with ane ancther in order to achieve individual or common goals. From the
software engineering point of view, one of the most important charactenstics of a MAS is
lhat the linal set of agents is generally not given at design time (only the initial set is
specilied), but rather at run time, This basically means that, in practice, MASs are based
on open architectures that allow new agenis 10 dvnamically join and leave the system.
The major difference with the Object Orienied approach, where objects can also be given
at mn time, join, and leave the system dynamically, 1s that agents can do these
aulonomausly showing proactive behaviers not completely predictable a priori [37).

Agents (adaptive or intelligent agents and multi- agent systems) constilute one of
the mast prominent and attractive technologies i compuler science at the beginning of
this new century. Agent and multi-agent system technologies, methods, and theories are
currently contributing to many diverse domains. These include information retrieval, user
interface design, robotics. electronic commerce, computer mediated collaboration.
computer games, education and training, smart environments, ubiguitous computers, and

soctal simulation [40].

25

Chapter Threc

Intefligent Agent

‘The 1erm ~Intelligent Agent” is used in this chapter, instead 10 emphasize on the ability of’
autonomy. The intclligent agents do have some other attributes thal can make them be
thought of as intelligent when used in the real world. Here are these attributes: [10]
1- Delepation: the agent performs z sel of tasks on behalf of users tha are
approved by them.
2- Communication skills: the agent is able to communicate with users in order to
receive the instruction, display task status and complete the task. It also needs
10 be able w communicale with other agents in order (6 achieve goals.
3- Monitoring: the agent should be gble to monitor the ¢nvironment in order 10
periorm its task auronomously and correctly with respect to the goal.
4- Actuation; the agent should be able to affeet the environment through a
mechanism for autonomuous operation.
3- Intelligence: the agent needs to understand the monitored information in order

to condugt the suiable anlonemous operation.

3.1 Definition of intelligent Software Agent
Intelligent soflware agents are defined as being a software program that can
perform specific tasks for a user and possesses a degree of intelligence that permits it 1o

perfom parts of is tasks autonomously and to interact with its environment in a useful

26

manner [41]. In addition, there is another dehinition, which may be better where
intellipent agents are defined as a set of independent sofiware wols linked with other
applications and databasc running within ene or several computer environments [1].

The intelligence that an intelligent agent has 1s called computational intelligence.
Iuis obtained from several study fields including intentional systems, production systems,

reasoning theory, and neural networks.

3.2 Intelligeni Agents and Artificial Intelligence

The discipline of inteiligent agents has emerged largely from research in artificial
Intelligence (Al). In fact, one way of defining Al is as the problem of building an
intelligent agent |39]. lHowever. it is imporiam 1o distinguish betwween the broad
intelligence that is the ultimate geal of the Al community, and the intelligence we seek in
agents, The only inwlligence requirement we generally make of our agents is that they
can make an acceptable decision about what action 1o perform next in their environmen,
in time for this decision 10 be usefud. (dher requirements for intelligence will be
Jetermined by the domain in which the agent is applied: not all agents will need to be
capable of leaming. Agents are simply software components that must be designed and
impiemented in much the same way that other software components are. However, Al

techniques are ofien the most appropriate way of building agents [30),

1.3 Intelligent Agent Model

In Figurer (3-1), Intelligent Agent Model, which describes only the high-level

altributes of an intelligent model, it shows that both the task skill module and

27

communication skill module access the knowledge module. These accesses represent

that intelligent agents, will work knowledgahly. The following sections describe cach

coemponent in detail [10].

Indisrmatisn retricval

[nfuritivn Flerisg
Loashing

1 abog Bascd
hevchupeer spwgilind Slerrmrs Basal Inler ey speevh
Soural nessorks s
sy st spected Cases hissged
' “egtiral eeper

Iteragent
SR o
lan gLage

Figure (3-1). Intelligent Agent Mode!

3.3.1 Task Level Skills

The task level skills module is consist of skills needed for the agent to accomplish

is goal. This module also tells what Tunctionalities the agem bas. For example, the skill

ol retrieving information, filtering information, database gquerying and coaching, "These

skills require an agent to have the capability of perceiving its environment through its

sensors and working upon the environment 1o perform the tasks [10].

28

3.3.2 Knowledge Module

The knowledge module consists of rules that the agent should follow when it Lries
to complete its task, [ntelligent agents are autonomous and they are able to complete the
given task without user intervention. This amonemy is achieved by having the knowledge
ol the environment built-in by designers in their knowledge module. Knowledge
acguirement for imelligent agents can be done by using the tollowing technigues: [10]

|- Developer specified: according 0 the application domain and the potential

users, developers specify the influgnce mechanism in the knowledge base of
the agent, This knowledge base is lormatied in rules and/or (rames, The major
disadvantage of using knowledge base in intelligent agents is that it wili lack
the customizahility after these apents are depioved.

2- User specified: this approach vses a rule base. The rule base can be

programmed by users. ‘This approach is good for satisfying the real need of the
users, However, the disadvantage of the rule-based agents is thal users have 1o
be respensible for partial programming ol the agents.

3- Derived from other knowledge sources: the agemt communication language

allows agents te acquire knowledge from agemt communities.

4- Learned by the system: this approach allows agents (o acquire knowledge from

the users and the environment.

3.13.3 Communication Skill

‘This module of the intelligent agent includes the communication with users and

communication among agents, In user communication, it is usual that the user interface is

29

used. This interface can be of many ditferent forms ranging from e-mail messages (o
dialog boxes. These interfaces can acquire user information for agents or can display
finding or status of agents for users. For intra-agent communication., a communication

language (ACL) is otten necessary | 10].

3.4 Taxonomy of Intelligent Agent

There is a systematic way that agents can be divided into catcgories based on their

environment and then further subdivided cach category based on their task [].

|. Deskiop Agenis:
i, Operaling system agents: Interface agents, which provide help for
users to deal with desklop operating systems.
ii. Application agems: Interface agents, which provide help for users o
deal with particular applications.
ii. Application suite agents; Interface agents, which provide help for

users to deal with a suite of applications.

2. Internet Agent:
. Weh search agenis: Internel agents thal provide scarch service for
users.
ii. Web server agents: Intemnet agents that reside on a web server to

provide services.

i,

iv.

vi.

vil,

30

Information filtering agents: internet agents the can filter out
electronic information according to the users” preferences.

Information retrieving agents: Intemet agents that deliver a set of
information according to the users’ preferences,

Nolification agents: Internct agents that nolify the users when the
user-interested events oceur.

Scrvice agents: Internet agents that provide user specialized services.
Mohile agents: Internel agents that travel around the network to

exceule user speeified task.

1. Intranet Agent:

IR

i

iv.

Collaborative customization agents: Intranet agents that allow for
autematic workflow process in a business unit,
Process autornation agents: Intranct agents that make the workflow
process automatic.

atabase agents: Intranet agents that provide service to databasc
USETS.
Resource brokering agents: Agents that perform resource allocation for

users in client/server architecture,

3.5 Concepts for Intelligent Agents

This research described the set of concepts, which use in developing intelligent

agent application, we belicve that these are necessary and suflicient for building the sort

k)

of applications appropriatcly approached using BDI agents. Property of agents: they ane
siluated (see Figurer (3-2))]
Thus, we have actions and percepis. Internally, the agent is making a decision:

lrom the set of possible actions as it is seleeting an action (or actions) 1o perform (a 2 as).

Percapts \
———

Choose
Git GCHORN
qJ = .45

Acton

Figure (3-2). Agents are situated’

Loosely speaking, where the description of the agent’s internal working contain a
statement of the form “[select] X 2 Y™ then we have a decision being made, thus the type
of decisions being made depend on the internal agent architectire.

An action 15 something, which an agenl does, such as move north or squirt,
Agents are situated, and an action is basically an agent’s ability to effect its environment.
In their simplest form actions are automatic and instantancous and cither fail or succeed.

In the more gencral case actions can be durational (encompassing behaviors over time)

'wi, WinikotT. L. Padgham,). Harland. "Simplifying the Development of Intelligent Agents =, Research paper.
RMIT Ugiversity, Mecibourne, Australia,

and can produce partial elfects; for example a failed move (o action may well have
changed the agents location. In addition to actions, which dircctly aflect the agent’s
envirenment. we also want 10 consider “internal actions”. These correspond to an ability.
which the agent has which is not structured in terms of plans and goals [29].

Typically, the abilily is a picce of code which cither already exists or would not
henefit from being wrilien using agent concepts, lor example image processing in 2
vision sub-svstem.

A percept is an input from the environment, such as the location of 2 fire and an
indication of its intensity. 'The agent may also obtain information about the environment
through sensing actions.

A decision: The essence of intelligent agents is rational decision-making. There
are a number of generic, non-application-specific questions, which intelligent agents must
answer, such as: Whick action shall we perform now? Which goal do we work om now?
{ferw shall we atiempt {o realize this goal? Where shall we go now (for mobile agents)?
And who shall we interact with (for social agenis)? Mechanisms to answer these kinds of
questions are core intelligent agent processes.

They result in decisions, which must [ulfill rationality conditions, in that we
expect that decisions be persistent and only be revisited when there is a good reason for
doing so. It is also important that the answer (o the guestions not be trivial: il an agent
only has a single goal at a time and a single means of realizing 1his goal. then we have
reduced the agent to the special case of a conventional program and there is no scope for

Jecision-making or for lexible, intelligent behavior.

33

Note that althoogh the coneept of a decision is fundamental 1o intelligent agents, it
is not always necessary to represent the decisions explicitly. For example, the decision
regarding choice of goal could be represented using a “current goal™ vaniable, which is
updated when a decision is made [29].

We now consider the internal workings ol (he agem (see Figurer (3-3)). We want our

intelligent agents 10 he both proactive and reactive.

Fercep:i: | £
3 [2eens

T
9 | U

LfL Actions] | Goals

Aftom

Figure {3-3), Proactive Agents have Goals, Reaclive Agent have Events!

A proactive agemt is one. which pursues an agenda over time. The agent's
proactiveness implivs the use of geals and modifies the agent’s internal execution cycle:
rather than seleet an aclion one at a time, we select a goul, which is persistent and

constrains our selection of actions.

UM, Winiked L. Pudghan., J. Harland, *Simpdilsing the Development of Infelligent Agents ", Besearch paper,
RM1T University, Melhournc, Australia.

A reactive agent is one, which will change its behavior in response to changes in
the environment. An important aspect in decision-making is balancing proactive and
reactive aspects. On the onc hand, we want the agent 1o stick with its goals by defauli:
and we want it to ke changes in the environment into account the key 1o reconciling
thesc aspects, thus making agents suitably reactive, is to identity significant changes in
the environment. These are events, We distinguish between percepts and events: an event
is an interpreted percept. which has significance to the agent. For example, seeing a firc is
o percept. ‘This percept could give rise o a mew fire event or o fire under controf event
depending on history and possibly other factors.

A goal (variously called “1ask”, “objective™. “aim”, or “desire”™). is something the
agenl is working on or towards, for example extinguish fire, ot rescue civifian. Olten
goals are defined as states of the world, which the agent wants to bring about; however,
this definition rules out maintenance geals {e.g. “maintain cruising altitude™) and
avoidance goals, or safety constraints (e.g. “never move the 1able while the robot is
drilling™. Goals give the agent its autonomy and proactiveness.

An important aspect of proactiveness is the persisience of poals: if’ a plan for
achieving a goa! fails then the agent will consider altemative plans for achieving the goal
in guestion. We have found that goals require greater emphasis than is 1ypically found in
existing systems. 1t is important for the developer (o identify the top-level goals of the
agent as well as subsidiary goals, which are used in achieving main goals.

we differentiate between top-level goals and subsidiary goals in those subsidiary

goals are not important in their own right and may therefore be treated diffcrently in the

reasoning process than top-tevel goals.

An event is a significant occurrence. Events are oflen extracied itom percepts,
although they may be generated internally by the agent, for example on the bawis of &
clock. An evem can irigger new goals. cause changes in information about the

envitonment, and/or cause actions o be performed immediately {29].

Percapts % e
T Tvents %
[}]

& Beiiefs
@ | 9

{Goals

ACons
- I
Afhon t‘?g Q
| Plans |{ }

Figure {3-4). Adding Plans and Beliefs'

Actions generated directly by events correspond lo “reflexive™ actions, executed
without deliberation, Events are important in creating reactive agents in that they identify
important changes. which the agent needs 1o react to.

Agenls in realistic applications usually have limited computational resources and
limited ability w sense their environment. Thus, the auxiliary concepts of plan and belicf
are needed. Beliefs are effectively a cache for perceived information about the

environment, and plans are etlectively a cache for ways ol pursuing goals {sce Figurer (3-

' M. Winikedd, L. Fudgham, J. Harland. "Simpliing the Development of Intelligent Agenls . Rosearch paper.
RMIT Universiny, Mclbourne, Australia,

36

4)). Although bath of these concepls are “merely” aids in elficicncy, they are not
nptional. Belicfs are essential since an agent has limited sensory ability and also it needs
to build up its knowledge of the world over time. Plans are essential for two reasons.

The Mirst is pure compulational elficiency: although planning technology and
computational speed are improving. planning from action descriptions is shill
incompatible with real-time decision-making.

The second reason is that by providing a library of plans we avoid the need 10
specify each action’s preconditions and elfects: all we need o provide for an action is the
means to petform it. This is significant in that representing the effects of continuous
actions operating over-time and space in an uncertain world in sufficient detail for first
principles planning is unrealistic for large applications.

A plan is a way of realizing 2 goal. for example, a plan for achieving the goal
extinguishes fire might specify the three steps: plan a route to the fire. follow the route to
the fire. and squirt the fire until it has been put out. Although the concept of a plan is
comman, there is no agreement on the details, From our point of view, it is nol necessary
to adopt a specific notion of a plan: rather we can specify abstractly that a plan for
achicving a goal provides a function, which retums the next action to be performed, This
(unction tzkes ino account the cureenl state of the world (beliefs), what actions have
already been performed, and might involve sub-goals and further plans. Tor
computational reasons it is desirable for this 10 a1 Jeast include a “Tibrary of rccipes”

approach, rather than requiring construction of plans at runtime from action descriptions.

A belief is some aspect of the agent’s knowledge or information about the
eavironment. seif or other agents. For example an agent might believe that there is a fire
al X because it saw it recently, cven it cannotl see il now.

These concepts {actions, percepts, decisions, goals. events, plans, and beliefs) are
reluted to each ather via the bold execution eycle of the agent.

An agent’s excculion cycle follows a sense think- act cycle, since the agent is

situated.

TR R Ao .\ o ianns

a Gods | |wmian \ [Goats
F r;’-ﬂ?
2 ipdare > (B ||
; — Pl
. L
Toiwzss e
)
¥
o

R, [
— Bl Pxwions

Figure (3-5). Agent lixccution C;»;-::l-:1

'The think part of the cycle involves rational decision-making, consisting of the

[ollowing steps { depicted in Figurer (3-3)) {29

! %1 WinikofE. L. Padgham. I. Harland. "S$implifsing the Development of Intelligent Agents *. Research paper,
EMIT University, Melbourne, Ausiralia.

I- Percepts are interpreted {using beliefs) to give cvents
2- Beliefs are updated with new information [rom percepis
3- Events vield reflexive actions and/or new goals
4- Goals are updated, including current, new and completed goals,
5- If there is no setected plan for the current goal, or if the plan has failed, or if
reconsideration of the plan is required {due to an cvent) then a plan is chosen.
6 The chosen plan is expanded to yvield an action
7- Action(s) are scheduled and performed.
By comparison, the 1311 abstract execution cycle consists of the following steps:

Lse events 1o trigper matching plans (apnions).

4

+

ii. Select a subset of the options

iii. Update the intentiens and execute them.

iv. Get external events.

v. Drop successful and impossible attitudes.
The execution eycle presented bere differs from the BDM execution cycle in a number
of ways including the use of reflexive actions, the derivation of events by
interpreting percepts, the process of going from goals to plans 1o actions, and

increased reasoning about goals [29]. Table (3-1) offer a summary ol agent concepts

| 190].

Agency property

The{initin

Agent hood prupertics

An agent communicates with the environmenl and other agenis by means of

Interaction
sensors and efleciors.
An agent adapts'modifics i1s menta state according to messages received from
Adaplation
the environment.
An agent is capable of acting withoul direct external inberventien; it has iis own
Autonomy
control thread and can aceepl or refuse a request message.
Additional properties
An agent can learn based on previous experience while reacting and inleracting
L.eaming
with il5 environment.
Al agent is able to transport it xelt from one envirenment in @ network 10
“obility
another.
An agenl can cooperale with other agents in order to achieve Hs goals and the
Collaboration

systems goals.

Table (3-1). Agent Concepl.

3.6 Structure of Intelligent Agents

So far. we have talked about agents by describing their behavier and the action

that is performed after uny u given sequence of percepts. Now, the job of Al is 1o design

the agent program: a lunction that implements the agent mapping from percepts

aclions. We assume this program will run on some sort of computing device. which we

will call the architecture. Obviously, the program we choose has to be one that the

architecture will accept and run. ‘The architecture might be a plain computer, or it might

include special-purpose hardware tasks, such as processing camera images or filtering

audio input. It might also include software that provides a degrec of insulation between

40

the raw computer and the agent program, so that we can program at a higher level. In
pencral, the architecture makes the percepts from the sensors avatlable to the program,
runs the program, and feeds the program's action choeices to the effectors as they are
generated. The relationship among agents. architectures, and programs can be summed up
as lollows:
Agent = Architecture + Program

Before we design an agent program, we must have a good idea ot the possible
percepts and actions, what goals or performance measures the agent is supposed to
achicve, and what sort of environment it will operate. These come in a wide variety.
Table {3-2) shows the basic clements lor a selection ol agent types.

We also include in this iist ol agent types some programs that seem (o aperate in
the entirely anificial environment defined by keyboard input and characier oulpul on a
screen. “Surely.” one might say, "This is not a real environment, is it?" In fact. what
matters is not the distinction hetween “real” and “artificial” environments, among the
hehavior of the agent, the percept sequence generated by the environment, and the goals
that the agent is supposed 10 achieve.
Some “real” environments are actually quite simple. For example, a robol designed to
inspect parts as they come by on a conveyer bel can make use of a pumber of
simplilying assumplions: thai the lighting is always just so, that the enly thing on the
conveyer belt will be parts of a certain kind, and that there are only two aclions which

arc: accepl the part or mark i as a reject.

41

Agent type percepts actions Guals Envirenmeni
Sympioms
Medical diagnosis Chuestions, tests, Healthy paticni.
findings. patienis Parien, hospital
syslem Treatments minimize costs
ARSWErS
Print a
Satellite image Pixels pEvarying Correct Imaes from
caleronzation of
analysis system tmensity, culor categonzalion wrbiling satctliic
SCENE
Pixels of varying Pick up parts amd Place parts in Conveyor belt with
Pan-picking robot
intcrsily soft inio bins comeet bins parts
{Open, close
Temperature, Maximirc purity,
Relimery controller valves: adjusi Kelinery

pressure readings

temperalarg

vicld, sufetly

Inicractive English

tulor

Typed words

Frinl cxcreises,

suggestions,

corrections

Maximize studemts

SCOIT On kst

51 of students

Table (3-2), The hasic elements for a selection of agent 1vpes.

In contrast, some software agents {or soltware robots or softhats) exist in rich,

unlimited domains. Imagine a softbot designed 1w fly a flight simulator for a 747, The

simulator is a very detailed, complex environment, and the software agenl must choose

from a wide variety of actions in real time. Alternatively, imagine a sotibot designed to

scan online news sources and show the interesting items to its customers, To do well. it

will need some natural language processing abilities, it will need to learn what each

42

customer is interested in, and il will need to dynamically change its plans when, for
example, the connection for one news source erashes or a new ane comes online.

Some cnvironments blur the distinction between "real” and "artificial.” In the
ALIVE cnvironment, soflware agents are given as percepts a digitized camera image of a
rvom where a human walks about. The agent processes the camera image and chooses an
action. 'The environment also displays the camera image on a large display screen that the
human can watch, and superimposes on the image a computer graphics rendering of the
software agent. One such image is a cartoon dog, which has been programmed to move
toward the human (unless he points to send the dog wway) and to shake hands or jump up
cagerly when the human makes certain gestures [39],

The most famous arlilicial environment is the Turing 'Test environment, in which
the whole paint is that real and artificial agens are on equal footing. but the environment
is challenging enough that it is very difficult for a sufiware agent to do as well as a

human.

3.7 Applications of Intelligent Agents

Intelligent agents are a new paradigm for developing soflware applications.
Currently, agents are the focus of intense interest on the part of many sub-fields of
computer science and artificiul intelligence.

Agents arc being used in an increasingly wide variety ol applications, ranging
from comparatively small systems such as email filters to large, open. complex,

mission criticat systems such as air traffic control [32].

43

The current applications af agents are of' a rather experimental and ad hoc nature.
Resides universities and rescarch centres. a considerable number of companics, like 784
and Microsoft. are dving research in the area of agents.

To make sure their rescarch projects will receive further financing, many
researchers & developers of such companies {but this is also applicable 10 other parties.
even nan-commercial ones) are nowadays focusing on rather basie agent applications, as
these lead 1o demonsteable results within a definite time. Examples of this kind of agent
applications are:[32]

1. Agents who partialiy ot fully handle someone's e-mail;

2. Agents who [ilter and/or search through (Usenet) news articles looking for
information that may be interesting for a user;

3. Agents that arrange for gatherings such as a meeting. for instance by means
of lists provided by the persons stiending or based on the information
{appointments) in the clectronic agenda of every single participant.

The current trend in agent developments is (o develop modest. low-level applications.
Yei. more advanced and complicated applications are more and more being developed
as well. At this momenl. rescarch is being done into separate agents. such as mail
agents, newsagents and search agents. These are the firsi step lowards more integrated
applications. where these single. basic agenis are used as the building blocks.
Expectations are that this will become the trend in the next two or three years 10 come:.
{Note that this does not mean that there will be no or little interesting developments

and opportunitics in the arca of smaller, more low-level agent applications.).

44

liight application arcas are identified where now (or in the near future} agent

technology is tor will be) used [32]). These arcas are:

I. Systems and Network Management:

Systems und nelwork management is one of the carliest application arcas to be
enhanced using intelligent agent technology. The mavement 10 client/server computing
has intensified the complexily of systems being managed, especially in the area of LANs,
and as network centric computing hecomes mare prevalent, this complexity escalates
further. Users in this area (primarily opetators and system administrators) need greatly
simplified management, in the face of rising complexity.

Agent archilectures have existed in the systems and network management area for
some time. but these agents are generally "lixed function” rather than intelligent agents.
liowever. intelligent agents can be used to enhance systems management software. For
example, they can help filter and take automatic actions at # higher level of absiraction,
and can even be used to detect and reacl to palterns in system bebaviour. Further, they

can bc used 1o manage large configurations dynamically [32].

2. Mobile Access / Management:

As computing becomes more pervasive and network centric, computing shifts the
focus from the deskiop (o the network. users want to be more mohile. Not anly do they
wani to access network resources from any location, they wani to access those resources
despite bandwidth limitations of mobile technology such as wircless commumication, and

despite network volatility. Intelligent agents. who (in this case) reside in the network

45

ruther (han on the users’ personal computers, can address these needs by persistently
carrving out user requests despite network disturbances. In addition. agents can process
dala at ils source and ship only compressed answers to the user, rather than

overwhelming the network with large amounts of unprocessed data [32].

3. Adaptive User Interfaces:

Although the user interface was trunsformed by the advem of grphical user
interfaces (GUIs), for many, computers remain difficull 10 leam and use. As capabilities
and applications of compulers improve, the user interface needs 1o accommodate the
increase in complexity, As user populations grow and diversify, computer inlerlaces need
ter learn user habits and preferences and adapt to individuals.

Intelligent agents (called inferface agenis) can help with both these problems,
Intclligent agent technology allows systems to monitor the user’s actions, develop models
ol user abilities, and automatically help out when problems arise.

When combined with speech technology. intelligent agents enable computer interfaces to

become more human or mere “social” when interaciing with human users [32).

4, Information Access and Management:

Information access and management is an arca of preat activily. given the risc in
popularity of the Internet and the explosion of data available to users. llere. intelligent
agents are helping users not only with search and filtering. but also with catcgorisation,
privrilisation, selective dissemination, annotation, and (collaborative) sharing af

information and documents:| 32]

16

5. Collaboration:

Callaboration is a fast-growing area in which users work 1ogether on shared
documents. using personal video-conferencing, or sharing additional resources through
the network. One common denominator is shared resources: another is teamwork. Both of
these are driven and supporied by the move to network centric computing.

Not only do users in this area nced an infrastructure that will allow robusi,
scaleable sharing of data and computing resources, they also need other functions w help
them actuaily build and manage collaborative teams of people, and manage their work
products. One of the most popular and maost heard-of examples of such an application is

the groupware packet called Lotus Noves [32],

6. Workflow and Administrative Managenient:

Administrative management includes both work{low management and areas such
as computer/telephony integration, where processes are defined and then automated.
In these areas. users need not only 1o make prmcesses more efficient, but also to reduce
the cost of human agenis. Much as in the messaging area, imelligent agents can be used

to ascertain, then automale user wishes or business processes [32].

7. Electronic Commerce:

Electronic commerce is a growing area fuelled by the pepularity of the Internet.
Ruyers need to find scllers of products and services, they need to find produet
information (including technical specifications. viable configurations, cic.) that solve

their problem, and they need (o obtain expert advice both prior 1o the purchase and for

47

servive and support afterward, Sellers need to find buyers and they nevd to provide expert
advice about their product or service as well as customer service and support. Both
buvers and sellers need to autemate handling of their "electronic financial affairs™.

Intelligent agents can assist in elecironic commerce in a number of ways. Agents can "go
shopping” for a user, taking specilications and returning with recommendations of
purchases. which meet those specifications. They can act as “salespeople™ for sellers by
providing product or service sales advice, and they can help wraubleshoot customer

problems [32].

8. Mail and Messaging:

Messaging software {such software for ¢-mail) has cxisted for some Lime, and is
also an area where intelligent agent function is currently being used. Users today want the
ubility to automatically prieritise and organise their e-mail, and in the future, they would
like to do even more aulematically, such as addressing mail by organisational function
rather than by person.

Intelligent agents can facilitate all these functions by allowing mail handling rules
to be specified ahead of time, and lesting intelligent agents operate on behalf of the uscr
according to those rules, Usually it is also possible (or at least it will be) to have agents

deduce these niles by observing a user's behaviour and trying 10 find patterns in it: [32]

3.8 [ntelligent Information Management

The avtomated management of electronic documents, web pages, nowsgroup

arlicles. email, and other electroni¢ information is an active area of research for

18

several fields including Artificial Intelligence, Machine lLearning, and Information
Retrieval. Text-based information is challenging for several reasons, including its
jack of structure and constraints. its large slate space. its varicd content, and the
importance and difliculty of representing the context in which the information
veeuts. These challenges have led researchers to carefully structure and lLimit the
information in many Al systems. For existing information types such as web pages
and email. it is tess likely that the structured approach is applicable. However. in
some cases, there is structure; an intelligent system should use it when available. For
example, although the body of email is unstructured, the sepder, routing, and
recipient information arc explicitly labeled.

One solution is w0 design an agem capable of extracting useful statistical
fealures from documents. Once transformed into a feature vecior, learning algerithms
can be trained (o apply the appropriate actions. The use ot a machine learning
approach aliows the email agent 1o learn from the user. By waiching the user interact
with documents, an agent can leamn the informalion tasks, the user preferences and
interests. and example solution techniques [8].

In some systems, the leatures are [ixed by the programmer: for example, a
particular set of words ur fields may be pre-specified.

1In my system, the agent learns the features automatically based on the 1ask or
on user suggestions about the training e-mail's content. Because the features
represent the conceptual contents in the cmail, we call these leatures “concept”
features. The agent looks for these concepls in the data and then lcarns to perlorm

the desited actions .

49

1.9 Email Filtering

Agent can employ several techniques, Agents are created to act on behalf of s
users in carrving out difficult and often time-consuming tasks; most agents today employ
some Lype of artificial intelligence technique to assist the users with their computer-
related tasks, such as reading c-mail, filtering information. Some agents can be trained to
leaen through example in order to improve the performance af the tasks [27].

Email provides an examaple of a rich information management domain. Email is
lypically short, less than a hundred lines, and contains & limited amount of structure.
‘The body of an email is usually unstructured text, while the headers provide some
tagged information. For example, an agemt knows a priori the meaning of a from
header: it defines the sender: similarly, the dote header provides a known type of
information. The Subject header is problematic. It says something about the contents
uf the email, but nat in a fixed or pre-specilicd way, even for the headers with known
conteni. the utility of their information is limited. Knowing the sender of an email is
useful, but often the same sender discusses different topics, some form of content
understanding is required, the current generation of email filtering packages, requires
user-written rules (o interpret and sort cmail. Rule-based systems can be challenging
for users due (o the difficulty of not only detcrmining the rule that achieves Lhe

desired result, but also writing it with the correct symax [8].

L
=

Chapter Four
Prometheus as an agent-Oriented Analysis and Design
Methodology

4.1 introductions

Ageni-oricnied Software Engincering (AOSE) has become an aclive arca of
rescarch in recent years. The main purpose of AOSE is to create methodologies and toals
that enable inexpensive development and maintenance of agent-based sofiwarc. In
addition, the software should be flexible, easy-to-use, scalable, and of high guality [10].

Agent-Oriented methodologies provide a set of mechanisms and models for
developing ageni-based systems. Most agent-oriented methodologies follow the approach
of cxtending existing software engineering methodologics to include abstractions related
to agents. Agent methodologics capture coneepls like conversations, goals, helieves,
plans or autonomous behavior. Most of them take advantage of sollware engineering
approaches ta design MAS, and benefit from UML andfor AUML diagrams to represent
these agent abstractions [24].
Prometheus, Gaia, MESSAGE , MaSE and Tropos methodologies of agent-oriented
methedologies is maturing rapidly and that the lime has come to hegin driwing together
the work of various research proups with the aim ol developing the "next gencration™ of
ngeni-oriented software engineering methodologies [17].

There arc many methodologies with different strengihs and weakness and
dillerent specialized features 10 support different apphications domains. Clearly, there is

nool 3 widely used or general-purpose methodology, but we took inte account some issues

51

like the modeling diagrams used. the kind of application domain it (s appropriated for,
and above all, the level of detail provided at the design phase and the available
documentation [24].

The analysis and design methodology supports the processes of eliciting the
system requirements, analyzing the organizational environment, and designing the
information system. The carly requircments and analysis phases deal with specifying the
requirements of the system., while the design phase deals with the detailed specificalion
of how the system will accomplish the requirements. In the analysis phuse, the
application domain is modeled using abstract notions, and the conceptual madel is
gencrated. The conceptual model is a model of the organization. In the design phase, the
information system itself is modeled using concrete concepls, which relate direetly to
components of the software system. ‘The design model should provide detailed
information of how the system would lock like. but it should rot provide instruciion of
how o implement the design. The design model is similar to an architect’s plan — it
deseribes the exact form of the end product, withou specilying the technigue and
methods that should be used to realize this plan, Although various apalysis and design
methodologics use various names (o describe the models and the phases, there is
generally an agreement on the structure of the A&D process. Tt is seen as a collection of
transtormations. [rom the very absiract model (the conceptlual medel) o the most
concrete model (the detailed design model}, where each transformation shrinks the space
of possible end preducts, and introduces more and more implementation bias. [deally. the
transformations should be straightforward ie. leaving no degrees of freedom to the

designer. but this is not the case in most methodologies [33].

32

The importance of a structured A&ID) process, which can be found in most

sysiems analysis and design books, 1s twoleld [33]:

I- During development: a formal analysis and design process ensures thal the system is
developed according W its requirements. It makes implementation easier, and allows
for fewer mistakes. The A&D process lurns sofiware engineering into a science and
not an an. A&D methodologics provide the sysiem analysts. designers, and
programmers a common language to exchange ideas about the sysiem and share
COMMON WOrk Processes.

2- During maintenance: the analysis and design models capture the early requirements
that shaped the system, as well as the ideas and constraints that dirccied the system
designers.

When there is a need 1o change or re-evaluate the intormation system, or migrate
it to a different platform, the documented A& models allows programmers o kocate the
exact spot where the modification is needed, without having to digest thousands of code

lines.

4-2 Differences between (Agent Oriented} and {Object Oriented)

methodologies

Although A&D methodologics have been used in software systems engincering
for a long time and current object-oriented techniques have matured and gained wide
acceptance, they are unsuitable for developing agent-oriented information systems. The
reason is that agent-oriented systems use different abstractions, and the definition of an

object cannot ¢apture the structure and behavior of agents. The important anes are the

53

agent's flexible. autonomous problem solving behavior (the ability of the agent 16 reason
aboul its environment and choose an action that draws him closer to achieving his goal)
and the richriess of agents” interactions. An intuitive way of describing the differences is
the slogan “objects do it because they have to, while agents do it bevause they want to (or
choose to)™ [3].

Duc o the aforementioned differences between objects and agents, object-
oriented methedologics cannot be used as is 1o develop agent-oriented infermation
systems, While some ideas (rom object-oricntled A&D technigues can be borrowed. there
is clearly a need for new methodologies, which are rich enough to capture the structure
and behavior af the individual agent (e.g., cognition. intelligence, rational. and crnotions}
and those of the agent society (e.g.. trust, fraud, commitment, and social norms) [33].

Figurer (4-13 shows a gencalogy that includes many of the methodological
proposals. We reproduce it in Figurer (4-1). It presents a significant number of proposals
as well as their arigin. The recognized genesis is symbolized by OO (object-oriented}, RL
(requirement cngineering) and KE (knowledge engineering). £ states other unclear

soyrces [3].

34

CHEH hgars

e e RLP |
'] -
= e

J !
BEESG A LELIREL. -"{Ilfﬂla) agacr

woenas | [Fosowe | | so04 |

_ Fienre id-N1_ Gencaloey of AgensOriened Mehwsdologies | |

In the second scheme. agent concepls have been recognized constituting a specilic

conceptual stream, We show this classilication in Figurer (4-2).

At Crrwrined Met oocingees
]
1 | 1
Arjerd 4o mand OOrbaed KE-based
ricltnd apet méloriokxpes -t g
1 T 1
Il 1 L
T st L1070 CAAG (PO 2) MAS-Cornn onfAD S (199
Gaila A} WL GE {2061) CobdoliAS (17T
Pronezisans {70E)) MASS T (2007
soha (2001) DESIHE (1957,
Stvn (2001) A 1008}
HLAY 1795) ATRAER] [noGy
Casgiopala 11905) AGAD (1796}
ASASH (198
Figure(4-2). Ageni-Oriented Methodologies.

35

We will use Prometheus methodology as an agent-Oriented Analysis and Design
Methadology for illustrating and Discussion of phases of analysis and design of agent

sysherm

4.3 Prometheus

The Prametheus methodology is a detailed AOSE methodology, which aims to
cover all of the major activities required in developing agent systems. The atm of
Prometheus is ta be usable by expert and non-expert users. The methodology uses an
iterative process, which consists of three phases: system specification, architectural
design and detailed design. Each of these phases is explained in details below.

Prometheus | 19] is an intelligent agent development methodology. A key feature
of this methodology is that it covers all phases of development - specification. design,
implementation and testing/debugging. Like most modern software engineering
methodologies, Prometheus is intended to be applied in an ilerative munner,

R is widelv accepted in the agent research community that a key issue in the
transition of agents from research labs to industrial practice and the need for 2 mature
soltware engincering methodology lor specifying and designing agent systems. In this
chapter. we describe the Promethers methodology, which aims to address this need.

Prometheus is intended 10 be a prectical methodology. As such, il aims 1o be
complete: providing everything that is necded to specity and design agenl systcms. nber
distinguishing fiatures of the Prometheus methodalogy are: {19]

l- Prometheus is defaifed — il provides detailed guidance on Aow to perform the various

steps Lhat torm the process of Prometheus.

56

2. Prometheus supports (though is not limited 10) the design of agents that are hased on
goals and plans. We belicve that a significam part of (he benefits that can he gained
from agent-oriented soltware engineering comes from the use of goals and plans to
realize agents that are flexible and robust.

3- Prometheus covers a range of activitics from requirements specification through w
detailed design.

4- The methodology is designed Lo facilitate tool support, and wol support exists in the
form of the Promuetheus Desfen Teol (PDIT) which is frecly available,

Before we present Prometheus, it is important to consider the question “what is a
methodelogy?” 1 we view a methodology as consisting purely of notations for describing
designs or as consisting only of a high-leve] process then we end up with & very different
resuli.

We adopt a pragmatic stapce: rather than debating what should and should not
be considered part of a methedology, In particular, the Prometheus methodalogy as
described in [20] includes a description of concepts for designing agents, a process,
a number of notations for capturing desygms. as well as many “tips” or techniques
that give advice on how to carry oul the steps of Prometheus’ process.

Since design is a human activity that is inheremly about tradeolls, rather than
about finding the single best design (which ofien does not exist), it is not possible o
provide hard and fast rules. However, it is important 1o provide detailed techniques and
guidelines for carrying out sieps. We would like to stress that Prometheus is a general
purpose methodology. Although the detailed design phase makes some assumptions

about the agent architecture, the rest of the methodology does not make these

37
assumptions. It is not possible to provide a detailed methodology that proceeds Lo detailed

design and (ewards implementation without making some assumplions.

4.3.1 Agent Concepts in Promethens methodelogy

Before we proceed to presemt the process, notations, and techniques that are
associated with the Prometheus methodology, we begin by discussing concepis [29]:
‘I'he reason why it is important to consider and discuss concepts is that the concepls arc
the foundatian, which a software engincering methodology builds upon. Tor instance,
vbject-oriented methodologies assume that the designer is familiar with concepts such as
objects. ¢lasses and inheritance,

The concepts that are appropriale for designing agents are, not surprisingly,
different from those that are used for objects. Whereas the concepts of object-
oricnted programming are well known, those associated with apgent-oriented
programming are nat, and so we feel that it s uselul and important Lo discuss them.
In considering what concepts are appropriate for designing agent systems we take as
a starting point, the definition of an intelligent agent as being software that is
silusted. autonomous, reaclive, proactive, flexible, robust and social |20, 31). Let us
begin with a basic property: agents are situated in an environment. As a resull, capturing
the agent’s interface with the environment is important {and is done as pan of
Prometheus’ system specification phase). The agent’s interface is expressed in terms of
(percepts} providing information (rom the environment and actions, which the agent(s)

can perform o change the environment.

bt

Agents ure also proacive and reactive. A proactive agent is onc that pursues
goals, and so a key design (and implementation!) concept that is used 10 build agents with
this property is geals. A reactive agent is one that responds to significant oecurnrences
{eventy). These events may be pereepts [rom the environment, but may also be messages
from another agent, or even intemal oceurrences. There are (wo other cancepts Lthat we
believe are important to designing intelligent agents: belicls and plans. Beliefs are
important because agents need 1o store state, unless they are w be purely reactive, Plans
are important because there is often not enough time to plan from first principles, and

having a library of plans 10 achieve goals or respond to events enables agents 10 respond

more rapicly.
Ihnawic Shachoal Cverview | Eneiny Descriptors
Morels Models

Sverem Scenarios CGoals Functonahines
Spacyizcarion actions & pereepts
Arcnitecrzral | (nteraction dizgrams) | (couplng d:agram) Agezats

Dezign [nreraction Protocols | (agent acquaintance) Messanes

Svstem Qerview
Detarler Process Dhagrams Agrat Orervicw Capatiilines
Desien Capablity Ovenview | Plans. Dara, Events

Table {4-1). The Major Models of Prometheus

Prometheus. as a methodology, is intended 10 be uble W support design of BDI
systems, although it is not limited (o such: all but the lowest level of design, leading into
code. can be used equally well for non-BLY systems. However, the lowest level needs to
be modified t aceommodate the particular style of implementation platform being
targeted. For instance if building JADE agents, the lowest level would specily pehaviors

rather than plans, and therc would be some changes in details.

4,3.2 Overview of the Prometheus Methodology

We now turn 1o considering the overall structure of the Prometheus methodilogy.
The sections below go through each of Prometheus’ three phases in more detail and will
discuss the nolations used by the methodology as well as some specitic technigues.

The Prometheus methodology consists of three phases: [20]

I- System specifications: where the systern is specified vsing goals and scenarios; Lhe
system’s interface to ils environment is described in terms of actions, pereepts and
external data: and functionalities are defined.

2- Architectural design: where agent types are identified: the systern’s overall structure s
capluted in 2 sysiem averview diagram; and seenarios are developed into interaction
protocols.

3- Detailed design: where the details of each agent’s internals are developed and defined
in terms of capabilitics, data, events and plans: process diagrams are used as a
stepping-stone between interaction protocols and plans.

Fach of these phases include models that ioeus on the dysamics of the system,
(grapbical) medels that focus on the structure of the system or its components, and
textual descriptor forms that provide the dewils for individual entitics. In the following
sections. we bricfly describe the processes and models associated with cach of the
three phases. Due 1o space limitations and the desire 1o describe all of the
methodology, this chupier cannot do justice 10 Frometheus. In particular, we cannot
describe a running example in detail, and the detailed technigues, that are how
particular steps in the process are performed, are not described. For more

information on Promethens, including a complete deseription, see |20].

60

4.3.2.1 System Specification

The system specification is the tirst phase of Prometheus, Its main purpose is
building the system's environment mixdel, identitying the goals and functionahities ol the
systern. and describing key use case scenanos.

System specification begins with a rough idea of the system, which may be
simply a few paragraphs of rough description. and proceeds to define the requirements of
the system in eems of: [20]
|- 'The gealy of the system
2- (ise case scenarins

3- Functionafities. and

- ‘The interface of the system Lo its environment, delined in terms of acriony and

JRrFCCps,
g

Eé] TP
i Baon
5;5'__| S § = gt
é ! e
2 [mwacn | [apem I__Ill —
= | 'BFATE i ANy)
- Zhersa
: m»———‘ —
<

-——.—---—_—_—_.———----——n—-———

| / / \
[_,""':ﬂ (o)]-

Figure (4-3) - The phases of the Prometheus methodalogy :

! K. L Dam. "Evaluating and Cosmparing Agent-Orientcd Soltware, Engineering Metbudalogics”, Master ol Applic

Scicnee in Information lechnoksgy, RMIT University, Australia, June 27, 2007.

61

We would like to stress that these are not considered in sequence. Rather. work on
ohe ol these will lead 1o further ideas on another. For example, the goals of the system
are u natural starting point for developing use case scenarios, Conversely. developing the
details of use case scenarios oflen suggests additional sub-goals that need to be
considered. Thus. system specificalion 1s an iterative process. Since agents are proaclive,
and have goals, it is natural to consider using goals to describe requirements,

The process for capluring the goals of the sysiem hegins by capturing an initial se
of goals from the high-level system description. Far example, from a description such as
“we wish ro develop a group scheduling system that allows users fo book meetingy with
other users . . . we can extract goals such as scheduling meetings, re-scheduling
meetings, and managing users’ calendars. These initial goals are then developed inte o
maore complete set of poals by considering cach goal and asking Aew that goal could be
achieved. this identifics additional sub-goals. For exampie, by asking how meetings can
be scheduled we may realize that we need 10 find a common free time. This is a new sub-
goal of the top-level goal ol scheduling a meeting. In addition to identifving additional
poals, the set of goals is also revised as common sub-goals are identified. For example,
buth scheduling and re-scheduling mectings may have o sub-goal of determining u
common [ree time for the partivipants [20].

The goals are represented using a goa! diagram. This depicts goals as ovals and
shows the sub-goal relationships with arrows from parent goals 1o sub-goals. In fact,
there are also other reasons lor considering goal-orniented requirements.

As we revise the groupings of goals, we am atiempting to identify what we term

“funclionalities” — coherent chunks of behavior, which will be provided by the sysiem.

62

Punctionality encompasses a number of related goals. percepls that are relevant to it
actions that it performs, and data that it uses. Functionalitics ¢an be thought of as
“ahilities™ that the system needs to have in order to meet its design ohjectives, indeed.
aften functionalities of the system end up as copabilities of agents in the sysiem.

An initial set of functionalitics is identified by considering groupings of goals. The
funetionalities are often then revised as a result of considering the agent types (done as
parl af architectural design),

Functionalities are described using descriprors. These are just textual forms that
capture necessary information. In addition 1o a (brieD) natural language description. the
descriptor form for functionality includes the goals thal are related to it, the actions that it
may perform. and “triggers” — situations that will trigger some response [rom the
functionality. Triggers may include percepts. but more generally will include events as
well, Finally. the descriptor form also includes notes on the information used and
produced by the functionality [20].

The third aspect of system specification is uve case scenarios. Use case SCCNArios
are a detailed description of one particular cxample sequence of cvents associated with
achicving a particular goal, or with responding 1o a particular cvent.

Scenarios are described using o name, description, and a triggering event. However. the
core of the scenario is a sequence of steps. Each step consists of the functionality that
performs that step, the name of the step, its ype {one of ACTION, PERCEPT, GOAL,
SCENARIO or OTHER) and, optionaily, the information used and produced by that step.
In addition. scenarios often briefly indicate variations. For example, when scheduling a

meeting a scenario may include a step that selects a preferred time from a list of possible

times. A variation of this scenario might be where there is only 4 single time when all
participants are available, In this case. the selection step is omitted. Finally, the
environment within which the agemt system will be situated is defined. This is done by
descrihing the percepts available to the system, the actions that it will be able o perform.
as well as any external data that is available and any externa! bodies ol code. When
specilying percepts we also consider percept processing. Qften percepts will need to be
processed in some way to extract useful information. For example, raw image data
indicating that a fire exists at a certain location may not be significant if the agent is
already aware of this fire. When agents are siluated in physical environments then percept
processing can be quile involved. For example, extracting features of interest from

camera imapes. similarly, actions may also be complex and require design.

4.3.2.2 Architectural Design

In the architectural design phase. the focus is on 20/

I. Deciding on the apert fypes in the system: where agent types arc identified by
grouping functionalities based on considerations of coupling; and these are
explored vsing a coupling diagram and an agent acquaintance diagram. Once a
grouping is chosen, the resulting agents are described using agent deseriptors.

2. Describing the interactions between agents using imeraction diagrams and
interaction protocols: where interaction diagrams are derived [rom use case
scenarios; and these are then revised and gencralized to produce interaction

protocals.

&

3. Desigring the overall system structure: where the overall structure of the agent
system is delincd and documented using a sysiem overview diagram. ‘This
diagram captures the agent types in the sysiem, the boundaries of the syslem
and its interfaces in terms of actions and percepts. but also in 1eems of dala and
code that is external ta the system. Deciding on the agent types that will exist in
the system is perhaps the most important decision that is made in this phise.
1deally. each agent type should be cohesive and coupling between agents should
be low.

In Prometheus. an agent type is formed by combining one or more functionalities.
Dilterent groupings of functionalitics give alternative designs that are evaluated based on
the cohesiveness of the agent iypes, and the degree of coupling between agents.

Some reasons that might need (o be considercd when grouping agents include: [20]

I If two functionalities are clearly related then it might make sense to group them
together in the same agent fype. Conversely, if two functionalities arc clearly
not related then they should perhaps not be grouped in the same agent Type.

2 If two functionalities need the same data then they should perhaps be grouped
together.

A useful ool for suggesting groupings of functionalities is the dara conpling diagram.
This depicts each functionality (as a rectangle} and cach data repository {as a data
symbol) showing where tunctionalities read snd write data. [t is often fairly easy 10
extract somne constraints on the design by visually exumining a data-coupling diagram.
The process of deriving agent types by grouping functionalities, with the aid of a

data-coupling diagram, can often suggest possible changes to the functionalities. For

65

example. suppose that the design includes two functionalitics, which are unrelated and we
would like to put them in two different agent types. However, the two functienalities both
read a particular data source. We could change one of the lunctionalities so that rather
than read the datz source directly, it sends a message 1o another agent requesting the
information.

The result of this process is a number of possible designs, each design consisting
of a grouping of functionalities into agent types. We now need to select a design. One
lechnique that is uscful in comparing the coupling of dilterent alternatives is the use of
agenl acquaintance diagrams. An agent acquaintance diagram shows the agent types and
the communication pathways between them. Agent acguaintance diagrams provide a
convenient visualization of the coupling between the agent types: the higher the link
density, the higher the coupling,

Once agent (ypes have heen decided upon, they are documented using an agent
descriptor. In addition to capturing the interface of the agent, what goals it achieves, what
functionalities were combined to form it, and what protocols the agent is involved with;
the descriptor prompts the designer to think about lifecyele issues: when are instances of
this agent type created? When are they destroyed? What needs o be done when agents
are createdidestroyed? The next step in the architectural design is to work on the
inleractions between agents. These are developed using interaction diagrams and
interaction protocols. Specifically, the notations used are a simplified variant of 1M1,
sequence diagrams for interaction diagrams. and AUMIL. {the revised version) for
interaction protocols. Inieraction diagrams are derived from use case scenarios using a

mechanical process (although not completely mechanical) [26],

66

In cssence, if step N is performed by an agent A, and this is followed by swep N +
| performed by a different agent 13, then a message needs to be sent from A to 13, Like
use casc scenarios. interaction diagrams show example interactions rather than all
possible interactions. In order to define plans that will handle all necessary interactions
we use interaction prolocels to capture all pessible sequences of messages. (Hien an
interaction protocol will combine a number of interaction diagrams. For example, il there
are three interaction diagrams corresponding to ditferent cases of scheduling a meeting
then there will be an intcraction protocol that covers all cases and. which subsumes the
interaction diagrams. When looking ai the use case scenarios we atso consider the
documented varations ol these scenarios.

Another useful technigue for developing intersction protocols 15 10 consider cach
puint in the interaction scquence and ask, “What else could happen here?” It the
interaction diagram shows an example sequence, where & request for possible meeting
limes is replied 10 with a number of possible times, then an alternative possibility is that
there will not be any meeting limes available.

'The interaction protecols are accompanied with deseriptors for both the protocols
and for the messages. These descriptors capture additional information such as the
information carried by a messagc.

Finally, the overall architecture of the system is captured using a System
overview diagram. ‘The sysiem overview diagram is one of the most important design
artifacts produced in Prometheus and is oflen a good starting puinl when lrying Lo

understand the structure of a system [26).

67

The svstem overview diagram shows agents, percepts, actions, messages. and

external data as nodes.

Lg\ qull IActian}- M-il'uuui ‘ Du!al :

Figure (4-4} - Notation used in Syvstem Dverview Uii.lgmmt

sl
Cacion > Capabiny) oo

Figure {4-5) - Nomation used in Agent Overview Diagrams |

lach of these node types has its own distinet visual depiction (see Figurer 4-4).
Direcied arrows between nodes indigale messages being sent and received by agents,
actions being performed by agents, percepls being received by agents. and datz being

read and wrilten by agents.

4.3.2.3 Detailed Design

Delailed design consists of: [20]

|. Developing the internals of agents, in terms of capabilities {and. in some cases directly
in terms of events, plans and data), This is done using agent overview diagrams and
capability descriptors.

2. Develop process diagrams from interaction protocols,

3. evelop the details of capabilitics in terms of other capabilities as weli as events, plans

and daia.

} i.. Padgham M. Winikoff, "Devclaping Intclligent Agen: Systems: A Practical Guide™, Rescarch paper,

EMIT [Iniversity, Melboumne, Australia, 2004, 15BN 0-470-86120-7.

68

This is done using capability overview diagrams and various descriptors. A key locus
is develoming plan sets to achieve goals and ensuring appropriale coverage.
Capahilitics are a structuring mechanism similar to modules. A capability can contain
plans, daia, and events. It can also contain other capabilities allowing for a hierarchical
structure. [n identifying the capabilities that cach agent iype contains, one usually stans
by considering a capzbility tor each functionalicy that was grouped in the agent type. This
initial detailed design is then reflined by merging capabilitics that are similar and small,
splilting capabilities that are too large and adding capabilities that correspond to common
“library™ code.

The structure of each agent is depicted by an agemt overview diagram. This is
similar to the system overview diagram except that it does not contain agenl nodes and
does not (usually} contain prelocol nodes. However, the agent overview diagram does
{usually) contain capability nodes and (sometimes) plan nodes. 'The node types found in
agent overview dizgrams are shown in Figurer {4-3). During the architectural design
phase. the svstem’s dynamics were descnbed using interaction protocols.

These are global in that they depact the interaction between the agents from a
"hird s eye-view™. In the detiled design phase we develop process diagrams based
on the interaction pretocols, The process diagrams depict focal views for each agent.
Typically, each interaction protocol will have muliple process diagrams
corresponding 10 the viewpaoints of different agents. The notation that we use for
process diagrams is an extension of UML activily diagrams. for more details see [20,
chapter 8]. The design of each agent is, usvally, in terms of capabilities. These

capabilities are then refined in tumn. Eventualty the design of how cach agent achicves its

o9

goals is expressed in terms of plans, events and data. At this point, the design process
needs to make certain assumptions about the implementation platform. Prometheus
methodology differs from existing methodologics in that it: |21]

I. Supports the development ol imefligent agents, which use goals, beliefs, plans, and
events. By contrast, many other methodologies treat agenis as “simple sofiware
processes that interact with each ather to meel an overall system goal™.

2. Provides “stant-to-end” support (frem specification to detailed design and
implementation} and a defailed process, aleng with design artifacis construcied
and steps for deriving artifacts.

3. Evolved out of practical industrial and weaching cxperience, and has been used by
both industrial practitioners and by undergraduate students. By contrasl, many
other methodologies have been used only by their creators and often only on
small {and unimplemenied} examples.

4. Provides hierarchical structuring mechanisms, which allow design to be performed
ol multiple levels of abstraction. Such mechamisms are crucial to the practicality
uf the methodology on large designs.

5. Usecs an iterative process over soflware engineering phases rather than a lincar
“waterfall™ model. Although the phases are descobed in a sequential lashion in

this research, the intention is ret 1o perform them purely in seguence.

=

. Provides {automatable) erosschecking of design artifacts.

()f the properties above, perhaps the most contentious is the first: many existing

methodologies intentionally do not support inlelligent agents; rather, they aim for

70

generality and treat agents as black boxes. 1t is believed that in this case, generality needs
10 he sacrificed in favor of usclulness. By specitically supporting the development ol
BDI-like agents, we zre able o provide detatled processes and deliverables, w.hi-:h arc
usefut 10 developers. OF course, this makes Prometheus less useful 1o those developing
non-BIH like agents. However, it must be noted that the iniial stages of the methodology
are appropriate for the design of any kind of multi-agent system. Although nane of 1these
propertics is unigue in isolation, their combination is unigue. These propertics are all
essentigl for a practical methodology that is vsable by non-experts and accordingly Lhe
design of Prometheus was guided by these properties. Although Prometheus’ contribution
is thc combinaticn of these properties. this combination was achieved through careful
design of the methodology. it is nol possible to casily construct a methodology, which
has the above properties by combining methodologies that have some of them. lor
example, given 2 methodology that provides automated support but does not support
inteiligent agents and anather methodology that supports intelligent agents but not
provide automated cross-checking; it is not at all obvious how a hybrid methodology

could be created that supports hoth feature [22).

4.3.3 Tool Support

One consequence of the Nerative nature is that the design is oficn modified. As
the design becomes larger, it becomes more difficult to ensure that the consequences of
cach change are propagated and that the design remains consistent.
Perhaps the simplest example ol introduced inconsisiency is renaming a2n enlity and

failing to rename it everywhere it is mentioned. Other forms of inconsistency that can be

7l

easily introduced when making changes to a design include adding a message to an agent
in the system overview diagram, but failing to ensure that the message appears in the
agent overview diagram of that agent type.

The Prometheus Design Teol (see Figurer (4-6)} allows users to creaic and
modify Prometheus designs. (1 ensures that certain inconsistencies cannot be introduced
and provides cross checking that detects other farms of inconsistency. The tool can also
export individual design disgroms as well as generale a report Lhal contains the complele
design.

For morc details on 100l suppont for Prometheus see [23]. Another tool that
supports the Prometheus methodolegy is the JACK Development Environment {(JI2E),
which provides a design tool that allows Prometheos-style overview diagrams to be
drawn. The JDE can then gencrate skeleton code Irom these diagrams. This facility has

proven guite usetul.

T o] e

L e — - L — — = - —— e e e ———— — e — e i

Fiie Teols Entmes Wiew Haip

fpace T TEELE

¥ Surhitacturs Brugn
et L gy
T M ML

Vietul Skt Semplgriom - ST e - - - - = -
LR TTELL R L PR E L] N ",i
Lt | Etery e I—i-'-.-,
Farorakiei R
LY BTN D
—

i
.

[GIBKE

el K
* Cortaled Durugw L]
L& Q¥ e
Xiu-uM Marapy = ftind ._"'
£tk A vk or P .
b [- E - W" - 1 oI

Trader - {8 Optor

]
T
18 b Pl urey
e b, P ke | i o e e BTt 3ea 1)
X ey Mg '
Yagmu drubyni

Cimisi)uty Femempm

|

Overm oot o |4 a .
I&ﬂ-f-" . (o 3 (ot)

Figure {4-6) - The Prometheus Design Tool (o

L. Padgham. M. Winithofl. *Prometheus: A pragmatic methodology for engincering intelligent apents”.

Reseyrch paper, pp 97-108, Seadle, 2002,

73
Chapter Five

Case study

We would present the previous methodology procedures in a small library system
perlorming the following functions:
1. Boak lunctinns
i. Allow for checkout of books. providing a return datc 10 the customer.
il Allow for retumn of books.
. Allow tor ceservation ot unavailable books.
2. Email functipns
i. Allow for notification of new cmails,
ii. Allow Timed scanning of a library inbox.
ii1. Allow Notification of message amrivals based on level of importance,
iv. Allow automatic routing of incoming messages to other ¢-mail users.
v. Aliow Automatic replies to messages based on subject or sender,
vi. Allow Automatic sorting of unread messages into separate lelders based on

subject, sender, or leve! of importance.

3.1 System Specification

In erder to design such system, goals, sub-goals, appropriate scenarivs, and

rules are defined as following:

74

5.1.1 Goals of the System

The goals are identitied from the specification based on the functionality
required by the system. tlere the requirements are converled into goals of the
syslem:-

1, Checkout books

Z. Provide return date

3, Return books

4, Reserve unavailable hooks

5. Give notification of new emails

&, Give notification for arrival of subjects

7, Giive notification for averdue books

R, Give notification of amival of reserved books

Now we have to ask the question *how?' for each goal and lind out sub-goals.

5.1.2 Sub-goals of the System

1. Cheehout books
i. Record book code to the user 11} checked out list.
il. Provide return date.
2, Return books
i. Remave book code from the user (D.
3. Reserve unavailable books
i. Record book code us reserved for user [D,

i, Show the current due date Tor the book.

75

4. Give Nutilication of new emails
i. 'Timed scanning of a library inbex.
ii. Notification of message arrivals based on level of importance.
ili. Aulomatic routing of incoming messages to other e-mail users.
iv. Automatic replies to messages based on subject or sender.
v, Automatic sorting ol unrcad messages into separate folders based on subject,
sender, or level of imporiance.
5, Give notification for overdue books
i. Access book record at the start of the day.
ii. Send email for overdue books
6. Give notification of arrival of reserved books
i. Access the reserved list for user.
ii. Send email notification.

Now we will create the goal overview diagram. Sclect the Goal overview
from system specilication and add the goal tw the diagram. Add the sub-goals and
connect to the main goals using the edge. Draw a diagram based on the goals and
sub-goals we have already identified. The resultanl goal overview diagram will be as

shown in Figurer (5-1).

5.1.3 Scenarios of the System
Depending an the system, we can identily five different scenarios,
|. When the user comes 1o checkout the book.

2. When the user returns the book.

3. When a book becomes overdue,
4. When the user asks to reserve a book,
5. When the reserved book arrives,

6. When the Agent handle each new message.

16

Chechow Besene

ol eerean aditae

vinde i cheched

Find ov erdue book s
itl the s1art of the dav
Remove book code
from checkout list

Nutify arrival

Arrival new emails

Prow id Recard baok show current
ro ide)
Record book L cade s resers el due dlate

Find the resered send el
ST p trenlioning qrival

Figure (5-1) - Goal Overview Diagram

R yotrvmm

Fldunfl;:man Qvwidhos Kowrmig

Ny

Figure (5-2) - Scenarios Diagram.

We can identify the following steps for cach of the following scenarios:

. Checkout Scenario
i. Reguest for checkow
ii. Provide returm date.
iii. Record book code as checked ou.
iv. Provide book
2. Return Scenario
i. Book retumed.
ii. Remove book code Iram checkout list
3. Reserve Scenario
i. Request for resenvation.
ii. Record book code as reserved.
iil. Show current due <date.
iv. Provide current due date
4. Arrival Scenario
1. Reserved book armives,
ii. Find the reserved user,
iii. Send arrival email.
iv. Armival new emails,

5. Overdue Scenario

i. Start of the day.

ii. Find overdue books at the slart of the day.

iti. Send overdue email

Now based on the dilierent functionalities of the system we group it into differemt roles.

77

78

1. Checkout books

2. Rewmn books

3. Overdue books

4. Reserve books

5. Send Amival Notification

6. Reviews and processes the messages for library.

Typically, e-mail agents process messages in the user's inbox. Users can sct
up rules that tell the agent how 1o handle each new message. These rules can tell the
e-mail agent 10 check various parts of the incoming message and then take a specifie
action. Now link the percepts, goeals and actions to the roles as shown in the diagram

Figurer {3-3).

79

R b chechout ""“" m

Chack ool bock P bk

ik
£h

Gad | <Crswriemima>

il o mied s> (Frumnidy LEmers o madeial

vt ool T
1 o BRCi I Ao

Figure (5-3) - Systern Roles Diagramn

5.2 Architectural Design

Now we need to identify what type of data need to be stored in the system as
belicts. We can sce that we need Lo keep the infuormation of all books that has been
checked out and also the books that has been reserved. The checkout hooks role and
riwrn books role update the checkouw belief and the overdue books role uses this to
send overdue email. The reserve books role updates the reserve belief and the arrival

notification uses it

g0

Tl biw i et ol it

Figure {5-4) - Data Coupling Yiagram

Now we group the roles and identify 4 agents 1o carry out these reles in the

system., The apents idemitied are:

I. Checkout Agent.

2. Reservalion Agpent.

3. Overdue Agent.

4. intelligent Email Agent,
The agents interact with each other. 'This is shown in the agent acquaintance diagram. The
Jinks between the agenis are avtomaticatly established when a message is sent from one apent

o another as shown in the sysiem overview diagram.

L o] o]
[
[omabnts] [amareimenr]

Fignre (5-5). Agent Role Coupling Diagram

Check outtgent
RezervabonAgent Chverduad.gent

Figure (5-6). Agenl Acguaintance Diagram

gl

Message

%Ay
ol N\

Y

(I

U amin Fide

Actions w

:T: Y .-[- : L!.“J..’!"m" i

S R
'?}ﬁi\umr\cmm’?

Figure (5-7). System Overview Diagram
5.3 Detailed Design

We will go into details ot agents and their capabiiities.

5.3.1 Checkoot Agent
For the checkout agent we can identify three capabilitics:
1. Checkout Capabality
2. Retwurn Capability
3. Gt Return Date Capability

The agent averview diagram of the checkout agent is as shown in the Figurer.

TRE o o= SRE
v
\ el return Date

Checkaut capabiliny

T~

Return Capabiliey

-
Iy Kol

Figure (5-8). Checkout Capability

T

[Chesdond ustonas- ' P
|f‘|u'.'ldv T :-"'

Figure (5-9). Return Capability Figure {5-10).1 Get Return Date Capabhility

33

1T e

(__Getrauncheph‘r)

N

Checkoud co aba
[
e e

Figure (5-111.2 Ger Return Date Capubility

5.3.2 Reservation Agent

Far the reservation agent. we can identify two capabilities;
1. Reservation Capabiliny
2. Armival Notilication Capabiliny

The agent overview diagram of the reservation agent is as shown in the Figurer.

P et T P vahon

. Mmbtr ol it i '

Frapwie e e gl : 1Ho\d-1rn.llﬂ1m-dpﬁ}

Figure {5-12). Reservation Capability Figure {5-13). Arrival Notification Capability

The agent overview diagram of the overdue agent is as shown in the Figurer {5-14).

§4

e AR

C Find u¥ rr‘fut ik
C Send email nlan)

Heservedatahase

Figure (5-14). Overdue Agent

FGeLretun dotel

PR T Y
St Reml arrivesd

5.3.4 Library Email Agent

In this section one selected function of the library, sysiem is programmed. This
function is related 1o the Jibrary email agent. This is because Llectronic mail has become
one ol the main communication tools between people around the world regardless of their

physical distance.

S i

EA cupability
L
Hesere bonk nlan

-

F

S Y'rnn odr rmrmemt dmr @
R T e e SV

W Provide book’

Figure {3-15) Library Email Agent
5.3.4.1 Features of (ILEA)
Belore going lurther into the discussions on the final designs and algorithms of the
(1LLEA), this scction will first illustrate the final bst of {Latures, with a briel description,

that have been designed. The intelligent agent will be capable ol

L&

1. Timed scanning of library mbox-Users can stan the program and allow it to run
unaticnded. It scans the inbox for new messages every N minules.
Lsers can also set configuration values that start the program as an icon on the
task bar or as a dialog box.

2. Allowing the user to add, edit and delete their preferred seltings.
"The agent will be implemented with graphical user interfaces 10 allow the users 10
input their preferred settings, as add. delete actions. These seuting include the
cxpecicd keywords within the subject and contenis of the emails ard also the
cxpected senders email address.

3. Sonting the incoming emails inte their respective folders according to the users
preferred settings with the user ol scoring system.
The intelligent agent will be implemented with a scoring system to effectively
compare the emails with the user's seitings belore distributing the emails into their
respective folder.

4. Identifyving the emails level of impolence or urgency according the users choice ol
sensilivity level for the agent while assessing an cmail.
limails, which are re-directed into particular folder, will be further differentiation
into different categories by changing their level of imporance, This feature is to
allow the user to immediately identily which are the emails that are more
imporianl and, hence, being able 1o look inte that email quickly.

3, Message notification-Users can establish a rule that causes a dialog box 1o pop up
each time a specific message is received. This notification can be based on sender

112, subject content. or fevel of importance.

86

&, Autematic forwarding-Users can create nules that automaltically forward messages
to other addresses.
Users can also determine whether the original should be kept or discarded.

7. Automatic rephes-Users can create rules that generatle automated replies to senders
based on sender 113, subject content, or level ol importance.

8. Aulomatic message copying or moving-Users can create rules that copy or move
incoming messages to other folders in the user's message stare. This feature can

be used 10 sent the incoming message by sender [0, subject content, or level of

importance.
Feature Featur¢ Learning Action
Extractors Vector Algorithm Vector Actions
Email , 7] 7
Messae Feature | :b @
Feature 2 => @
el
eialure 3 =>
1
Feature N => N => _‘.ij,_i'iﬁ}“[;{

Figure (3-16). Features of intelligent agent

The Tollowing block diagram illustrates the overall structure ol the email agent system.

Web Server

lucoining
Finall

Local 3 lachiane

—

fitelligent
Eunil
Soutitig

sy § Fmaesan

Urgent |
Reserve J
MAPI J

Lacally stored

Folders

Sensitive

4+ Emaul
Folder

Figure (5-17).

processing.

Block diagram of the intelligent agent for email information

R?

The Figurer (5-17} illustrates a brief model on the various type of information that

will be extracted during or after the sorting process.

I Kexymords

» Repemiiions

» Crverall probabality
Scure

(B

s Email assessinent
3 Evrors

Figure {3-18). Data exiraction from sorling process

4.3.4.2 Tools required

i8

The preferred language to be used for this project will be Visual Basic 6.0

Besides this, the tools required are the OLE Messaging library to build imelligent email

agent [25] and outlook forms. Visual basic application {VBA) is one of the richest

available development environments. YBA allows writing of code that handles many

events that tzke place when working with the outleok information and also the ability to

design dialogue boxes that gets information from the user and windows that stay on the

screen to provide information to the user. Macros can also be created by VBA, to be

added 1o the autloak ol har.

The lellowing are object models that will be commaonly used when programming

with Microsolt outlook,

{ J_hj'ﬁ:i model

"Deseri p-tiun

Active direclory services interface{ ADSI)

Interact with the exchange and windows

directory.

Cellaboration data object {7[3))

Aceess MAP] properties of outlook items as

well as many exchange server properties.

Oullock object model

Create and manipulate outlogk items as well as

react 1o application level events.

Other office application ohject models

Access objects from within cutlook

Redemption

Access feature that secure versions of outlook
may hlock and use MARL leatures lor which

the outiook object models has no equivalent.

Table {5-1). Tools required

RS

5.4.4.3 Graphical user interface

This section of the chapter will be used to illusirate the designs of the

graphical user interfaces.

1. Library E-mail Agent Main Form

The Main form has a set of command bution contrel arrays 1o handle the user
selections (see Figurer (5-18)). The first control array covers the top row of buttons.
These buttans handle the main processing steps:

I. Start Timer starts the timer to count down to the next message scan.
2. End T'imer disables the timer.

3, Setup calls the configuration dialogue box,

4, View Log displays the contents of the Library Email Agent log file.
5. Refresh refreshes the list boxes from the control lile.

6. Fxit ends the propram.

U bty Wil st

Start Scan End Seam View Virw [op || Relrerh Exa
Covndaion || Conndation | | Coarm} Fike File Lists Frogram
O Rasduat

Tatme LT —

[FORVART Tiraws
SUBIECT MAFT BCVE U ot
SORIECT CALES COPT Walt
PRLOMETY 0 FEFLY Biless
SENTAR Amximilact WTIFY kg

Liwe T | Do 1ol N!'Mlml Mhmn'
—

Figure (5-19} Library E-mail Agent Main Form

o)

The second command button cenirol array handles the adding and deleting of
tests, actions, and rules. To keep Lthings simple for this praject, the system is capable
only of adding or deleting rules. Existing rules cannot be edited and saved again. [n
addition, this program performs only basic input editing. In a production
environment, this program should be enhanced to add an improved user interface

with additional input checking and recovery.

2. The Add Rule Form

The rule form is used to compose new rules for the Library 1imail Agent (see
Figurer {5-19)). This form is actually quite simple. It has three list baxes that allow the
user 1o sclect a 1est, a compare value, and an action. By combining these three items. the
user creates a valid MAP] e-mail agent rule. Once the rule is given a name. it can be
saved. All saved rules are acted upen each time Library Ematl Agent scans the incoming

Mmessages.

*,. MANT | pnl Aagenil - Cosane Pule

Ade Ham f——rrp
.

H NOLA B &l WY Ly
SUNLE T Sl K] s FIFPAAD st gt
SR LT Wl a OO § arwnartbigd

Figure {5-20) Create Rule Form

91

3, The Setup Form

The last form you need to add to the project is the Intelligenty Library Email
Agent {[LEA) Setup form (sec Figurer (5-20)). This form allows users to modify the
default contiguration settings for the (ILEA)L

To accomplish this, the Library Email Agent will keep track of rules created
by the user, These rules will have three parts: fests, comparisons, and actions,

The west portion of the rule performs a simple scan of the designated portion
of the message, scarching for requested content. The {ILLEA) described in this chapter

is capable of inspecting (three message parts:

1. SUBJECT-Checks the Subject properly of the message

2. SENDER-Checks the Sender . Name property of the messapge

Tk

PRIORITY-Checksthe Importance property of the message

2 WAL Emml Agent - Setup Page

i'l'.ﬂur recteroc we
"

Fn:: [y T [15

P-:-Q Fim iC.\Dnnlnerh arvd Settngn' FoenMy DocLarmandgh |
an'arh MCA
Combmm Fruwisihan] Mok mgees: B S o Lpad] -

Dl A plied Meapeagen " Use Fopp Duslog on Moy »
Mrrwrze On Shartup r Log Acdivey b Fie r
Finde, Couri i

[r: Crond, i:r

'_'__rnml:mt__' AT G R

P |

et | o |

Figure (5-21) - The Setup Form

92

For example, the test SUBJECT MAPI tells the agent to check the message subject
for the word "Library.” The phrase SENDER Boss tells the agent 1o check for
messages sent w the user Mrom the e-mail 1D "bosgs."
All tests must use a logical condition as part of the processing. The Library
Email Agent uses comparisons 1o do this. The program can check for the fallowing
four logical conditions:
1. EQ-Equals (SENDER Ali EQ)
2. GT-Greater Than (PRIOGRITY 0 GT)
3, LT-Less Than (PRIORITY | LT)
4, CI-Is Contained In (SUBJECT VB CI)
We will notice that the last value is abie o check the selected message parl lor the
avcurrence of a2 word or phrase. Naote that all the comparisons are casc-insensitive. It
is imperiant to note that the LT and G7T can be used with chamacter data, 100,
The last of the threc portions of a rule is the action. This is the part of the rule that
tells the agent what action to take it the test criteria have been met. The (ILEA) can
perlurm the following actions on a message:
1. MOVI-Maove the message (o anasther [elder (MOVE Urgent).
2. COPY- Copy the message w another folder {COPY Archive).
3. FORWARD-Forward the messape (o anather user
(FORWARDlibraryf@ vahoo.net).
4. REPLY-5end reply text to the user {REPLY reply.1xt)
The agent allows users to determine whether the forwarded and reply messages are

retained or removed once the forward/reply is generaled.

5.4.4.4 Storing the Rules in a Control File

The Library Email Agent allows users (o build tests and actions, and then use
thern o create tules. All this information is stored in a text file simitar to an INI file.
This file also containg general contro] information, such as the sean interval, whether
the agent should create a log file, the defauh log on profiles, and so on, Next listing
shows a sample rule file.

Listing shows Sample rule file for the Intelligent Library Email Agent.

: Library Email Agent Control File
1 LR EEL LR SR ARSI R SRS AR RS ENESES SR ES ST ARSI I TR
]General]
Editor=notepad.exe
ScanInterval=2
LogFile=mea_log
LogFlag=I
RuleCoun1=3
ActonCount=4
TestCount=4
Protile=MCA
DeleteForwardFlag=0
NotifyDialog=1]
DeleteRepivFlap=0

MinimzeOnSmarn=0

44

AutoStart=0
LastUpdated=04/3/2007F 9:27:30 PM

[Actions|
Actionl=MOVL. MAPI
Action=MOVE Urgent
Action2=FORWARD libraryf@yahoo.com
Action3=COPFY SavedMail

[Tests]
TestD=SLNDER MCA
Test]=SLNDLR Boss
Test2=SUBJECYT SAPI
Test3=SUBJECT MAPI

[Rules]
RuleNamel0=130ss's Mail
RuleTest0=SENDER Boss
RuleAction0=Move Urgent
RuleCompare0=F(
RuleName1=S¢nd To ISP
RuleTestI=SENDER MCA
RuleAction |=FORWARD Library@yahoo com
RuleCompare | =EQ
RuleName2=MAP| Mail

RuleTest2=SUBIECT MAPI

RuleAction2=MOVE MAP!

RuleCompare2=C|

5.4.4.5 Prototype Algorithm

Protatype algorithm is designed with the intention of creating a basic algorithm o
process each email by comparing the emails prepertics with the user speeificd settings.
Users can start the program and allow it to run unattended. It scans the inbox lor new
messages every /N minutes. Users can also sct configuration values that start the program
as an icon on the task bar or as a dialog box.

In addition, can establish a rule that causes a dialog box to pop up each time a specific
message is received. This notification can be based on sender 1D, subject content, or level
of imporiance.

Uscrs can create rules that automatically forward messages to olher addresses.
Uscers ¢an also determine whether the original should be kept or discarded, and can create
rules that generate automated replies to senders based on sender 1D, subject content, or
level of importance, also can create rules that copy or move incoming messages to other
folders in the user's message store,

This feature can be used to sort incoming message by sender ID, subiject content.

or level of importance.

New Bl Mg

el

hEct Emal

Emad

Merl

Figure (5-22) Protolype Algorithm

LAt Sarklng
Hghetl Gl SEimg
s FroEma enamy | dnteem sion
Emad
Compae
[] Tm:er emad to e CAME —— Samiel Bl
£l)
(L= 1T
*
Compara
Tramlre-r =maid 12 SAME :
Ky o
IrRC T T
»
Commpare
TrprTor ergel
10 e samE—— Comews
Hivm Orag
lncdllmrﬂ
*

Gl et s | bowe gy
pronty arTag

iy

Figure (5-23) sorting

algonithm with identilication

of lorward and replied emails

Erd

e Emal arie I
| Ha
Sl Sorg
- Fout NEW
- Sl

T sfor emal tor

Aaman Email i

am |_,.|Wl, alm m&lwtw ‘ﬂlﬁ{

m seitng
I
I g
Al ey gf
| Cpmpare soanes of

Each 420 1

=

Rarr e g sotryg

-

1 aem aen

L]

=

Somapare Semder
Erngl Addressg

Agunnug e ATl

1

Cor pare Suljedt
L T

|

B L e G000

|

T g Conlangy
Kews oy

}

e WA soone

Areninud A 1T

»

Last Cleca,
——en L BT
e wtingy

oy

9%

Fipure (5-24) sorting algoenthm

with sensitivity of intelligent

Tl er emal b
LT T
In Bwllng

Yol

Raman Errmd i
Inbes

LA) i

—— il amaton Yo this

Hea Cmad amih e — - Cod
|
"ot 5o g
¥
- o HEW Rer & -8 s4ming
o Emal oA Er
' i
Tea
+* b]
Campare Sencer
Subyjet siwng Nz Smal dddnean
.t F& D0 1
Mo Ercumiwate seong
} o
Leallakle il
Sk ject 4170]
wit SE — E-Dmphasd?m
| |
Rk

Sorum S Na Bzon

R e wming

Conpary Contynty

5 TS

590w S m——

ACTLER S RE % IO

Lyl ade
wten
rax
et

]
Laat Cha
A amting——— romarmg
resing oY

99
Chapter Six

Conclusion and Recommendations

Summary

Agents are a powerful 1cchnology with many significant applications. A key issue
m getting the technology inte mainstream sofiware development is the development of
appropriate methodologies for engineering agent-orienied sofiware |23]. Soliware agents
are used to solve several complex problems. Sofiware engineering processes and tools are
vital to support all the development phases of agent-based sysiems. and guaraniee that
these systems are built properly. Many of the distributed, complex sysiems developed in
the last decade are based on the intelligent agents technology, Morcover, nowadays, the
Internet and web based applications offer new opportunities for building efficient multi-
agent systems. Thus, there is a need for a specific soflware enginecring, named agent-
eriented, that is more appropriate than other existing software cngincering such as the
object criented one. The thesis presents a methodology for agent-oricnted analysis and
design and the key aspecis of agent-based sottware development, Tocusing on one of the
most known methodologies as the Prometheus methodology for developing intelligent
agent sysiems. The methodology has been developed owver the last several years in
collaboration with Agent Oriented Soflware.

The first chapter of the thesis staried with simple introduction about thesis
subject. which deal with agents as a new design-paradigm tor software engineering
and shows researches into the areas of agent-oriented methodologics. [has illustrated

the main ohjective of this research, which is using methodology roam Agent-Oriented

10}

Sofiware Engincering methodologies. It presented appropriate technigues and tools that
will enable inexpensive development and maintenance of apent-based sofiware. In
addition to this, i1l showed that the seftware should be flexible, casy-1o-use, scalable, and
of high quality. The chapter has also presented the analysis and design intelligent agents
that de a good job of acting on their environment.

As for the second chapier of the thesis, it empbasized and illustrated a
theoretical background for the rescarch and Fundamental concepts of Agent
sofiware. This chapter discussed some of the gencral principles used in the design of
agents throughout the thesis, among which is the principle that agents should know
things.

Chapter three of the thesis illustrated a theoretical background for the rescarch
and Fundamentat concepts of intelligent Agent, which included illusirations of the
disciplines of intelligent agents that has emerged largely from research in artificial
[ntelligence (Al). In fact, one way of defining Al is: “the problem of building an
intelligent zgent. and illustrate the main reasons why people need sofiware agents™ [39).
The chapter has also shown that agent characteristics give a global impression of what an
agent "i1s".

Chapier four of the thesis illustrated and discussed the methodology and plan that
has been designed to complete this project. It has also illusirated that Prometheus
methodelogy differs from existing methedologies, and provided distinctive support for
issues relating to agent identification. The chapter has shown tools, which are required

in the analysis and design process. The next phase of the research wus to draw the

101

final design lor the system by using Prometheus methodelogy, present final features
of' intelligent agent and illustrate the CGiraphical user interface for project.

Appendix A of this thesis is completed with the documentation of the source
codes and the discussions will touch on the functions in the library LEmail Agent and
maost importantly, the sorting process. During the discussions, the source codes for the
functions are normally displaved partially as the full source codes are of substantial

lenoth,

6.1 Recommendations for future work

As agent-oriented methodologics continue 1o he developed, research will keep
aiming at the direction of determining which agentoriented methodologics are best
suited to suppert the development of a particular project or system. lence, there are
various future works that can be done in this area as:

1. Extending the model to include various library functions.

2. Applying other methodology.

L2

Reference

|1} A. lafari, "conceptualizing intelligent agent for tcachinp and learning",
Research paper. University Indignapaolis, Indianapolis, [ndiana, 2002,

[2]: A. O"Malley, Scott A. Del.oach,” Proceedings of the Sccond International
Warkshop On Apent-Oriented”, Research paper, Montreal, Canada, Air Foree
Institute of Technology, May 29th 2001.

[3]: A. Pakonen, "Information Agent Technology in Process Aulomation Systems ”,
Master's Thesis Information and Computer Systems in Automation, helsinki
university of lechnology, November 26, 2004,

[4]: A. Sturm Goint work with 0. Shehory and 1. Dori},"Lvaluation of Agent-
Oriented Methodologies”. Research paper, July 2004, Available
www.pa.icar.cor.it~cossentino/al 31 /docs/evaluationdagentlink. pdl, 2006~ 1-5,

13}: C. Cares, "Agent-Oriented Sofiware Engineering: An Introduction” . Rescarch
paper, Technical University of Calalonia, Barcelona, Spain, and University of
La Frontera, Temuco, Chile.

Available at: hup:/fwww.agents.com/docs/0608_10.pdf, 2006-11- 5,

|[6]: [3. Rosa dos Santos, M. Blois Ribeiro, R. Melo Bastos, "A Comparative Study of
Multi-Agent Systems, Development Mcthodologies”, Research paper,
University of Rio Grande -Porto Alegre Brazil, with resources of Law
8.248/91. Avaiiable a1: www les.inf.pucic briseas2006/papers/X037.paf , 2007-01-
12,

[7]: D. Wallace Croft, "Intelligent Software Agents: Definitions and Applications ™,

Research paper, 1997-10-03.

103

www.alurmnus.callech.edu/~croftfresearchfagent/definition.pd£.2006.10.2.
[8): G. Boone, "Re: Agent, &n Intelligent Email Agent" Research paper, Georgia
Institute of Technology. 1998
Available at: www.cc.gatech.edu/Ngboone, 2006-12-7
[9]: G. Pang. "Implcmentation of an Agent-Based Business Process". Research
paper, Chengdu, Sichuan, China, University Ziirich, 2000,
[18]: Hsi-Kue Li. "SOFTWARE AGENT", Thesis, Skokig, lllinois, U.5.A December
2002.
[11): I S, Nwana, "Software Agents: An Overview", Research paper. Cambridge
Lniversity Press, Sept 1996,

[12]: H. Xu and 5. M. Shatz. "A Framework for Model-Based Design of Agent-
Oriented Software”, Research paper, The University of lllinois, Chicago, 1999,
Available at: www cis umassd edu~hxu/PapersfUICTSE pdf , 2006-7-210.

[13]: J. Calmet, Pierre Marct and Regine Endsuleit, "Agent-Oriented Abstraction”.

Research paper. Real Academia de Ciencias, Espa™na, 2004,
Availabie at: http:fiwww.rac.es/ficheros/doc/00150.pdf, 2006-9-14
[14]: J. Sudeikat, L. Braubach. A. Pokahr, and W. Lamersdort , "Evaluation of
Agent—Oriented Software, Methodologies — Examination of the Gap Between
Modeling and Platform”, Research paper, University of Applied Sciences
Hamburg, Berliner Hamburg., Germany, available at www.informatik.uni-
hamburg. de/get doc.php/publications/207/a0se04-03 pdf, 2036-7-20.
[15]: K. H. Dam, "Evaluating and Comparing Agent-Oriented Software, Engineering

Methodologies”, Master of Applied Science in information Technology.

104

BMIT University, Australia, June 27, 2003,

[16]: K. Chan, Leon Sterling, Shanika Karunasekera, "Agent-Oriented Software
Analysis", Research paper, Software Lnginecring Conference, Proceedings,
University of Melbourne, Australian, pp 20— 27, 2004

[17]: K. H. Dam, MichaclWinikoff, "Comparing agent - oriented methodologies ",
Rescarch paper, University of Melbourne , Australia, 2003

[18]: L. Cernuzzi, (5. Rossi, "On the evatuation of agent oriented modeling methods",
pp 2130, Seattle, November 2002,

F19]: L. Padgham, J. Thangarajah, M. Winikoff, "il'ool Support for Agent
Development using the Prometheus Methodology", Rescarch paper, RMIT
University, Melbourne, Australia, 2005,

[20]: L. Padgham, M. Winikoff, "Developing Intelligent Agent Systems: A Practical
Guide", Rescarch paper. RMIT University, Melbourne, Ausiralia, 2004, 1SBN
0-470-86120-7.

[21]: L. Padgham, M. Winikolf . "The Prometheus Methodology ", Research paper,

RMI'TUniversity Melhourne, AUSTRALIA, April 2004,

[22]: L. Padgham, M. Winikoll," Prometheus: A Mcthodology for Developing
Intelligent Agents”, Research paper, RMIT University, Melbourng,
AUSTRALIA available at, http:f/www cs.rmit.edu.au 2006-11-18,

[23]: L. Padgham, M. Winikoff. "Prometheus: A pragmatic methodology for

cngineering intelligent agents”, Research paper, pp 97108, Seattle, 2002,
|24]: M. Amor, L. Fuentes and A. Vallecillo, "Bridging the (Gap Between Agent-

Oriented Design and Implementation Using MDA", Rcscarch paper,

105

University de Malaga. Campus de Teatinos, Spain, 2002.

[25): M. Amundsen," SAPL and TAPI Developer's Guide", FIRST EDITION,
Book Number: 0-672-30928-9, address Sams Publishing201 W, 103rd St.,
Indianapolis, [N 46290, Copynight © 1956,

|26]: Marc-Philippe Huget, . Qdell, Oystein Haugen, Mariam “Misty™ Nodine,
Stephen Crancficld. Renate Levy, and Lin Padgham, "Fipa modcling:
interaction diagrams”. Rescarch paper. under “Working Documents™, 2003,
FIPA Working Draft, {version 2003-07-02}. Available at: www.auml.orp

[27]: M. Mohammadian, "Intclligent Agent lor data mining and information
retrieval”, Research paper, Umversity of Canberra, Australia, 2004.

[28): M. Wooldridge, J.R lJennings, "Inlelligent Apents: Theory and Practice”,
Research paper, January 19935, Availzble at;

hitp:fwww.doc.mmu.ac. uk/STAFF/mike/ker95/kerd3-html.html. 2006-5-14.

[29]: M. Winikotf, L. Padgham, J. Harland. "Simplifying the Development of
Intelligent Agents ". Rescarch paper, RMIT University, Melbourne, Australia,

[30]: M. Wooldridge, "Agent-Based Software Engineering”, Research paper,
Mitsubishi Electric Digital Library Group. London, United Kingdom.
Septermnber 19, 1997,

[31]: M. Wooldridge, "An Introduction te MultiAgent Systems”, Research paper.
(Chichester, Eneland), 2002, ISBN 0 47149691X.

[32]: N. R. Jennings, M. Wooldridge, "Applications of Intelligent Agents”, Rescarch
paper. Queen Mary & Westfield College. University of Londen. Available at:

http-//www cs.umbc.edwagents/introduction/jennings98.pdf, 2006-5-14

L6

[33]: O. Araey and C. Woo, "Analysis and Design of Agent-Oriented Information
Systems (AOIS)Y", Research paper, University of British Cotumbia. December
19, 1999,

[34]: ©O. Shehory, A, Sturm, "Evaluation of Maodeling Techniques for Agent -Based
Systems”, Research paper, the 5th International Conlerence on Autenomous
Agents, Montreal, Canada, May 28-June 01, 2001.

[35]: O. Shehory. A. Sturm, “"Agent-Oriented Software Enginecering (AOSE)
Methodelogies”, Research paper, New York, July 2004,

[36}: P. Cuesta, A. G'omer,). C. Gonz’'alez, and F. I. Rodr'igues , "A Framework

for Evaluation of Agent Oriented Methodologies?™, Research paper,
University of Vigo Ourense E-32004 {SIPAIN).

Available at: http://www.montealegre.ei.uvigo.esfawai.pdf

[37]: P. Giorgini "Agent-Oriented Methodologies: An Introduction”, Chapier |,
University of Tremo, haly, Brian Henderson-Sellers University of
Technology, Sydney, Australiz. 20035,

[38]: P. Havaldar, S. Deloach, "Compare and Contrast five major Agent Oriented
Sofiware Engineering methodologies...”, Rescarch paper, avaitable at;

hupfivwww.cis ksu . edu/~padmaja/papers/absiract. doc. 2007-2-3

[39]: S. Russell and P. Norvig, " Arificial Intelligence: A Modem Approach”,
Premice -1all, 1995,

[40]: V. Gorodetsky, J. liu, V. A.Skarmin (Eds.), " Autonomous Intelligent Systems:
Agents and Data Mining”, inwernational workshop, AIS-ADM 2005,

StPetersburg, Russia, June 2005,

107

[41]: W. Brenner, R, Zarnckow, 1. Witlig," Imeliigent software agents: foundations
and applications”, Research paper, springer - verlag herlin Heidelberg, 1998.
[42]: W. Wobcke, "Intelligent Agent's technology review”, Research paper.

University of New South Wales Australia, October 2004,

108

Appeandix A: Source code Liscussions

This chapter of the thesis is used to illustrate the discussions on the source code of
the intelligent agent. The discussions will touch on the functions in the library Email
Agent and, most importantly. the sorting process. During the discussions, the source
codes for the functions are nermally displayed partially as the full source caxles are of

substantial length.

A.1 Coding the Support Routines

The real heart of the library Email Agenl program is the suppurt routines, There are
three main sets of routines in the program:

1. Initizlizatior routines

[k

. List-handling routincs
3. Message-processing roulines
The next three sections of this chapier walk you through the process of building the

suppert routines for the library Email Agent program.

A.1.1 The Enitialization Routines
The initialization routines declare the global variables and set them to their initizl
values. There are also routines to handle the reading and writing of confipuration values

and the storing and retrieving of the test. action, and rule records.

109

A.1.2 The List-Handling Routines
The next set of routines handles the addition and deletion of records from the
rules. tests, and actions lists. There are alse (wo routines that handle the populating of

the list controls on the library Email Agent forms,

A.1.3 The Message Processing Routines

This last st of routines is where the library services are finally used. The goal
of the message processing routings is 10 inspect each messape in the user's inbox and
check the messages against the rules that have been established for the library 1mail
Agent. The top-level routines are StartP’rocess and ScanMsgs. The StartProcess routine
is called by the ‘Timerl_Timer event or by pressing the Start bution on the main form.
StartProcess checks to see if there are any messages in the user's inbox. If there are.

then the ScanMsg routine is called to process cach message.

1. Adding the StartProcess code:

~APruject! - | IFIMEA {Code)

| iGaneral) Il [stetProcess =]

Fublic Sub ScarcProcesal}

! mtart malpn process loap
Sect objMagloll = ohifeagion. Inhox . Heamages
If obifnagColl Ia Nothing Then
HixgBox "No Mespages co scan”™
Flae
Scaniaga
et cbjdsgColl * Noching
End IT

Ecd Zub

110

The Start Process reutine attempts (o create a message collection object based

on the Session inbox. 1 that is successful, the Scan Msgs routine can be calied.

2. Adding the ScanMsgs routine:

1 wil =1 | P o

s

Putilig Fur Scanfsur|)
' Chask assSh ASSAJE Esr hica
bim X 4@ Lona
'

Bac oD JKasEm s = B HEgO] L. bacFlesc

1f ohjRmpengm Is Notnlnag Than
Exit Hul ' kot ;e Sagdd !

End IX

0o Until abjMaasage [# HNeohing
CheakAul=]
Sat SR MAkddagd = Sh TARgCall . .GatNext

Loap

Log¥rcite "Arg Fomn Cump lwbaue
'

rnd Fuo

The ScanMsgs routing selects each message in the collection and submits it to the

Check Rule reutine lor processing.

111

3. Adding the CheckRule routine:

)] ek
Fublic Jub ChecnBule |}

' orheeek Tof Eule hae

Dim ¥ ks Integer

Dim cCad iy Strlieg

Dim bEtn s Boolewn

Dim philaicEocry Ay (Bject

[

e

Om Eitor CGaTo CheckRulsizr
For £ = O To LRulefount = 1
crmd = Farssiocd clcleTe+ac [I)]
T lect Cwor TCmpy (oCmd)
Case UCapr |CcTert Srodar)
St oblMkMrESCET = O] Teh S Bk . R Petht 1
If cbiiddrIoiry I# Matbhing Than
¥ Lo I
It Chedkfopier (I, Go)Aveeegr . Sender . ame| = Truo Toeno
Dokcricn X I
Ied IT
Iod IF
Cume TCane (cTeat Jubiree)
If Checkfubjett (X, Gbidgpenge,fupjesk) = Trwe Ther
bpaction ¥

Erad 1
Coapn TCame{sTertPiIlaricy) J
If CoeckFrlocicyil, objResmage . Impociunck] * True Then
Dakcelan X
End 12
Eod Jelect
Next I
Exit Huab
CheckRaleXrr:
MypBoX Erracl, vDTiitical, "CheshBuleErkc |* & CSepBLEl ¢ "1™
_End Hug

Several things are going on i this routine, First, the first "word” on the linc is
removed using the ParseWord() function. ‘This word is then used to determine the 1ype of
lest to perform on the message. The appropriate check subroutine s called (CheckSender.
CheckSubject, CheckPriority) and, if the return is positivie, the DoAction routine is called

to handle the action portion of the rule.

(]

4. Adding the ParseWord function:

el il _:J Ft: aefard ;]

—

Fubliec Functilon Fecresdordicbioe Ly %tring] Ap BErclag
'
" plek & wotd off Line
[am nFfos AR IRteEger
'

afos = Indte{cLine, * “) —_
It nfos <> O Then
FarssBoard = lefelcline, nPox - 1)
El=e=
PacsaBorg = "™
Ind IT
f

JEnd Funetion

The ParscWord() function accepts a string and returns the first full ward
found in the string. For example ParseWord("SENDER Smith™) would return
SIENDER. This is used to pull the command portion of a 1esl or action record.

The CheckRule routine you cnlered earlier, uses JFarseWord() 10 get the
message portion command of a rule (SENDER, SUBJECT, PRIORITY). This vatue
is then used 1o call the three message-part-specific check routines (CheckSender,

(CheckSubject, and Check Privrity).

5. Adding the CheckSender function:

Ateanaray 7], Clvoch Somer |

_End Function <]
Fuklic Funetlon Chreekdendsr inRule Ls Inteyer, cHem= As 3trcing)
' cheghk nups agelosy serder test
Dim nPad 48 Ineeger
Dlw clsndmc Lp JTElng
pPos = Ie3cr (cRulsTesc (nAule), ™ %)
If nPgy <> Q Than
clender = Trim|Eld(cPolaTese (Fals), nfos -+ 1, 23X))
EFrst IT
chrpder = Tr leiDCner icSemder)]
chtrms = Trim{UCase [cKome])
Eeleck Comt OCwmr(cRuleiompare (nAule|)
Casse O nse {cI8TqualTol
If pZupdor = cHasse Then
ChprElender = Tous
[laz
Chta Chinder 2 Folse
End It
Cane OO hiok |&T808 batAr Than|
Il ¢Sunder > Clowr Tbhen
CheskSender = Tros
T law
CherkScnoer = False
Ehd If
Caae UCapy (cImleasThan)
ITf cOender & chame Theb
Chaeklender = True -J

Elmn
Checkdender = False

Eoad JF

Cuse Dane{clisConcalnedIn

I 1ol icdender, CMmme] £3 0 Then
ChecxSepder = True

Elme
CrwckSender = Faloe

nd IT

End Sgloct
End Funceion

Note that this routine uses a SELECT CASE structure to handle the compare
portion of the rulc. After locating the correct compare operation, CheckSender tests
the Sender portion against the Name in the rule and retums the result {TRUE or
FALSE). The CheckSubject and CheckPrierity functions work the same way. The
only differcnce is that the CheckPriority function does not test for €I {"is contained

in"),

14

6. Adding the CheckSubject rountine:

_11.‘--

Fub b1z Funct1an CheckSubjece (ahule L8 Intéger, cOub)Esg be Strimgy] A 300 lemn j
' check AunYACE agminat mmsyegw LewE
Bim nfos ks Taceger
b cOuniFule bt Sexing
afol = Indtr (CRuleTest [afulw], ™ *)
If nPoa <> Q Thep
cXubyfule = Trim(BidjcAuleTest [LRule), ofte + 1, 2551}
Ind IT
f
clubiRule = TCase (Tt imicSuejRule))
c2upMEg = OCase | Trim{cEunjdey b
Jelecr Case UCase (gRulmComparms (nAule|)
Case UCnge (cIAEqualTu)
1f cubjRule = club)Hag Then
Checicfubirgt * Truw
Flae
Cheekdublect = Fulod
Eod If
Case Poaoe |clalessThan)
It equb)Bute « cHubiZs) Then
Checxfurigct = Trwa
El=ae
CheckSubject ~ Faled
End If
Coae Tlaye [CIMGTear =t Than)
IL cBubjlule * cSuwn)iKag Theno
CheckSuybijece = Touwe
Flas
CheckJubject. = Falpe
Fnd 1f ,J
Cazxe Ulase(cIaContalnedIn
If IndtzicZubjRule, cAub]Mag] < O Thop
Chroccfubigct » Trus
Flam
Cohrctdu et = Fulda
Erd If
o Belacr

115

7. Adding the CheckPriority routine:

ot) =) [ChechSubien =
lnd?l.ml:iign_._ _ T'
Public Funetion CheeXPrioricyinfule ba Troeger, AImpEag] As Boglean =
i
' chack yublact &Qeinab mesdage Tasb
'
bim ofoa bk loneger
piw cimplule &8 String
Tim nlmpPule ip Tnveger
'
oFos = InStr|gkuleTest (pAule]l, ™ %)
If nPoa x Q0 Then
cimpRule = Trim(Aid{cRuleTesc [nRule), AFfos + 1, 1Y
Fod If
1
olmpRule = VilicIephule)
f
wylect Cass DCass | RuleCompare (minle))
Cuws TCeaw {clnlgualTa)
If plmpRules = plmpEsg Then
CpeekPrioz ity = Trwe
rlam
ChreckPrioricy = Falos
Fnd I£
Cage jiCane |¢IalenaThan)
If plmpRule 4 nimpdsg Then
CragkPrinrley = Touwe
Elwr
ChackPriazicy = Fulwr
Tod 1f
Camw s | € [#GTEares Than)
17 oplepPule > oimplwg Thed J
CheckPriocicy = TrCwr
Elpr
ChachPriority = Falee
Tnd If
¥od JelEct

Enot FuneTicon

If the Checkana routine returns TRUE, sn action must take place. The

DoAction Toutine is used to execute the appropriate e-mail action. DoAction accepts

the index to the tule as its only parameter. Like the CheckRule routine, DoAction

usies a SELECT CASE structure 10 act on each command word (N(]-'I'IF:‘Y. COPY,

MOVE: FORWARID, and REPLY).

16

8. Adding the DoAction routine:

G e 7] Clerck Sl

I-Ill-

| ot Functian

Fublic Buh Dokt iom [afule hx Ioceger)
L]
" handlie yalld sselon
" pRuls polote Lo ruld iD ACIAT
" upx cufeaac ob) RaEswge
'
Dim clmd Ly Atring ' accion comoand
Dim oTacges 4w StClng ' #CTION TATQRT
Dlm gFor 48 [nteger
\

! gut fommand and CaCger
ofed = Pacpalord (eRwlehetlon | RRwleg)
nfon & Infty (ehuledctlon(oRale], = "}
If nfom +¥ 0 Than
cTacgat = Trim{RLdicRUlehcclon (oRule) , nPoa + 1, TS5}
EFnad If
1
! e SIRCULE SOl
Salwey, Cops Capy (comd)
Cume Mowpw (chsrionfowe]
EegRovelopy "EVE", cTArger, obiBsasags
Cupy Towre [chat lOBTODY)]
Kaplavelopy "COPTT, cTalget, objle=ssoge
Coupe Wuae (chet iooFor ward})
ArgFwdieply "FORWAMDT, CTazget, objBe= sy
Capy (M wes(cber LraReply]
RegFedieply "REFLY", cTarpet, objBex-mge
Caps DCase (Shet oot 11 y¥)
Aegioc Iy STarget, G Brmrsage
Lok fAwliuct
f

_End Sun

There are only three routines used to act on all five commands. This is
because the FORWARD and REPLY commands act on messages, and the COPY and
MOVE commands aet on folders. Only one routine is needed ibr cach (with slight
hehavior changes within each routine).

The NOTIFY option is the easiest 16 handle. All that is needed s a pop-up
dialoy box when the message arrives. The routine needed for [orwarding and replying
lo messages involves making a new message (with the contents of the original) and
sending it to a new address. Since this is actually a messaging aperation.Send function to

force the message into the transport for delivery.

9. Adding the MsgNotify routine:

[T

| Deotetwn

Lnd Sub

Publio Mub Baghocify|eNornify As Scridwg, oIy AR ORject)
!

Dim cM=q im 2trimg
'

£hyg = "HEermwge Notlficaticn fer [T
chag = cEsq & oin]Wag, Tub et

cHag = cBag & ")
cBhiny = cBoy i ohjEsg Jewier Mamy {)"
!

Irom [-

" senl OWL POp=up?
17 cRot:fplialogVelwe = "1™ Than

Isglax cAyy, vhEsc]lamation, TALP] Pmay] igent MoTlYicATion™

Erd 11

Logirite [:MeQ)

L L

10. Adding the MsgFwdReply routine;

e
"

—r

Tim ol yLocck IRegiobl Ly thject
Dur GR)Coprisgy ka Ob]mct
Tim coesder L ziog
Dim clubiPFrefax ks Scring
Mamse= |cEvent]

aTar et
t Hrader
e g
olwader
CHoagRr
tHrmnder

Ti————— MaEEae: " L clvrht

ceader
cheader
(i LT
cheater

L " from |-

Fiolic Sub RFwikeply cEveot Ln 3tyimg, chemciadr A3 3trimg, ab)i%sg as Objech]
Dl cAeg iy Soring

[obiSeanlen, Hatw
& "] by MAP] Emall AQFLL ======3f
d Chef13l & Chet1d) & Cheild| € Cherion

If cIvanc = "REPLT* Then
odubiFrefiz * "RE: "

ofubjFrefiz = "ru: =

Eod 1F

Bt obiloceiEnginll = o JEeEE 100 Catiadn REiagnnk

far c1Copriag * ohibocnlBsgieil}. dad
FiCh o Copray
(Jupjecr * cSubiFrefls o ob)ieg- Bubjecy
Taat = cheader L cbjEmg. Text

Tmd Fith

ubiCopying. Recipientd . Pesolve sbomiinlogi=Falee

T mid Fllpieont
Bar phjlecipieat = ob)CopyARg. Aecipienta, Add
o Erclplent . Mass = STaar ki
R IFECIpient. Trpe = map1To

nbACapyEng. Tpokca

thlCopyRag.dend ghovdinlogr=Fulsse ' dylete old wcoaege?

If glalfewdfimgymlge = "1" And cEfwent = "FORELPRL™ Thanp
vbiNesoage Delece

Ind 1t

IF ¢C#lReplyFingialoe = "17 Lpd clyenr = "REPLT™ Theo
oo Heaaage . Delete

End Ir

ok Iaas lon. Dothor Updarta * pamd Sut BEACw

gy = cEvEDT & " Eedmempee | %
clng = CERY § ob)E=g.Subjerc

€ng = cling £) co [T o5 chemtiads &)%

Falir s e Wt

HIE

17

There are a few things to keep in mind about this routine. First, a good REPLY routine

should allow users to attach, or append, a 1ext message to the original.

i18

Here, that code is left out fer brevity. You will 2lso natice that oniy one recipient
is added te the note. In some cases, it is pessible that more than one person should
receive the forwarded message. This can be handled by using distribution lists. Finally,
there is no code here to handle any attachments o the original note. This should be added
in a production environment, The other action (o be handled by the Library Email Agent
i5 copying or moving messages 1o other folders. This is accomplished using the
-Update method, Maoving messages is similar (o posting them. For this reason you do

not want to attempl to "send" the message.

11. Adding the MsgMoveCopy routine:

e) = =]
Fublic Sub RagEovrCOpFcEwrnt AP Joriog, cFalder e JurfInd, oblBeg ki OB)REL] -
Dim ciojlocalFolder ws (b iect
Pim objlocailisg Le Cojeey
Dim e jlietmlPeciplent L il
Dim clsg i Stramg
Dim cFl3cID ix 3cricg
Dim cRecipiiess L3 Atrisg
Dim clieder &F 3CTI1E]
Dim 1 la Integer " Earry sender 1afo eIk pou
cHakigr = "y * § Wbk lCEvrat) & " Trom [*
Chruder = cEemcer & ObdAsg . Sender e
claddgr = cHidchir 1 "] by NaFI Eeiil Agerec - >
-

chewcer = cheader 4 Phr I3} [Cho (LB & CRo|17] 4 ERp (10} © look for foldes
CFlorID = FrpdFolder (cTolder)
T cPldeID = ** Then
Exir Sob
Imd If " wowe o foloer
Yot objloaealFolder = oo)ieasion, GecFolaer (£F 1810}
Sar b JLocwlfy = GbilitwiFolduc. Nrdkugus . lidd ° oopy Pxom Ghjmeg b pbd lecalmeg
Fith objLocelBsg
SO L Fc P 1D =) Eied L Dok Lyl E Tic PR
Iacrypted = obilsg.fncxypted
-Imparcancet = Ohd Reg. LepOl Caosd
Bl R Ok] Ry, Arsdincw | pk
JFear = ob) Ry, deat
Aigmed = ol yEag . S gt
Ao jact = cb1Eag. SabhJecT
JEbawitied = o e . SulomiEted
.Tayr =~ pEasdwr & ob]BRag, Tegr
STimeReceived = oY B . Tlme e Lved
STimedenr = ol)Esg. Tomedear
-Typs = ohjksg, Typs
Oakirad = ob)ieg. Dnkesd
Eod WitA * mdd recipilesks
For 1 = L To abileg. B lpients Count AT8p 1
clicipNewe = chilg. Fecipiesin. ITtem L] Hemr
It rEscIpNiger <3 *" Then
Fxt onjlocalReaiprent = qitlocslBsg., Reciprent s, hid
cbiLlaculFeciplent Nee = checiphlsme
tnd tr
Mewar 1 -

119

Again, a few things worlh pointing out here. First, moving or copying
mussages 1o other folders requires that you actually find the targer folder first. This is
nol as simple as looking up & name in a list. MAPI message siores are recursively
hicrarchical. That means that folders can exist within folders. In addition, MAP] does
net publish a list of the folder iree-you must traverse it each time yourself. This means
vou need yvour own FindFelder rowmine.

Natice that the process of moving a message really involves creating a copy in the
new lalder. The code here copies the most commonly used tlems, bul does not copy any
attachments. Keep in mind Lthat some propertics may not exist for some messapes.

The last routine vou need for the Library Email Agem application is the
Find¥older function. This routine accepts a folder name and retums its unigue MAPI D

value,

12. Adding the FindFoldcr function:

1oaren oy r] [Finarolder-
] Public Functioz FindFolder [eTildrNewse s 3tring) ds Scramg

p i

!
' wee 1Y you can lgoaber the teqasted folder
' af fpumd, ceturn che ungiue Folder 1B

1

Lam cRLnll 40 Fooing

Iim <TempID ks Strang

i objInfofSeare ks Chieck

Dim ob)TempFldr an Chiact

Pim eI TEmpCaoll 44 Onject

Dim I Lx InTecer

cfrpil = "™ ' wazuoe npoT Lound
Fosehh the folder collection
Jat pbiTemplol]l = obiSession. {obox.foldess
Sar ol 1Templldr = ob)TewmpColl.GecFLTAC
]
CTempID = oAb Tewpf ldr. Id
If DCasc |cb]Tewpl ldr . Heaes] = Case (cfldrbamel Then
eFLnIl - objTompFldr. Id
Exat Ig
Ind IT
Azt op]Temprldr = ob)TewpColl.CecHawt
Loap While objTempFidc . Neme <% “

120

A.2 Building {ILEA) Actions, Tests, and Rutles

We need 10 add test, action, and rule records to the Library Email Agent
dalabase. Start the library Email Agent program and enter the tests and actions

shown in Table

|

fecord ipe | TR
Test |SEN DER Boas
“ SUBJECT MAPI

SUHJECT SALES

IH

ERICRITY O

| Ilsawnan Assistant
rActiﬂn ||mnwnnn Boss
|MO‘-."P‘. Mrgent

TOPY MAPL

| |

REPLY Sales

| HOTIFY Me

I

Table (A-1). (1L1EAY tests and actions.

Table (A-1) shows how the library Email Agent looks afier the tests and
actions have been cotered. Then we am ready to create some rules for the ntelligent

l.ibrary Email Agent. By Enter the rules shown in Table

Actiun

SENDER Boss "ED

"c-::-Pr Urgent I

Save MAPI

bzzistant Roubting

SUBJECT MAPT ||c1 JCGH MAPT

B

SunDER Assistdntl

FORWARD BosS |

Wake Me Up

FRIDRITY 0 ||L0

NOTIFY Me

HSales Handler ISUBJECT SALEE If ||REFL‘1’ Eales

Table (A-2). Adding rules to the {ILEA).

121

Table {A-2} shows whal your screen should look like as vou build library Email

Agent rules.

Uﬂilﬂ“

el gyl o gelafl gt) A dgen SRS iy ol il JS T Sl S

U5 g el s (Jia 0S5 1t Jac Y) e lihal o Lo oo Ll ullh
Y S 8 e Bae OYLaa 8 AT S ea Tl Dy el 8y (s o)
[10] paiadh i Jind S8

iy el Aetia e a2 il Y g el 1 3 e e 3 081 sy Sk a2a 238
LS (LS gl il pa g asalial (A3 say o AN ATl y cadlalbuns sl bl JS
O ghos vigles Shac (anial] 13§ 5 geall 230 o3 S el alt SS9 oF BB iyl 5230
s 5 Jady) tye adtaal 1 el 3y Andly (g3 o glulE 23S Py G5 Siasa
e ple 338 A y R cmeall o plalt (8 (e S 58 e 3 Lia s g 435
5085 S e Badinall gl e gyl At N Clladl g o gl B paally il
€ kil bl Prometheus pets s 38y jaalt Shngidli SShaal e 38,8 4
5 6A) Lyngial Gila (S 12U ey Gt UJad po Sl 2ny 5 RS

J5lah Al g o3n clgine b KN AU (ya e2al g Adsk y LA Sda g sha Y1 5N b
Agacd 1 Jroat¥ 2 gof aal mazal 5 SV 250 Y 15 o g IV AN 3 5 S 2
A 1y JS g fasia O ¢ pin il oyl s Allal g ol S
iy S Ay ISy gt r de gana U Foa (P zad 5 OS5 B g g ST
g Gl A Al (5l gl 1) S

claa Yl

Al ol)
Sl

u—‘-‘-‘\j J-U"J\ @JJ (.A\
L.n) hqﬂ\ ‘\AJE

L R e T o e B S T
T ?"‘M..'"'EH': CLE AT LTI T T G B e)

g”’“/&/;_;_.ﬂg,w 13 et

y Ju [T MW"‘“ :I"hl"' j“;.?\w o
il e b e D] S o A
il e St Sl Gl Bl ik

= i
‘}'P‘_.;_m—:'a-. T

Zﬂa “f _Li\ = ..-..Z_.BF- L -i.:i_‘l-uu

Ay AW UL V7B RPATpOR

o Bt L] —
Jalaio Gd Gilld ohiille —lteofsaiiwl))
((d_u‘_‘lo L.llr.p_:a.n-l'g

'l:.lt ‘-'-1.”":: B

I B-L N - R

.................... e u_i'l_‘.llJ__Lﬂ-.ﬁ_mJ__‘mﬂJ.__&!JjJSﬂl

(A i)

!
.......... ‘{'ﬁ?db il e d bl e)
[Al fadias)

..................... TR ' i’ i LAl s aas [y

nio@aorohod eduly 474 L"‘;’-"f 054 / 60361 - 62151 il 054! 60353 - 65704 ‘&

FYCIN | IRV-CUN | alil pas

il Wl Gible b Ul W ale U Wiw)
((paS=d] pul

3l 5 e e (32)4

o slall 43S _ caatll daala
A58 5 10) A asancd g Jadad (8 4SS Al aablie alddid

%Jaubdﬁﬂﬁhm#ymifﬁ‘aﬂhmm‘ﬂ“h
Gipaladl p gl (B jtaalall

-

s iUall (e Aadia

ﬁ,iuli*samwia.p_a;dlﬁ}

2007/2006 el plad

	t
	2
	a
	c
	5
	1
	2
	3
	4
	5
	o
	r
	s
	a
	00000
	t

